
Architectural Building Blocks for Plug-and-Play
System Design

Shangzhu Wang, George S. Avrunin, and Lori A. Clarke

Department of Computer Science
University of Massachusetts, Amherst, MA 01003, USA

{shangzhu, avrunin, clarke}@cs.umass.edu

Abstract. One of the distinguishing features of distributed systems is
the importance of the interaction mechanisms that are used to define
how the sequential components interact with each other. Given the com-
plexity of the behavior that is being described and the large design space
of various alternatives, choosing appropriate interaction mechanisms is
difficult. In this paper, we propose a component-based specification ap-
proach that allows designers to experiment with alternative interaction
semantics. Our approach is also integrated with design-time verification
to provide feedback about the correctness of the overall system design. In
this approach, connectors representing specific interaction semantics are
composed from reusable building blocks. Standard communication inter-
faces for components are defined to reduce the impact of changing inter-
actions on components’ computations. The increased reusability of both
components and connectors also allows savings at model-construction
time for finite-state verification.

1 Introduction

One of the distinguishing features of distributed systems is the importance of
the interaction mechanisms that are used to define how the sequential com-
ponents interact with each other. Consequently, software architecture descrip-
tion languages typically separate the computational components of the system
from the connectors, which describe the interactions among those components
(e.g., [1, 2, 3, 4]). Interaction mechanisms represent some of the most complex
aspects of a system. It is the interaction mechanisms that primarily capture the
non-determinism, interleavings, synchronization, and interprocess communica-
tion among components. These are all issues that can be particularly difficult to
fully comprehend in terms of their impact on the overall system behavior.

As a result, it is often very difficult to design a distributed system with
the desired component interactions. The large design space from which devel-
opers must select the appropriate interaction mechanisms adds to the difficulty.
Choices range from shared-memory mechanisms, such as monitors and mutual
exclusion locks, to distributed-memory mechanisms, such as message passing and
event-based notification. Even for a single interaction mechanism type, there are
usually many variations on how it could be structured.

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 98–113, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Architectural Building Blocks for Plug-and-Play System Design 99

Because of this complexity, design-time verification of distributed systems is
particularly important. One would like to be able to propose a design, use verifi-
cation to determine which important behavioral properties are not satisfied, and
then modify and reevaluate the system design repeatedly until a satisfactory de-
sign is found. With component-based design, existing components are often used
and glued together with connectors. In this mode of design, one would expect
that the interaction mechanisms represented by the connectors would need to be
reconsidered and fine-tuned several times during this design and design-time ver-
ification process, whereas the high-level design of the components would remain
more stable. If using a finite-state verifier, such as Spin [5], SMV [6], LTSA [7],
or FLAVERS [8], a model of each component and each connector could be cre-
ated separately and then the composite system model could be formed and used
as the basis for finite-state verification.

A major obstacle to the realization of this vision of component-based design
is that the semantics of the interactions are often deeply intertwined with the
semantics of the components’ computations. Changes to the interactions usually
require nontrivial changes to the components. As a result, it is often difficult and
costly to modify the interactions without looking into and modifying the details
of the components. Consequently, there is little model reuse during design-time
finite-state verification.

In this paper, we propose a component-based approach that allows designers
to experiment with alternative interaction semantics in a “plug-and-play” man-
ner, using design-time verification to provide feedback about the correctness of
the overall system design. The main contributions of our approach include:

– Defining a small set of standard interfaces by which components can commu-
nicate with each other through different connectors: These standard inter-
faces allow designers to change the semantics of interactions without having
to make significant changes to the components.

– Separating connectors into ports and channels to represent different aspects
of the semantics of connectors: This decomposition of connectors allows us
to support a library of parameterizable and reusable building blocks that can
be used to describe a variety of interaction mechanisms.

– Combining the use of standard component interfaces with reusable building
blocks for connectors: This separation allows designers to explore the design
space and experiment with alternative interaction semantics more easily.

– Facilitating design-time verification: With the increased reusability of com-
ponents and connectors, one can expect savings in model-construction time
during finite-state verification.

This paper presents the basic concepts and some preliminary results from an
evaluation of our approach. Section 2 illustrates the problem we are trying to
address through an example. Section 3 shows how the general approach can be
applied to the message passing mechanism. In section 4, we demonstrate through
examples how designers may experiment with alternative interaction semantics
using our approach. Section 5 describes the related work, followed by conclusions
and discussions of future work in Section 6.

100 S. Wang, G.S. Avrunin, and L.A. Clarke

2 An Illustrative Example

As an example, consider a bridge that is only wide enough to let through a single
lane of traffic at a time [7]. For this example, we assume that traffic control
is provided by two controllers, one at each end of the bridge. Communication
between controllers as well as between cars and controllers may be necessary
to allow appropriate traffic control. To make the discussion easier to follow,
we refer to cars entering the bridge from one end as the blue cars and that
end’s controller as the blue controller; similarly the cars and controller on the
other end are referred to as the red cars and the red controller, respectively. We
start with a simple “exactly-N -cars-per-turn” version of this example, where
the controllers take turns allowing some fixed number of cars from their side to
enter the bridge. Note that since each controller counts the fixed number of cars
entering and exiting the bridge, no communication is needed between the two
controllers.

