
Modeling Wildcard-Free MPI Programs for Verification

Stephen F. Siegel
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

siegel@cs.umass.edu

George S. Avrunin
Department of Mathematics
University of Massachusetts

Amherst, MA 01003

avrunin@math.umass.edu

ABSTRACT
We give several theorems that can be used to substantially
reduce the state space that must be considered in applying
finite-state verification techniques, such as model checking,
to parallel programs written using a subset of MPI. We il-
lustrate the utility of these theorems by applying them to a
small but realistic example.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—formal methods, model checking, validation

General Terms
Verification

Keywords
MPI, Message Passing Interface, parallel computation, for-
mal methods, analysis, finite-state verification, model check-
ing, deadlock, concurrent systems, SPIN

1. INTRODUCTION
Scientific computing provides predictions that are increas-

ingly important not just for research but also for decision-
making on issues of great significance to society, including
economic policy, environmental regulation, and the safety
and performance of such things as cars, airplanes, and build-
ings. Yet the parallelism that makes much of this compu-
tation practical makes it difficult to build correct programs.
Parallel programs can behave non-deterministically, in the
sense that they can produce different results when run on
different platforms, and sometimes even when run twice on
the same platform. Large parallel programs often display
deadlocks that are difficult to reproduce, especially when
ported to new platforms, and produce results that are not
independent of the number of processors when they should
be. Experience has shown that just to detect or reproduce

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPoPP’05,June 15–17, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-080-9/05/0006 ...$5.00.

these problems (let alone to pinpoint their causes and correct
them) can be extremely time-consuming and labor-intensive.
Moreover, the measures introduced to avoid these problems,
such as extra barriers or redundant inter-processor commu-
nication, can severely hamper performance.

Finite-state verification (FSV) techniques, such as model
checking [3], provide methods for determining whether a
parallel program satisfies particular requirements, such as
freedom from deadlock or the absence of specified race con-
ditions. These techniques construct a finite model that rep-
resents all possible executions of a given program and use
various algorithmic methods for determining whether the re-
quirements hold in the model. While less powerful than ap-
proaches based on theorem-proving [6,11], these techniques
are highly automated and, unlike testing or run-time moni-
toring approaches [8, 15], can give results about all possible
executions of the program. When FSV techniques show that
a requirement may be violated (e.g., that the program may
deadlock), they typically provide a counterexample tracing
an execution that violates the property. For this reason,
FSV techniques are useful for detecting and explaining bugs
during development as well as for verifying that a finished
program satisfies its requirements.

The main drawback to FSV techniques is the state space
explosion problem: the number of states a concurrent pro-
gram can reach is, in general, exponential in the number
of processes in the program, and all these states must be
represented in the model in some way. Indeed, almost all
the questions one would want to answer about a concurrent
program (e.g., does it deadlock, does a particular communi-
cation ever occur, etc.) are known to be at least NP-hard,
and the number of reachable states for even small paral-
lel scientific programs is enormous. Useful application of
FSV techniques to parallel scientific programs thus depends
on the development of methods for reducing the size of the
state spaces that must be considered.

In this paper, we consider the widely-used Message Pass-
ing Interface (MPI) [9,10], which presents some special chal-
lenges for FSV techniques. For instance, the memory avail-
able for buffering messages between two processes, and thus
the number of messages that can be buffered, can change
dynamically and unpredictably during execution, and the
models used for verification must take this into account. We
describe a class of models for MPI programs written using a
subset of the MPI communication constructs, and give sev-
eral theorems that allow substantial reduction in the size
of the state space that must be considered to verify some
important classes of requirements for these programs.

95

In the next section, we describe our approach to modeling
MPI programs. In §3, we state the theorems and discuss
their significance. In §4, we discuss some future research
directions and some conclusions about this approach.

