
Verification Support for Plug-and-Play Architectural Design

Shangzhu Wang, George S. Avrunin, Lori A. Clarke
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003

{shangzhu,avrunin,clarke}@cs.umass.edu

1. INTRODUCTION
In software architecture, connectors are intended to repre-

sent the specific semantics of how components interact with
each other, capturing some of the most important yet subtle
aspects of a system. In practice, choosing the appropriate
interaction semantics for the connectors in a system tends to
be very difficult. The typical design process often involves
not only a choice from commonly used interaction mecha-
nisms, such as remote procedure call, message passing, and
publish/subscribe, but also decisions about such details as
the particular type and size of a message buffer or whether
a communication should be synchronous or asynchronous.
Given such a large design space, it is important that de-
signers be able to get feedback about the appropriateness
of their design decisions on interaction semantics, based on
the correctness of the overall system behavior. In particu-
lar, one would like to be able to propose a design, and then
use design-time verification to determine whether important
properties of the system are satisfied. This practice may re-
peat until a desired design of the system is achieved.

One major obstacle to the realization of this vision of de-
sign and design-time verification is that the semantics of the
interactions are often intertwined with the semantics of the
components’ computations. For example, a change from an
asynchronous communication to a synchronous one often re-
quires making changes to the components so that a callback
can be placed to explicitly notify the sender of the receipt
of messages. Experimenting with alternative choices of in-
teraction semantics tends to be difficult and inefficient when
changes made in the interactions require nontrivial changes
in the components’ computations. This problem also com-
plicates design-time verification. When using finite-state
verification techniques, for instance, it is necessary to build
a model of the system that represents the computation of
each component and the interactions between them. With
the semantics of interactions intertwined with the seman-
tics of computations, changes made to the interactions will
often result in not only the re-construction of the connec-
tor models but also the component models. When repeated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ROSATEA’06, July 17, 2006, Portland, Maine, USA.
Copyright 2006 ACM 1-59593-459-6/06/07 ...$5.00.

changes and verification of a design are necessary, the lack
of reusability of the component and connector models could
increase the cost of the design-time verification significantly.

Our approach defines a small set of standard interfaces
that components can use to communicate with each other
through different connectors. This set of standard inter-
faces allows connectors to be modified or replaced without
causing significant changes in the components. To support
the standard interfaces, we decompose connectors into ports
and channels that capture different aspects of the interac-
tion semantics represented by connectors. Ports are media-
tors between components and channels and are responsible
for hiding the semantic differences between connectors from
the components, normally capturing such semantics as syn-
chronous/asynchronous and blocking/nonblocking. Chan-
nels are used to represent the other aspects of interaction
semantics represented by a connector such as the communi-
cation media.

The decomposition of connectors into ports and channels
not only makes it possible to support the standard com-
ponent interfaces, but also facilitates providing a library of
reusable building blocks from which a wide variety of connec-
tors can be constructed. With our approach, constructing a
connector with specific semantics is a matter of combining a
subset of the building blocks from the library. Changes can
be made to a connector by selecting a new subset of build-
ing blocks for the connector. With the standard component
interfaces, such changes in the connectors often require no
or few changes in the components.

Our approach uses finite-state verification to provide de-
signers with feedback about the correctness of the overall
system design while they experiment with alternative de-
sign choices. This plug-and-play style of design facilitates
verification in a number of ways. First, since changes in
the connectors usually do not require changes in the com-
ponents, component models often do not have to be re-
constructed when verification needs to be re-applied because
of the changes. In addition, pre-defined formal models can
be constructed for the library of building blocks. These mod-
els can be reused in the model of any system that uses these
building blocks. Therefore, our approach can create signifi-
cant savings in model-construction time during design-time
verification.

2. PLUG-AND-PLAY MESSAGE PASSING
To give a basic idea of our approach, we briefly describe

how it can be realized for message passing, one of the most
commonly used interaction mechanisms in distributed sys-

49

tems. Based on a study of widely used message passing
semantics (e.g., MPI), we have defined a library of reusable
building blocks for the construction of a variety of message
passing connectors. Such building blocks include different
kinds of send ports, receive ports, and channels. Channels
are essentially message buffers and ports are mediators be-
tween components and channels that capture such semantics
as whether a message should be sent synchronously or asyn-
chronously, whether a component should block when the
message buffer is full while sending a message, or when the
desired message is not available while receiving a message.