For an architectural design of this simple version of the system, one needs
to identify the components and the appropriate interactions among the compo-
nents. It is natural to propose a system composed of a BlueController compo-
nent, a RedController component, and one or more BlueCar components and
RedCar components. In such a distributed system, message passing seems to
be a natural choice for the component interactions. Four connectors then need
to be included to handle message passing among the components as indicated
in Figure 1: a BlueEnter connector between the BlueCar components and the
BlueController component, a BlueExit connector between the BlueCar compo-
nents and the RedController component, and similarly a RedEnter connector
and a RedExit connector.

As described in Figure 1(a), a car sends an enter request message to the
controller at the end of the bridge it wants to enter and then proceeds onto the
bridge. When it exits the bridge, it notifies the controller at the exit end by send-
ing an exit request message. Controllers receive enter request and exit request
messages, update their counters, and decide when to switch turns. Since there
may be multiple cars that communicate with each controller, messages are
buffered in the connectors between car components and controller components.

Astute readers will notice that according to the description in Figure 1(a),
cars from different directions can be on the bridge at the same time, which could
cause a crash. This is due to an erroneous design in the component interactions.
With this design, a car sends an enter request message and immediately goes
onto the bridge without confirming that its request has been accepted by the
controller. This controller, however, may still be waiting for exit requests from
cars from the other direction, and the enter request message from this car may
still be in the buffer, waiting to be retrieved and handled. Therefore, a car may
enter the bridge while there are still cars traveling in the opposite direction.
Obviously, what is needed here is synchronous communication between a car
and its controller rather than asynchronous communication.

One way to fix this problem is to have the controller send a go ahead message
after receiving each enter request to authorize that car to enter the bridge. After

Architectural Building Blocks for Plug-and-Play System Design 101

BlueCar i

send "enter_request";
go on to the bridge
send "exit_request"

while(true){

}

RedCar i

send "enter_request"
go on to the bridge
send "exit_request"

while(true){

}

BlueController

}
counter = 0;
while (counter<N){
 receive "red_exit_request";

 counter++;}
}

while(true){

 counter++;

counter = 0;
while (counter<N){
 receive "blue_enter_request";

RedController

counter = 0;
while(true){

while (counter<N){
 receive "blue_exit_request";

 counter++;
}
counter = 0;
while (counter<N){
 receive "red_enter_request";

 counter++;
}

}ConnectorComponent

RedCar i

}

while(true){

go on to the bridge;

send "exit_request";

send "enter_request";
receive "go_ahead";

BlueCar i

}

receive "go_ahead";
send "enter_request";

go on to the bridge;

while(true){

send "exit_request";

while(true){

}
}

BlueController

counter = 0;
while (counter<N){

 counter++;
}
counter = 0
while (counter<N){
 receive "red_exit_request";

 counter++;

send "go_ahead";
 receive "blue_enter_request";

while(true){
RedController

}
}

counter = 0;
while (counter<N){
 receive "blue_exit_request";

 counter++;
}
counter = 0;
while (counter<N)

 counter++;

 receive "red_enter_request";
send "go_ahead";

BlueEnter

BlueExit

RedEnter

RedExit

BlueEnter

RedEnter

BlueExit

RedExit

(b)(a)

Fig. 1. Architecture design and illustration of component interactions for the single-
lane bridge example

sending the enter request, the car would wait for this acknowledgement before
entering the bridge, as shown in Figure 1(b) (the highlighted areas indicate the
changes). These changes, involving both the car components and the controller
components, effectively make the communication between them synchronous and
solve the problem caused by the asynchronous communication.

This example shows the typical design practice in which the semantics of
the interactions are not specified independently, but instead are spread among
the connectors and the components. This is a trivial example, but it is easy
to envision how the intertwined semantics of the connectors and components
increases the challenge of discovering and correcting errors in the design of more
complex systems. Therefore, we prefer an approach that allows us to modify
connectors and components more independently of each other.

3 Plug and Play with Message Passing

As illustrated in the example above, changing from asynchronous message pass-
ing to synchronous message passing requires changes in the components, not
just in the connectors. In practice, designers must consider a wide range of al-
ternative semantics when selecting the appropriate interaction mechanism for
a connector. If it is subsequently discovered, perhaps through verification, that
the selected interaction mechanism is wrong, then it is likely that, not only the
connector, but the associated components will need to be modified and then
reevaluated. Therefore, the impact of changes in connectors on components will
not only make it more challenging for designers to find a suitable design, but
will also affect the maintainability and reusability of the system components.
Our approach tries to address these problems by decomposing connectors into
ports and channels, by representing the semantic variations for both ports and
channels as building blocks that can be assembled to provide the desired inter-
action mechanism, and by designing these building blocks so that components

102 S. Wang, G.S. Avrunin, and L.A. Clarke

can communicate through standard interfaces that are designed to work with
any kinds of connectors.