2. MODELS
Our goal is to construct models that conservatively rep-

resent the behavior of MPI programs in the sense that each
possible execution of the program is represented in the cor-
responding model, although the model may also represent
executions that are forbidden by the MPI semantics. (Al-
lowing such additional, “infeasible” executions in the model
often makes for a much simpler, more compact model.) If
we can prove, for example, that none of the executions rep-
resented in a conservative model deadlocks, then we can
conclude that none of the possible executions of the corre-
sponding program can deadlock. Our models focus primarily
on the communication behavior and abstract away much of
the detailed state and computation of the programs (e.g.,
we typically ignore the precise values of floating point vari-
ables). In this section, we give a brief description of our
models and how they represent some of the special seman-
tics of the MPI communication constructs. Full details may
be found in [13].

In this paper, we will assume that an MPI program con-
sists of a fixed number of concurrent processes, each exe-
cuting its own code with no shared variables. We assume
that each process is single-threaded and that communica-
tion between processes takes place only through the block-
ing standard-mode functions MPI_SEND, MPI_RECV, MPI_-
SENDRECV, and MPI_SENDRECV_REPLACE, and the 16
collective functions, such as MPI_BARRIER and MPI_GATH-
ER. We will mention some aspects of the semantics of these
functions in the discussion that follows, but we refer the
reader to the MPI Standard [9, 10] for complete details. As
discussed in §4, we hope to be able to extend our results to
other MPI functions in future work.

2.1 Process Automata and Channels
Our basic idea is to represent each process in a program P

in a fairly standard way as a finite state automaton (FSA).
The transitions of these automata are labeled by local events,
representing actions involving only the corresponding pro-
cess, and send and receive events, representing calls to the
various MPI communication functions.

The arguments to the functions MPI_SEND, MPI_RECV,
MPI_SENDRECV, and MPI_SENDRECV_REPLACE include
locations in memory for the start of the sequence of data to
be sent or received, the type and number of the elements of
that sequence of data, a tag that may be used to distinguish
particular classes of messages, and integers that describe
the sender or receiver of the message with respect to a set of
processes called a communicator. A receive statement can
only receive messages that match its sender, receiver, tag,
and communicator. Wildcard receive statements may spec-
ify MPI_ANY_SOURCE rather than a single sending process
or MPI_ANY_TAG rather than a single tag. For simplicity,
we will assume that the only communicator used is the de-
fault one, MPI_COMM_WORLD, which represents the set of
all processes that exist at system initialization. Our model
for P therefore includes a set of channels, each associated
with a fixed sending and receiving process. (We allow multi-
ple channels with the same sender and receiver to allow for

the different possible tags.) We abstract away the details
of the buffers and data sequences, and associate with each
channel a (possibly infinite) set of messages that may be
sent over that channel.

We impose some restrictions on the automaton Mp repre-
senting the process p. For a model with no wildcard receives,
the requirements are as follows: at each state u other than
the unique final state (which has no outgoing transitions),
exactly one of the following must hold:

1. u is a local-event state: there is at least one transition
departing from u, and all the transitions from u are
labeled with local events,

2. u is a sending state: there is exactly one transition
departing from u, labeled by a send event c!x, where c
is a channel with sender p and x is a message that can
be sent over c,

3. u is a receiving state: there is a channel d whose re-
ceiving process is p such that the transitions departing
u are labeled by the receive events d?y, as y runs over
the possible messages that can be sent over d, or

4. u is a send-receive state: there are channels c with
sender p and d with receiver p, a message x that can
be sent over c, a state u′, and states vy, and v′y, for all
messages y that can be sent over channel d, such that
the following all hold:

(a) the set of transitions departing from u consists of
one transition to u′ whose label is c!x, and, for
each y, one transition labeled d?y to vy,

(b) for each y, there is precisely one transition depart-
ing from vy, it is labeled c!x, and it terminates in
v′y, and

(c) for each y, there is a transition from u′ to v′y, it is
labeled d?y, and these make up all the transitions
departing from u′.

The general definition (for a model that may have wildcard
receives) allows multiple receiving channels for the receiving
and send-receive states, but we will not consider such models
in this paper.

2.2 Execution Semantics
We represent the executions of a model of an MPI pro-

gram as sequences of transitions. For simplicity, our repre-
sentation will not distinguish between the case where a send
and receive happen synchronously, and the case where the
receive happens immediately after the send, with no inter-
vening events. It is clear that in the latter case, the send
and receive could have happened synchronously, as long as
the sending and receiving processes are distinct.