We define the standard component interfaces for sending
and receiving messages in terms of the protocols between
the sending component and the send port and between the
receiving component and the receive port, respectively. The
interfaces are designed to work with different kinds of ports
so that ports can be replaced without changing the compo-
nents. For sending a message, the component first forwards
the message to an appropriate send port and then waits for
a SendStatus message back from the port. It is the send
port that determines when the SendStatus message is sent
and what the content of the status message is, resulting in
different message sending semantics. For example, an asyn-
chronous nonblocking send port would return an OK status
message to the sending component immediately after it re-
ceives a message from the component, while a synchronous
blocking send port would return the OK status message
after the message has been delivered to a receiving compo-
nent by the channel. With such protocols, changing between
different message sending semantics is a simple matter of
replacing the send port being used. The standard receive
interface is defined in a similar way to work with different
kinds of receive ports. A fuller description of our approach,
including details of the message passing building blocks and
the protocols between components and building blocks, is
given in [1].

3. DESIGN-TIME VERIFICATION
For an initial evaluation of our approach, we use Spin

as our design-time verification tool and the overall system
design is modeled in Promela, the input language of Spin.

In our approach, a system model is a composition of all the
Promela models for the building blocks and the components
in the system. Specifically, models for ports and channels are
pre-defined as communicating Promela processes and can be
simply included in the system model at verification time.
The building block models are defined in a parameterizable
and reusable way so that they can be easily instantiated
and used in any system that uses these building blocks. For
our current approach, component models that implement
the standard interfaces are manually constructed as sepa-
rate Promela processes. In principle, however, we expect
that such component models can be automatically extracted
from their designs in some suitable language. The native
Promela channels are used to model the internal communi-
cations between components and ports and between ports
and channels. To allow the component models to be com-
posed properly with the building block models, appropriate
Promela channels are used to set up the connections be-
tween component processes and building block processes at
the start of a Promela system.

With this approach, when the semantics of a connector
are changed and the system design needs to be re-verified,

formal models of the system can be modified by replacing
the Promela processes of the existing building blocks of the
connector with those of the new ones. By employing prede-
fined models for the connectors and reusing the models of
the components that now stay relatively stable when only
interactions are changed, we reduce the cost of repeated ver-
ification in the iterative design process, and therefore make
it easier and more efficient to experiment with alternative
design choices for the interaction mechanisms. The full set
of Promela models for our building blocks is available at
http://cs.umass.edu/∼shangzhu/.

Note that our approach is not tied to any particular model
checker or modeling language. By using Promela and Spin,
we are only showing one possible way of modeling our build-
ing blocks and applying design-time verification. In fact, we
have defined the same set of building blocks in the process
algebra FSP and used LTSA (the Labeled Transition System
Analyzer) to verify the system designs. Somewhat different
strategies may, of course, be appropriate when modeling the
building blocks in a different modeling language.

4. CONCLUSION AND FUTURE WORK
In this paper, we describe an approach that allows design-

ers to easily experiment with alternative design choices of in-
teraction semantics through the use of standard component
interfaces and a library of building blocks for constructing
different connectors. Our approach facilitates design-time
verification by saving on repeated model construction time
as design evolves and verification is re-applied.

Our ongoing work includes the implementation of a tool
that supports this plug-and-play design and verification ap-
proach and the extension of the current approach to sup-
port other kinds of interaction mechanisms such as pub-
lish/subscribe and remote procedure calls. We are also con-
ducting some nontrivial case studies to evaluate our ap-
proach. Since our current models for the library of building
blocks are only intended for proof of concept and may not be
the most efficient, one important direction for future work is
to study what kind of techniques may be applied to simplify
and optimize the models created using our plug-and-play
approach so that finite-state verification can be applied ef-
ficiently.

5. ACKNOWLEDGMENTS
We are grateful to Prashant Shenoy for helpful conver-

sations about this work. This material is based upon work
supported by the National Science Foundation under awards
CCF-0541035, CCF-0427071, and CCR-0205575 and by the
U.S. Department of Defense/Army Research Office under
award DAA-D19-01-1-0564 and award DAAD19-03-1-0133.
Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and
do not necessarily reflect the views of the National Science
Foundation or the U. S. Department of Defense/Army Re-
search Office.

6. REFERENCES
[1] S. Wang, G. S. Avrunin, and L. A. Clarke.

Architectural building blocks for plug-and-play system
design. In Proc. 9th Intl. SIGSOFT Symp. on
Component-Based Software Engineering, Väster̊as,
Sweden, June 2006. To appear.

50