In this section, we show how our plug-and-play approach can be realized for
message passing, one of the most commonly used interaction mechanisms for dis-
tributed systems. We first present examples of building blocks that are derived
from a variety of commonly used message passing semantics. We then define
standard component interfaces and show how connectors and components com-
municate with each other through a set of protocols. We also discuss how finite-
state verification can be employed to facilitate the plug-and-play style of design.
Finally, we mention that this approach is not restricted to message passing, but
can be applied to many of the most common interaction mechanisms. In partic-
ular, we discuss briefly how this can be accomplished for the publish/subscribe
interaction mechanism.

3.1 Message Passing Variations and Building Blocks

Many languages such as CSP [9] and Linda [10] incorporate message passing
facilities. There are also message passing libraries such as MPI [11]. Although the
fundamentals of message passing interactions are sending and receiving messages,
there are a surprising number of semantic variations for these two operations, as
well as variations in the communication media used to store and deliver messages.

For example, a synchronous send operation will block the sender until the
message is delivered to the recipient, while other variations would allow the
sender to continue execution immediately or as soon as the message is stored
in the buffer. Similarly, a receiver component may be blocked or may return
immediately when a desired message cannot be retrieved from the buffer at the
moment. A receive may also allow messages to be selectively retrieved from
the buffer based on a matching criteria. Other variations of message passing
semantics involve the message buffers, such as the size of the buffer and the
ordering of messages been stored and delivered.

With such variations, determining a particular kind of message passing inter-
action for a system essentially means selecting a combination of these semantics.
As we have demonstrated in the previous sections, this large design space may
make it difficult for designers to choose the correct and desirable semantics. Our
approach helps designers with such choices by creating building blocks that cap-
ture the different combinations of the variations for each aspect of the message
passing semantics, and therefore allowing designers to experiment with the vari-
ations by plugging and playing with these building blocks. Our building blocks
include different kinds of send ports, receive ports, and channels that together
cover a number of variations for the most commonly used message passing se-
mantics. A small sample of the message passing building blocks, selected to
include those used in our examples, is given in Figure 2.

Figure 3(a) shows an example of how one may specify an asynchronous mes-
sage passing communication between a pair of sender and receiver components.
The connector is composed of an asynchronous blocking send port, a blocking
receive port, and a channel that buffers one message. Through this connector,

Architectural Building Blocks for Plug-and-Play System Design 103

Asynchronous
Nonblocking
Asynchronous
Blocking

Synchronous
Blocking

Asynchronous
Checking

Synchronous
Checking

Send
Port

AFTER the message has been accepted by the channel.

Similar to "asynchronos checking send" except that when the message can be accepted
by the channel, it blocks until the message is received by the receiver and then sends a
confirmation back to the sender.

Channel
1−slot buffer

FIFO queue

A buffer of size 1.

A FIFO queue of size N.

Priority queue A priority queue of size N.

Receive
Port

Blocking

Nonblocking

the message may or may not be accepted
Waits for a message from the sender and sends a confirmation back immediately

and handled by the channel.

Waits for a message from the sender and forwards it to the channel. If the message
cannot be accepted by the channel, it returns and sends a notification to the sender;
Otherwise it blocks until the message is accepted and sends a confirmation back to the sender.

by the channel that the message has been received by the receiver.

Waits for a "receive request" from the receiver and forwards it to the channel. It blocks until
a desired message is retrieved from the channel and sends a confirmation to the receiver.

Similar to "blocking receive" except that it returns immediately if no desired message can be
retrieved currently. It then sends a notification along with an empty message to the receiver.

Waits for a message from the sender and sends a confirmation back

Waits for a message from the sender and sends a confirmation back AFTER it is notified

Fig. 2. A set of message passing building blocks

the sender component sends a message without waiting for an acknowledgement
from the receiver but blocks until the message is stored in the channel. The
receiver component blocks until a message can be received. By replacing the
asynchronous send port with a synchronous one from the library, the new con-
nector in Figure 3(b) allows the sender to block not only until the message is
stored in the channel but also until it has been delivered to the receiver. Simi-
larly, channels can also be easily replaced. For example, the single-slot buffer can
be replaced by a FIFO queue channel that holds up to 5 messages, when mes-
sages need to be buffered (as shown in Figure 3(c)). Moreover, the replacement
of channels can be done independently of the replacement of ports. This kind
of “plug-and-play” development facilitates experimentation with alternative in-
teraction semantics. We have also found that our approach helps reduce the
effort needed for repeated model construction when designers use design-time
finite-state verification to check their design choices.