For a sequence S = (t1, t2, . . .) to represent an execution
of the program P, we require that, for each process p, the
subsequence of S consisting of transitions in the automa-
ton corresponding to p form a path through that automa-
ton starting at its initial state, so that the execution of the
program represents an interleaving of the executions of the
processes. We also require that each channel behave like a
queue. More formally, given a prefix Sn = (t1, . . . , tn) of S
and a channel c, we let (c!x1, c!x2, . . .) denote the projection
of the labels of (t1, . . . , tn) onto the set of events that are
sends on c. Then define Sentc(S

n) = (x1, x2, . . .). This is the

96

sequence of messages that are sent on c in the prefix Sn. The
sequence Receivedc(S

n) is defined similarly as the sequence
of messages that are received on c in Sn. We then require
that, for all n, Receivedc(S

n) is a prefix of Sentc(S
n). We set

Pendingc(S
n) = Sentc(S

n) \ Receivedc(S
n), so Pendingc(S

n)
represents the messages remaining in the queue for channel
c after the execution of Sn. A sequence S satisfying these
requirements will be referred to as an execution prefix.

2.3 From Code to Models
We briefly describe how our model relates to actual pro-

gram code.
A state in a process automaton Mp represents the local

state of process p—the values of its variables and program
counter, etc. A local-event transition represents a change
in state in p that does not involve any communication with
other processes—for example, the assignment of a new value
to a variable. The labels on the local-event transitions do not
play a significant role in this paper. One could, for example,
just use a single label for all the local-event transitions in a
process. On the other hand, if one wishes to reason about
particular local events in a correctness property, one could
use different labels for those transitions so that they could
be referenced in the property specification.

A sending state represents a point in code just before a
send operation. At that point, the local state of the process
invoking the send contains all the information needed to
specify the send exactly: the value to be sent, the process
to which the message is to be sent, and the tag. After the
send has completed, the state of this process is exactly as it
was before, except for the program counter, which has now
moved to the position just after the send statement. That
is why there is precisely one transition departing from the
sending state.

A receiving state represents a point in code just before
a receive operation. Unlike the case for send, this process
does not know, at that point, what value will be received.
The state of the process after the receive completes may de-
pend on the particular value received, since the variable into
which the value is stored may take on a new value. Hence
transitions (possibly to distinct states) must be included for
every possible value that could be received.

A send-receive state represents a point in code just before
a send-receive statement. According to the MPI Standard,
the send and receive operations may be thought of as taking
place in two concurrent threads; we model this by allowing
the send and receive to happen in either order. If the send
happens first, this process then moves to a receiving state,
whereas if the receive happens first, the process moves to
one of the sending states. After the second of these two op-
erations occurs, the process moves to a state that represents
the completion of the send-receive statement. Notice that
there is always a “dual path” to this state, in which the same
two operations occur in the opposite order.

We model the collective operations by introducing an aux-
iliary process to serve as a coordinator. For instance, for
the MPI_BARRIER function, we create a new process corre-
sponding to the barrier. For each of the original processes,
we replace the call to MPI_BARRIER by statements that
send a fixed message to the barrier process and then receive
a fixed message from the barrier process. The barrier pro-
cess itself simply receives the corresponding messages from
each of the original processes and then sends the appropriate

messages back to them. None of the original processes can
proceed until the barrier process has received all of their
messages. The other collective operations are modeled in
similar fashion.

2.4 Relations on Execution Prefixes
The theorems we present in the next section depend on

identifying certain relations between execution prefixes. For
instance, we show that if any execution prefix for a particular
model leads to deadlock, there must be an associated prefix,
also leading to deadlock, in which each communication takes
place synchronously. In this section we sketch some of the
relations we need.

We say that an execution prefix S = (t1, t2, . . .) is syn-
chronous if, for each channel c, whenever the transition ti

is labeled by a send event c!x, the transition ti+1 is labeled
by the receive event c?x. For technical reasons involving the
MPI semantics, we also require that the sender and receiver
on channel c be different unless the source of transition ti is
a send-receive state.

Consider a send-receive state in which either the send
event c!x or the receive event d?y is possible. Note that our
definition of process automata requires that the automaton
reaches the same state whether the transitions occur in the
order c!x d?y or d?y c!x. Our model is intended to reflect the
MPI semantics in which the send and receive take place as if
they were executed by independent threads, so we want the
process execution in which the c!x is followed by the d?y to
be the same as the one in which the d?y is followed by the
c!x. To deal with this issue, we introduce a series of rela-
tions on paths through process automata and on execution
prefixes.

We say that two paths π and ρ through a process au-
tomaton are equivalent, written π ∼ ρ, if one can be ob-
tained from the other by reversing the order of a (possibly
infinite) set of send and receive transitions at send-receive
states. This is an equivalence relation. We write π � ρ if
π is a prefix of a path that is equivalent to ρ. Note that
π ∼ ρ ⇔ π � ρ∧ ρ � π. We write π ≺ ρ if π � ρ and π 6∼ ρ.
We say π and ρ are comparable if π � ρ or ρ � π.

Given a sequence S of transitions and a process p, we write
S↓p for the projection of S onto the set of transitions of the
process automaton Mp, i.e., the subsequence of S consisting
of transitions from Mp.

The MPI Standard allows an MPI implementation to buf-
fer an outgoing message, so that the send operation may
complete before the receiving process has even initiated a
receive operation. In such a situation, we think of the mes-
sage as existing in a system buffer. The implementation
may, however, block the sending process for an undeter-
mined time. If the receiving process is in a matching re-
ceive and there is no pending message in the system buffer
that also matches the message, the implementation must
allow the communication to take place synchronously. If
the implementation chooses to block the sender until these
conditions are met, we say that it forces the send to syn-
chronize. The possibility that an implementation may block
some messages for undetermined amounts of time, possibly
forcing some sends to synchronize, is a major source of the
nondeterministic behavior of MPI programs, and thus a ma-
jor problem in verifying their properties. To deal with this,
we introduce the notion of a universally permitted extension
of a finite execution prefix.

97

1 global_error = epsilon;
2 while (global_error >= epsilon) {
3 for (iter = 0; iter < niter; iter++) {
4 if (rank == 0) MPI_Send(grid[ny-2], nx, MPI_DOUBLE, 1, 0, comm);
5 else if (rank < nprocs-1)
6 MPI_Sendrecv(grid[ny-2], nx, MPI_DOUBLE, rank+1, 0, grid[0], nx,

MPI_DOUBLE, rank-1, 0, comm, &status);
7 else MPI_Recv(grid[0], nx, MPI_DOUBLE, nprocs-2, 0, comm, &status);
8 if (rank == nprocs - 1) MPI_Send(grid[1], nx, MPI_DOUBLE, nprocs-2, 0, comm);
9 else if (rank > 0)

10 MPI_Sendrecv(grid[1], nx, MPI_DOUBLE, rank-1, 0, grid[ny-1], nx,
MPI_DOUBLE, rank+1, 0, comm, &status);

11 else MPI_Recv(grid[ny-1], nx, MPI_DOUBLE, 1, 0, comm, &status);
12 /* local update of grid interior */
13 }
14 /* computation of local_error */
15 MPI_Allreduce(&local_error, &global_error, 1, MPI_DOUBLE, MPI_SUM, comm);
16 }

c0

c1

d1

d2

∗ ∗ ∗ ∗
• ◦ ◦ •
• ◦ ◦ •
• • • •

3

2

1

0

∗ ∗ ∗ ∗
• ◦ ◦ •
• ◦ ◦ •
∗ ∗ ∗ ∗

3

2

1

0

• • • •
• ◦ ◦ •
• ◦ ◦ •
∗ ∗ ∗ ∗

3

2

1

0

Figure 1: Jacobi iteration on a two-dimensional grid: • = boundary cell, ◦ = interior cell, ∗ = ghost cell