3.2 Component Interfaces and Protocols Among Building Blocks

In this section , we describe the standard component interfaces for sending and
receiving messages and the protocols used between these interfaces and differ-
ent kinds of connectors. The component interfaces are used as follows: A sender
component first issues a send command and then waits to receive a SendStatus
message from the connector; similarly, a receiver component first sends a receive
request to the port, waits for a RecvStatus message, followed by another message
from the connector that may contain the requested data. These interfaces are
designed to work with connectors having different send and receive semantics.
For example, in the case of asynchronous message passing, the connector returns
the SendStatus message to the sending component immediately, while for syn-
chronous message passing, the connector returns the SendStatus until after the
sender’s message has been delivered. The RecvStatus message indicates whether
the requested message has been successfully retrieved, that is, whether the sub-
sequent message contains the real data. Different connectors may send these

104 S. Wang, G.S. Avrunin, and L.A. Clarke

Fig. 3. Constructing message passing connectors

messages at different stages of retrieving a message. Moreover, always sending
a message after the RecvStatus allows this interface to work with nonblocking
receives that allow failure of retrieving messages.

To see how different connectors may interact with these interfaces, one has to
first understand the important role of ports in supporting the kind of plug-and-
play design we propose. In our approach, connectors are decomposed into chan-
nels that represent the communication media (in this case the message buffers),
and ports that capture the synchronization semantics of the communication.
This separation frees components from being tied to any specific synchronization
semantics and therefore allows easy manipulation of all aspects of interaction se-
mantics. It is the ports that handle the interleavings of communications between
components and channels and deciding when a specific status or data message
should be forwarded, hiding all the details from both components and channels.

Using a notation similar to Message Sequence Charts, Figure 4 and 5 show
the typical protocols used between components, ports and channels for sending
and receiving messages. In Figure 4,we see that for both asynchronous send
and synchronous send, the same set of protocols are used between the sender
component and the send port, and between the send port and the channel.
It is the send port that controls the relaying and interleaving of the internal
events, and thus whether the message passing is synchronous or asynchronous.
In Figure 4(a), the asynchronous send port returns the sendOk message to the
sending component without waiting for the channel to deliver the message and
simply discards the receiveOk message from the channel when it arrives. The
synchronous send port in Figure 4(b) waits to receive the receiveOk message from
the channel before sending sendOk to the sending component, which is therefore
blocked until after the message m is received. Neither the sending component nor
the channel needs to know whether the connector is implementing synchronous or

Architectural Building Blocks for Plug-and-Play System Design 105

send m

time

sender send port channel

send m

sender send port channel

time

SendStatus =
"sendOk"

Asynchronous Blocking Send(a) Synchronous Blocking Send(b)

m

"receiveOk"

"receiveOk"

m

"sendOk"
SendStatus =

Fig. 4. Example scenarios of message passing interactions (using send ports)

asynchronous message passing; the designer can swap one send port for another
to switch the semantics of the connector.

Similarly, Figure 5 shows that same protocols can be used for both block-
ing receive and nonblocking receive. In Figure 5(a), after forwarding the Re-
ceiveRequest from the receiver to the channel, the port blocks until an outOk
message is received from the channel indicating that the desired message is avail-
able. A recvSucc confirmation is then sent to the receiver following the retrieved
message. To implement the semantics of nonblocking receive (Figure 5(b)), a
receive port may immediately return when the desired message is not available
(outFail) by sending a recvFail message followed by an empty message to the
receiving component. In a fashion similar to that illustrated above, we are able
to support the plug-and-play of a number of different send and receive ports as
well as channels defined in Figure 2.

3.3 Design-Time Verification

In addition to providing a convenient and efficient way of specifying and
experimenting with various interaction semantics, we also support design-time
verification for checking specification properties of the system. For finite-state
verification techniques such as model checking, formal models of the system
need to be constructed before verification can be applied. For the purpose of
our approach, predefined and reusable formal models can be created for each
building block in our library. Formal models of the selected building blocks are
then composed at verification time with formal models of the components to
form a system model that is then checked against the properties specified. Note
that the designer is responsible for providing the models of the components and
specifying the properties.

Through verification, designers may find unexpected behaviors or errors in
their system design. If the problems are caused by the interaction mechanisms,
changes can be made by simply adjusting the building blocks of the connectors,
perhaps without having to modify the components. When this occurs, there is
no need to recreate the component models. Moreover, predefined models for the
building blocks can be used in most cases to represent the modified interaction
mechanisms, also reducing the cost of model construction.

106 S. Wang, G.S. Avrunin, and L.A. Clarke

time

receive portreceiver receive port channel

Action
(Condition)

Triggers only when the condition satisfies A transition that could happen more than once*

receiverchannel

ReceiveRequest

ReceiveRequest

BufferStatus = "outOk/outFail"

RecvStatus = "recvSucc"

(BufferStatus = "outOK")
m

m

*

ReceiveRequest

m

ReceiveRequest

 "outOk/outFail"BufferStatus =

= "outOk")(BufferStatus

m

(BufferStatus = "outFail")

RecvStatus = "recvFail"

null
(BufferStatus = "outFail")

(BufferStatus = "outOk")

"recvSucc"RecvStatus =

"outOk")(BufferStatus =

(a) Blocking Receive (b) Nonblocking Receive

Fig. 5. Example scenarios of message passing interactions (using receive ports)

To evaluate our approach, we have used Spin [5] to verify a series of designs
using our building blocks. In our evaluation, the formal models of components
and building blocks are described in Promela, the input language of Spin. We
use the default message passing operations (“?” and “!”) in Promela to imple-
ment the communications among components, ports and channels. Each port is
a Promela proctype that takes two Promela native channels as parameters for
communications with the component and the channel that are connected to this
port. For the purpose of the evaluation, we have coded models in a way that re-
flects our goal of reusable and parameterizable building blocks. For a particular
choice of interaction mechanisms, it might well be possible to implement connec-
tors more directly using features of the Promela language. The full description
of the Promela models for the building blocks is given in [12].

Notice that by using Spin and Promela to support design-time verification,
we are showing only one possible way to combine our design approach and ver-
ification. Our approach is not tied to particular formalisms or verification tech-
niques. In fact, we have defined the same set of building blocks in the process
algebra FSP and used LTSA [7] to verify the system designs. It is reasonable
to expect, however, that when using different formalisms and verification tech-
niques, specialized optimizations will need to be developed.

3.4 Other Interaction Mechanisms

Although here we have described this approach for message passing interactions,
we believe that the overall approach can be applied to most commonly used inter-
action mechanisms. To validate this claim, we have also applied this approach to
publish/subscribe interactions, another commonly used interaction mechanism.
In publish/subscribe systems, the fundamental communications between com-
ponents and connectors are the announcement of events by components, the de-
livery of events to components, and the subscription or unsubscription by which
components indicate their interest in particular events. It is straightforward to
map these communications to sending and receiving messages; therefore they

Architectural Building Blocks for Plug-and-Play System Design 107

Fig. 6. An initial design of the “exactly-N-cars-per-turn” single-lane bridge

can be described using available message passing building blocks. In message
passing, it is almost always the case that the sender initiates the communica-
tion by pushing messages to the connector and the receiver pulls messages from
the connector. Unlike message passing, however, most publish/subscribe systems
support one or more combinations of push/pull on both the publisher side and
the subscriber side. To describe these semantics, new kinds of send and receive
ports that capture such push/pull semantics are defined. A more detailed dis-
cussion about the building blocks for publish/subscribe can be found in in [12].

4 The Single-Lane Bridge Example Revisited

We now return to the single-lane bridge example introduced in Section 2 to
illustrate how the techniques described above facilitates iterative exploration
and verification of designs. Figure 6 shows an architecture design of the exactly-
N -cars-per-turn version of the system. All the cars from the same direction
(indicated as having the same color) communicate with the controller at each
side through a single connector. For the initial design, asynchronous message
passing is chosen for both the communication between a car and the controller
on its entering side and the communication between the car and the controller
on the other side. FIFO queues are selected for buffering messages.

One important property of the system that we want to check is that cars
traveling in opposite directions can never be on the bridge at the same time. By
composing the Promela models of the components provided by the designer and
the prebuilt models of the building blocks from the library, we can use Spin to
determine whether the system satisfies the property. In this case, of course, Spin

produces a counterexample in which a blue car sends an enter request message
and enters the bridge, followed by a red car sending an enter request message and
entering the bridge. As noted above, the problem is obviously the result of the
careless design of the asynchronous communication between cars and the con-
troller handling enter requests, which allows cars to enter the bridge before their

108 S. Wang, G.S. Avrunin, and L.A. Clarke

enter requests have even been received by the controller. With our approach, the
erroneous design can be easily corrected by replacing the asynchronous blocking
send ports for sending enter requests with synchronous ones, and no changes in
the components are necessary. To confirm that the system now satisfies the prop-
erty, the verification can be repeated with the formal models of the asynchronous
ports replaced by those of the synchronous ones.

In fact, astute readers may notice that the FIFO queues used for buffering
exit request messages are not necessary since the exact ordering in which the
exit request messages are received does not matter. Therefore, the FIFO queue
channels used in BlueExit and RedExit connectors can be safely replaced with
single-slot buffers. This modification again requires no further changes in other
parts of the architecture. Similarly, the modified design can be re-verified as
before to make sure the system still satisfies the property.

Of course, not all modifications to a system require only simple changes in
the interaction mechanisms. Suppose that, in order to improve traffic flow, the
designer wishes to modify the bridge system so that when there are fewer than N
cars crossing the bridge from one side, the turn can be yielded without waiting
for N cars to cross, allowing cars from the other side to enter the bridge. To
change the previous design of the single-lane bridge into this “at-most-N -cars-
if-waiting” version, additional communication between the controllers needs to
be added. Although this functional change of the system unavoidably requires
changes in the controller components, we can see that with our approach, we
can reduce the impact of these changes on both the design and the verification.