Let S = (s1, . . . , sm) be a finite execution prefix of a
model M for an MPI program P. A finite execution prefix
T = (s1, . . . , sm, . . . , sn) extending S is universally permit-
ted if, for all i such that m < i ≤ n and si is a send transition
with, say, label c!x, then si+1 is labeled by the event c?x and
Pendingc(s1, . . . , si−i) is empty. In other words, after the
last transition in S, no more buffering is allowed: only syn-
chronous communication and the receipt of messages that
were already buffered in the course of S are permitted. The
idea is that the universally permitted extensions are pre-
cisely the ones that must be allowed by any legal MPI im-
plementation, no matter how strict its buffering policy.

2.5 Example: Jacobi Iteration
In this section we will describe an example MPI program

and model. Though simple, this example demonstrates some
of the typical issues that arise in creating finite-state mod-
els from MPI codes. The same example will also be used
throughout §3 to elucidate the general theorems presented
there.

The program, whose code is outlined in Figure 1, com-
putes a solution to the two-dimensional Laplace equation us-
ing Jacobi iteration [1]. Conceptually, there is a global rect-
angular grid in which the values on the boundary points are
specified. The rows of this grid are distributed among the
nprocs processes in such a way that each process has ny− 2
interior rows, stored in the grid[i], for 1 ≤ i ≤ ny−2. In the
process of rank 0, grid[0] holds the bottom boundary row,
and in the process of rank nprocs−1, grid[ny−1] holds the
top boundary row. In all processes of positive rank, grid[0]
is used to mirror the contents of the grid[ny − 2] on the
process below; on all processes of rank less than nprocs− 1,
grid[ny− 1] is used to mirror the contents of the grid[1]
on the process above. The values of these ghost cell rows
are updated on each iteration of the for loop through a se-
ries of point-to-point MPI functions. This grid structure is
illustrated on the right side of Figure 1.

After updating the ghost cells, the process proceeds to
update the interior values of grid, a purely local operation.
This is repeated niter times, after which another local op-
eration computes the local error for that process. A call to
MPI_Allreduce adds the local error terms and returns the

sum to each process, where it is stored in global_error.
These steps are repeated until the global error falls below
a threshold ε, at which point all processes exit the code
fragment. The values of nx, ny, niter and ε are assumed
to be constant and the same on every process, and rank is
assumed to have been set to the rank of the process.

We construct a model M0 of the Jacobi code as follows.
First, we let M0 contain one channel ci, which sends from
process i to i+1, for 0 ≤ i ≤ nprocs−2, and one channel dj ,
which sends from process j to j− 1, for 1 ≤ j ≤ nprocs− 1.
Next, we abstract away the grid values. Specifically, in M0,
in place of each operation that sends an array of floating
point numbers, there will be an operation that sends the
single integer 1. A coordinator process and another set of
channels (from each process to the coordinator and from
the coordinator to each process) are added to model the
reduction operation. The local_error variables are also
abstracted away. So in M0, a process begins the reduction
operation by simply sending a 1 to the coordinator. The
coordinator receives all these messages in rank order.

We make a slightly more precise abstraction of the global
error in M0. In particular, after receiving the 1 from all
processes, the coordinator makes a non-deterministic choice
between 0 and 1 and sends the chosen value to each of the
processes, in rank order. The choice of 1 represents a value
for global_error which is less than ε, while 0 represents a
value which is not. We know that this abstraction results in
a conservative model, since (i) the MPI Standard guarantees
that the reduction operation return the same value to every
process, and (ii) every process has the same value for ε, by
assumption.

An execution prefix for M0, in the case nprocs = 3 =
niter, might be synchronous, as in (leaving out local events)

c0!1, c0?1, c1!1, c1?1, d2!1, d2?1, d1!1, d1?1,

or it might proceed more in a lockstep pattern, as follows:

c0!1, c1!1, c0?1, c1?1, d2!1, d1!1, d2?1, d1?1.

What is less obvious is that there are execution prefixes
in which the processes can move further apart from each
other. In particular, a point can be reached at which the
process of rank i is in the ith iteration of the for loop, for

98

all 0 ≤ i < nprocs. In the nprocs = 3 = niter case this
global state is arrived at by the following prefix:

c0!1, c0?1, c1!1, c1?1, d2!1, d2?1, d1!1, c1!1, c1?1, d2!1. (1)

It is this wide range of possible behaviors that makes it
difficult to reason about the correctness of MPI programs,
and also leads to the explosion of the state space that can
make finite-state verification infeasible.

There are a number of correctness properties that we
might like to establish for our Jacobi program. In addi-
tion to freedom from deadlock, we might want to check that
all ghost cells are updated correctly. Specifically, just be-
fore the ith update of the grid interior on a process p, the
value of a ghost cell that mirrors an interior cell on process
q should equal the value of that interior cell when q was
just about to perform its ith update. A third property is
the claim that the program behaves deterministically, that
is, given the same input twice, it will always produce the
same result, independent of the choices made by the MPI
implementation.

3. THE THEOREMS
In this section we describe our main results concerning

models of MPI programs. Each theorem will also be illus-
trated with an application to the Jacobi example for niter =
5 = nprocs. The source code and other artifacts for these
applications are available at http://laser.cs.umass.edu/

~siegel/projects.
Throughout this section, M will denote a model of an

MPI program with no wildcard receives, that is, with no
use of MPI_ANY_SOURCE or MPI_ANY_TAG, and Proc will
denote the set of all processes of M.

3.1 Deadlock
Checking for deadlocks in MPI codes can be tricky be-

cause whether or not a program deadlocks can depend upon
the synchronization choices made by the MPI implementa-
tion. In general, if a program reaches a state from which
the only possible actions are sends that cannot be received
synchronously, the program can deadlock if the implementa-
tion chooses to force all the sends to synchronize. If, on the
other hand, the implementation allows those sends to buffer,
the program may continue without deadlocking. Clearly it
would be of great benefit to know that a program could
never deadlock, no matter what choices are made by the
MPI implementation.

To make this precise, let Σ be a subset of Proc, and let S
be a finite execution prefix. For each process p, let up be the
state of p after execution of S. We write |S| for the number
of transitions in S.

Definition 1. We say that S is potentially Σ-deadlocked
if, for some p ∈ Σ, up is not the final state, and S has no
universally permitted proper extension.

It is not hard to see that this is equivalent to requiring that
all of the following hold: (i) there is a p ∈ Σ for which up is
not the final state, (ii) no up is a local-event state, and (iii) if
a process is at a receiving or send-receive state, then for the
channel c for which there is a receive transition leaving that
state, there are no pending messages on c and no process is
at a state from which it can execute a send on c.

The potentially deadlocked prefixes are precisely the ones
for which some choice by a legal MPI implementation would

lead to deadlock (cf. [8]). Since this is precisely the kind of
behavior we wish to avoid, we say that M is Σ-deadlock-
free if it has no execution prefix of this form. We say that
it is synchronously Σ-deadlock-free if it has no synchronous
execution prefix of this form.

The set Σ in these definitions arises from the fact that,
for some systems, we may not wish to consider certain po-
tentially deadlocked prefixes as problematic. For example,
if one process p represents a server, then often p is designed
to never terminate, but instead to always be ready to accept
requests from clients. In this case we probably would not
want to consider an execution in which every process other
than p terminates normally to be a deadlock. For such a
system, Σ might be taken to be all processes other than the
server.

Our main theorem concerning deadlock reduces the veri-
fication of freedom from deadlock to the synchronous case:

Theorem 1. Let Σ ⊆ Proc. Then M is Σ-deadlock-free
if, and only if, M is synchronously Σ-deadlock-free.

We remark that the hypothesis forbidding wildcard receives
in Theorem 1 is necessary. For an example of how the con-
clusion may fail if the hypothesis does not hold, see [13, §7].

Theorem 1 may impart an enormous advantage to FSV
techniques, since the need to represent all possible states of
message channels is one of the major sources of state explo-
sion. The fact that we need only consider synchronous exe-
cutions means that an FSV tool, such as the model checker
Spin [5], does not need to keep track of pending messages in
its representation of the global state and can avoid exploring
all of the resulting additional global states.