Figure 7 shows a possible architecture for the modified system, with two new
connectors between the controllers to allow the communication of the current
traffic status at each end. The interactions between two controllers are repre-
sented in a synchronous message passing connector composed of a synchronous
blocking send port, a nonblocking receive port, and a reliable single-slot buffer.
Since the controllers now have to actively poll enter request messages from cars
to check if there is any car waiting to enter the bridge, we also need to change
the blocking receive ports used by the controllers in the previous design into
nonblocking ones. To verify that this new system still prevents crashes on the
bridge, the component models need to be modified to reflect the new communi-
cations. Models of the new connectors, however, can be constructed from models
of the building blocks in the library.

A third and more realistic variation of the single-lane bridge example might
involve traffic control of emergency vehicles. Although this again cannot avoid
functional changes in the components, the necessary changes in the interaction
mechanisms would not affect the components and can be made easily. For exam-
ple, the FIFO queues used for buffering enter request messages may be replaced
with priority queues to handle emergency requests. The new design can be ver-
ified again in the same manner as described above. The detailed design and
formal models of the three versions of the example are described in [12].

Through this example, we illustrate how our plug-and-play approach, inte-
grated with design-time verification, may assist the designer exploring a series

Architectural Building Blocks for Plug-and-Play System Design 109

Fig. 7. The architecture design of the “at-most-N-cars-if-waiting” single-lane bridge

of system designs. With our approach, the impact of each change can be kept
relatively local, in that components only need to be modified when they must
handle new functionality. Changes in a connector can be made relatively easily
by selecting alternative building blocks to define that connector.

5 Related Work

The limitations and frustrations of component-based development are well
known (e.g., [13, 14]). Previous work, such as [15, 1, 2, 3, 4, 16], has proposed
treating connectors as first-class entities in component-based development, al-
though [16] in particular, has put the focus at a lower level of abstraction (pro-
gramming level) than what we are interested in.

The idea of specifying complex connectors and modeling them for verifica-
tion is, of course, not new. The Wright architecture description language [1], for
example, uses the CSP process algebra to describe arbitrary connectors. The Ar-
chitectural Interaction Diagrams (AIDs) of Ray and Cleaveland [17] use process
algebra methods to construct connectors hierarchically. Constraint automata
based approaches have also been proposed to specify and analyze the semantics
of connectors composed from a set of primitive channels [18,19]. In approaches
like these, the burden is on the designer to construct connectors with the right
semantics from powerful, but low-level, primitives. Our approach is aimed more
at providing a library of building blocks from which connectors representing
widely used interaction mechanisms can be easily constructed, offering “ready-
to-use” pieces that hide from the user most of the details of how these pieces
are actually constructed and modeled. The interaction mechanisms we describe
are at a lower level of abstraction than the communication patterns described
in [20]. Our approach defines finer-grained patterns that express specific seman-
tics of interactions, and provide a mechanism that allows the designer to work
with the detailed semantics.

110 S. Wang, G.S. Avrunin, and L.A. Clarke

Although a similar notion of ports has been proposed in architectural descrip-
tion languages such as ACME [21] and ArchJava [22], in our approach, ports are
used to explicitly capture some of the most important aspects of interaction
semantics such as synchronization, and therefore are treated as parts of connec-
tors. Our definition of ports makes it possible to support standard component
interfaces that allow connectors to be modified or replaced with minimal impact
on the components. The mechanism we use to realize this is closely related to
the connector wrappers of [23], although their emphasis is on adapting existing
connectors whereas ours is on building up new connectors that can be easily
exchanged for one another. The term building blocks has been often used in dif-
ferent contexts. For example, in [24], building blocks are referred to as parts
of software used to build a system. The building blocks in our approach are
design-level elements used to construct connectors representing interactions.

Our work on the semantics of interaction mechanisms is related to the work on
categorizing connectors (e.g. [25,26]). In particular, our analysis of the variations
of message passing semantics is similar in spirit to the analysis of publish/sub-
scribe systems in [27]. There has been extensive work on applying verification to
systems employing a single type of interaction mechanism (e.g. [28,29,30]). Our
approach is intended to support many kinds of mechanisms, rather than being
restricted to a single type.

A number of middleware frameworks support component-based development,
although each typically allows a somewhat limited range of interaction mecha-
nisms and provides no direct support for verification. Some work, such as the
Cadena system [31], has been directed at providing verification support for sys-
tems built on standard middleware. There is also work on the verification of
middleware-based software architecture [32]. A number of tools and approaches
have also been proposed for assembling existing components into applications,
including mediators [33], Piccola [34], and various techniques for wrapping com-
ponents. Our interest here is more in the choice of interaction mechanisms be-
tween components and less on the adaptation of existing components to interact
with each other. Our approach also differs from previous work on architectural
evolution (e.g., [35, 36]) in our focus on supporting the exploration of different
interaction mechanisms at the design stage and our emphasis on modeling and
verification.

6 Conclusion and Future Work

In this paper, we propose a compositional specification approach that helps de-
signers more easily experiment with different interaction mechanisms between
components. By decomposing the connectors into ports and channels, and us-
ing ports as mediators between components and channels, we are able to keep
the interface of the components simple and standardized so that changes to the
interaction mechanisms can be made with little or no modification to the compo-
nents. The decomposition also allows us to build a library of ports and channels
as reusable building blocks to construct connectors with different semantics. Our

Architectural Building Blocks for Plug-and-Play System Design 111

approach is also integrated with finite-state verification techniques, facilitating
design-time verification and the early detection of design errors. Using our ap-
proach, designers may experiment with their choice of design for a variety of
interaction semantics by simply plugging in, or replacing, building blocks and
then using verification to check their design choices. Since this design process
may be repeated to reflect system changes, our approach allows considerable
reuse of the models of components and connectors. Consequently, we also save
on model-construction time while doing the finite-state verification.

We are currently implementing our approach by developing plugins to the ar-
chitecture design environment AcmeStudio1 developed at CMU. Our prototype
tool will allow designers to define and use building blocks to specify component
interactions. It will also allow the specification of component models and the use
of a model checker to verify the design. We are also carrying more case studies
to demonstrate and further evaluate our approach.

We intend to explore other commonly used interaction mechanisms and, when
necessary, to construct additional building blocks to express their semantics.
There are a number of interesting issues related to design-time verification. For
instance, optimizations could be developed to reduce the system models that
are composed from the building blocks and models of the components; these
depend, of course, on the particular modeling formalism and verification tools
being applied. We need to explore these optimizations and learn when they can
be profitably applied.

Acknowledgements

This material is based upon work supported by the National Science Founda-
tion under awards CCF-0427071 and CCR-0205575 and by the U.S. Department
of Defense/Army Research Office under award DAA-D19-01-1-0564 and award
DAAD19-03-1-0133. Any opinions, findings, and conclusions or recommenda-
tions expressed in this publication are those of the authors and do not necessarily
reflect the views of the National Science Foundation or the U. S. Department of
Defense/Army Research Office. We are grateful to Prashant Shenoy for helpful
conversations about this work.

References

1. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans. on
Softw. Eng. and Methodol. (1997) 140–165

2. Shaw, M., Garlan, D.: Softw. Architecture:Perspectives on an Emerging Discipline.
Prentice-Hall (1996)

3. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying distributed software
architectures. In: Proc. 5th European Softw. Eng. Conf., Sitges, Spain (1995)
137–153

1 Available at http://www.cs.cmu.edu/~acme/AcmeStudio/AcmeStudio.html

http://www.cs.cmu.edu/~acme/AcmeStudio/AcmeStudio.html

112 S. Wang, G.S. Avrunin, and L.A. Clarke

4. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIG-
SOFT Softw. Eng. Notes 17(4) (1992) 40–52

5. Holzmann, G.J.: The Spin Model Checker. Addison-Wesley, Boston (2004)
6. K.L.McMillan: Symbolic Model Checking: An approach to the State Explosion

Problem. Kluwer Academic (1993)
7. Magee, J., Kramer, J.: Concurrency State Models and Java Programs. John Wiley

and Sons (1999)
8. Dwyer, M.B., Clarke, L.A., Cobleigh, J.M., Naumovich, G.: Flow analysis for

verifying properties of concurrent software systems. ACM Trans. on Softw. Eng.
and Methodol. 13(4) (2004) 359–430

9. Hoare, C.A.R.: Communicating Sequential Processes. Englewood Cliffs,
NJ:Prentice-Hall Intl. (1985)

10. Carriero, N., Gelernter, D.: Linda in context. Comm. ACM 32(4) (1989) 444–58
11. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Com-

plete Reference. MIT Press (1996)
12. Wang, S., Avrunin, G.S., Clarke, L.A.: Architectural building blocks for plug-and-

play system design. Technical Report UM-CS-2005-16, Dept. of Comp. Sci., Univ.
of Massachusetts Amherst (2005)

13. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch, or, why it’s hard
to build systems out of existing parts. In: Proc. 17th Intl. Conf. on Softw. Eng.,
Seattle, Washington (1995) 179–185

14. Inverardi, P., Wolf, A.L.: Uncovering architectural mismatch in component behav-
ior. Science of Computer Programming 33(2) (1999) 101–131

15. Bálek, D., Plášil, F.: Software connectors and their role in component deploy-
ment. In: Proc. Third Intl. Working Conf. on New Developments in Distributed
Applications and Interoperable Systems, Deventer, The Netherlands (2001) 69–84

16. Gensler, T., Lowe, W.: Correct composition of distributed systems. In: Tech. of
Object-Oriented Languages and Systems. (1999)