To demonstrate this benefit, we used Spin, and the meth-
ods described in [14], to analyze the model M0 of §2.5, with
niter = 5 = nprocs. Allowing messages to buffer, Spin can
indeed verify freedom from deadlock (for Σ = Proc), but
only after exploring 1.4 million global states. If we restrict
to synchronous communication, only 26, 686 global states
have to be explored. So by making use of Theorem 1, we
reduce the size of the verification by a factor of 50 in this
example.

There is a stronger version of the freedom from deadlock
property, which in essence says that a specific process can
never become permanently blocked. To make this precise,
we make the following definition:

Definition 2. We say S is potentially partially Σ-dead-
locked (or Σ-ppd, for short) if, for some p ∈ Σ, up is not
the final state, and there is no universally permitted proper
extension S′ of S with |S′↓p| > |S↓p|.
The idea here is that a program that has followed the path
of S may now be in a state in which process p will never
be able to progress (though other processes may continue
to progress indefinitely). Again, p may be able to progress,
depending on the choices made by the MPI implementation.
If the implementation allows buffering of messages then p
may be able to execute, but if the implementation chooses,
from this point on, to force all sends to synchronize, then p
will become permanently blocked.

We say thatM is free of partial Σ-deadlock if it has no exe-
cution prefix that is Σ-ppd. We say that M is synchronously
free of partial Σ-deadlock if it has no synchronous execution
prefix that is Σ-ppd.

It follows directly from the definitions that if M is free
of partial Σ-deadlock then it is Σ-deadlock-free. In other

99

words, this new property is stronger than the old. And
although the weaker property is probably more familiar, it
is often the case that one expects the stronger version to hold
for a large subset Σ of the set of processes. In fact, quite
often one expects most or all of the processes in an MPI
program to terminate normally on every execution, which
certainly implies that the program should be free of partial
deadlock for that set of processes.

Finally, to verify this stronger property we are also justi-
fied in restricting to the synchronous case:

Theorem 2. Let Σ ⊆ Proc. Then M is free of partial Σ-
deadlock if, and only if, M is synchronously free of partial
Σ-deadlock.

Verification of freedom from partial deadlock can be signif-
icantly more computationally intensive than verification of
the weaker deadlock property. For our example, Spin was
able to verify the stronger property after exploring over 9
million global states. By restricting to synchronous commu-
nication, this number was reduced to 242, 956 global states.

3.2 Barriers
Barriers can facilitate reasoning about the correctness of

a program, because they reduce the number of ways events
from the different processes can be interleaved. If we were to
insert, for example, an MPI_Barrier statement in the code
of Figure 1 between lines 11 and 12, we would eliminate
executions such as (1). For the same reason, barriers can
reduce the number of global states, and therefore facilitate
finite-state verification. In our verification of freedom from
deadlock using the buffering Spin model ofM0, for example,
inserting the barrier reduces the number of global states
explored from 1.4 million to 441, 010; in the synchronous
model, the number is reduced from 26, 686 to 12, 402. We
will see in Theorem 3 below that the fact that the model
with the barrier is deadlock-free implies that the original
model is deadlock-free.

To reason about barriers in the general case, let B be a set
of states from the various Mp of our wildcard-free model M.
We let MB denote the model which is the same as M, ex-
cept that barriers have been inserted just before every state
in B. For technical reasons we assume that B contains no
initial state, nor an immediate successor of a send-receive
state. The precise construction involves adding a coordi-
nator process to M, and adding a transition labeled by a
send to the coordinator (indicating entrance to the barrier)
followed by one labeled by a receive from the coordinator
(indicating exit from the barrier) just before each state in
B. The coordinator process simply receives an entrance mes-
sage from each process, and then sends an exit message to
each process, and repeats. We can prove the following:

Theorem 3. Let B be as above and Σ ⊆ Proc. Suppose
MB is Σ-deadlock-free (resp., free of partial Σ-deadlock).
Then M is Σ-deadlock-free (resp., free of partial Σ-dead-
lock).