17. Ray, A., Cleaveland, R.: Architectural interaction diagrams: AIDs for system mod-
eling. In: Proc. 25th Intl. Conf. on Softw. Eng. (2003) 396–406

18. Arbab, F., Baier, C., Rutten, J.J.M.M., Sirjani, M.: Modeling component con-
nectors in reo by constraint automata: (extended abstract). Electr. Notes Theor.
Comput. Sci. 97 (2004) 25–46

19. Mehta, N.R., Medvidovic, N., Sirjani, M., Arbab, F.: Modeling behavior in compo-
sitions of software architectural primitives. In: 19th IEEE Intl. Conf. on Automated
Softw. Eng. (2004) 371–374

20. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
oriented software architecture: a system of patterns. John Wiley & Sons, Inc.,
New York, NY, USA (1996)

21. Garlan, D., Monroe, R.T., Wile, D.: Acme: Architectural description of component-
based systems. In Leavens, G.T., Sitaraman, M., eds.: Foundations of Component-
Based Systems. Cambridge University Press (2000) 47–68

22. Aldrich, J., Chambers, C., Notkin, D.: Archjava: Connecting software architecture
to implementation. In: Proc. 26th Intl. Conf. on Softw. Eng., Orlando, FL, USA,
ACM (2002)

23. Spitznagel, B., Garlan, D.: A compositional formalization of connector wrappers.
In: Proc. 2003 Intl. Conf. on Softw. Eng., Portland, Oregon (2003)

24. van der Linden, F.J., Mller, J.K.: Creating architectures with building blocks.
IEEE Softw. 12(6) (1995) 51–60

Architectural Building Blocks for Plug-and-Play System Design 113

25. Hirsch, D., Uchitel, S., Yankelevich, D.: Towards a periodic table of connectors.
In: Proc. Third Intl. Conf. on Coordination Languages and Models, London, UK
(1999) 418

26. Mehta, N.R., Medvidovic, N., Phadke, S.: Towards a taxonomy of software connec-
tors. In: Proc. 22nd Intl. Conf. on Softw. Eng., Limerick, Ireland (2000) 178–187

27. Garlan, D., Khersonsky, S., Kim, J.S.: Model checking publish-subscribe systems.
In: Proc. 10th Intl. SPIN Workshop on Model Checking of Softw., Portland, Oregon
(2003)

28. Bradbury, J.S., Dingel, J.: Evaluating and improving the automatic analysis of
implicit invocation systems. In: Proc. 11th ACM Symp. on Found. of Softw. Eng.,
Finland (2003)

29. Zanolin, L., Ghezzi, C., Baresi, L.: An approach to model and validate pub-
lish/subscribe architectures. In: Proc. Specification and Verification of Component-
Based Systems, Helsinki, Finland (2003) 35–41

30. Giannakopoulou, D., Magee, J.: Fluent model checking for event-based systems.
In: Proc. 9th European Softw. Eng. Conf. / 11th ACM SIGSOFT Intl. Symp. on
Found. of Softw. Eng., Helsinki, Finland (2003) 257–266

31. Childs, A., Greenwald, J., Ranganath, V.P., Deng, X., Dwyer, M.B., Hatcliff, J.,
Jung, G., Shanti, P., Singh, G.: Cadena: An integrated development environment
for analysis, synthesis, and verification of component-based systems. In: Proc. of
Fund. Approaches to Softw. Eng., 7th Intl. Conf. (2004) 160–164

32. Caporuscio, M., Inverardi, P., Pelliccione, P.: Compositional verification of
middleware-based software architecture descriptions. In: Proc. 26th Intl. Conf.
on Softw. Eng., Washington, DC, USA, IEEE Computer Society (2004) 221–230

33. Sullivan, K.J., Notkin, D.: Reconciling environment integration and software evo-
lution. ACM Trans. Softw. Eng. Methodol. 1(3) (1992) 229–268

34. Achermann, F., Lumpe, M., Schneider, J.G., Nierstrasz, O.: Piccola – a small com-
position language. In Bowman, H., Derrick, J., eds.: Formal Methods for Distrib-
uted Processing – A Survey of Object-Oriented Approaches. Cambridge University
Press (2001) 403–426

35. Medvidovic, N., Rosenblum, D.S., Taylor, R.N.: A language and environment for
architecture-based software development and evolution. In: Proc. 21st Intl. Conf.
on Soft. Eng., Los Angeles (1999) 44–53

36. van der Hoek, A., Mikic-Rakic, M., Roshandel, R., Medvidovic, N.: Taming archi-
tectural evolution. In Inverardi, P., ed.: Proc. 8th European Softw. Eng. Conf./9th
Symp. on the Found. of Softw. Eng., Vienna (2001) 1–10

	Introduction
	An Illustrative Example
	Plug and Play with Message Passing
	Message Passing Variations and Building Blocks
	Component Interfaces and Protocols Among Building Blocks
	Design-Time Verification
	Other Interaction Mechanisms

	The Single-Lane Bridge Example Revisited
	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