While barriers can actually benefit the analysis of an MPI
program, they can also take a significant toll on the pro-
gram’s performance. It may therefore be reasonable to use
barriers liberally in the development of an MPI code. Then,
after a high level of confidence in the correctness of the pro-
gram is achieved, through FSV or other techniques, one can

begin to remove barriers that can be shown to be unneces-
sary for the correctness of the program. Theorem 3 can aid
in this last step, since one can at least be confident that the
removal will not introduce any deadlocks, assuming the pro-
gram is written in our restricted subset of MPI and contains
no wildcard receives.

The next result also concerns a model with barriers. We
say that a finite execution prefix terminates inside a barrier,
if, at the end of that prefix, every non-coordinator process
has entered, but not yet exited, the barrier.

Theorem 4. Let B be as above, and Σ ⊆ Proc. Suppose
MB is Σ-deadlock-free. Let S be a finite execution prefix
for MB that terminates inside a barrier. Then there is a
synchronous execution prefix T such that S↓p ∼ T↓p for
all processes p. In particular, Pendingc(S) is empty for all
channels c.

While Theorem 4 is stated in terms of barriers, the exact
same reasoning applies to any collective function that re-
quires every process to enter the communication before any
process leaves it. (The other “barrier-like” functions are
MPI_ALLGATHER, MPI_ALLGATHERV, MPI_ALLREDUCE,
MPI_ALLTOALL, MPI_ALLTOALLV, MPI_ALLTOALLW, and
MPI_REDUCE_SCATTER). So, for example, Theorem 4 im-
plies that, whenever execution of the code of Figure 1 is at
a point where all processes are “inside” the MPI_Allreduce

function, there can be no pending messages in the entire
system, i.e., every message sent has been received.

Let us see how Theorem 4 can aid in the verification of
the ghost cell property for the Jacobi example (in its orig-
inal form, without the added MPI_Barrier statement). To
verify that property, it is clear that we need a model that
represents the ghost cell values in a more precise way than
they are represented in M0. One way might be to modify
M0 by introducing a local variable count into each process.
Initially 0, count is incremented just after each local update
of the grid interior on line 12. Now for each of the MPI send
operations, instead of simply sending a 1, we send count.
In each of the MPI receive operations, the received value
is stored in a variable tmp. The property of this model we
want to check is that, after any process receives into tmp, it
is always the case that tmp equals count.

The problem with the approach above is that the variable
count can increase without bound, since there is nothing in
the model which places a bound on the number of times a
process can go through the while loop. This means that
the model described above has an infinite number of global
states. To remedy this problem, we can leverage the knowl-
edge that there can be no pending messages when execution
is inside the MPI_Allreduce. Because this is the case, we
know that a message sent by some process p on the nth

iteration of the while loop can only be received by some
process q on its nth iteration of the while loop. We may
therefore modify our model by resetting count to 0 just after
the MPI_Allreduce, or, equivalently, just using the variable
iter in place of count. This results in a finite-state model,
and, after exploring 527, 036 global states, Spin verified that
the property indeed holds on all executions of this model.

3.3 Channel Depth
During the course of execution of a prefix T , the number

of pending messages in a channel may of course go up and
down, and there is not necessarily a correlation between the

100

number of pending messages at the end of the execution and
at the intermediate stages. However, the following theorem
shows that in certain circumstances, one can always replace
T by an execution prefix S in which the number of pending
messages never exceeds the final value:

Theorem 5. Suppose Σ ⊆ Proc and M is free of partial
Σ-deadlock. Let T be a finite execution prefix of M and
assume that, after execution of T , no process is at a state
that is an immediate successor to a send-receive state. Then
there exists an execution prefix S of M satisfying all of the
following:

1. S↓p ∼ T↓p for all p ∈ Σ.

2. S↓p � T↓p for all p ∈ Proc \ Σ.

3. For all channels c for which the receiving process is in
Σ, the following holds: if |Pendingc(T)| = 0 then S is
c-synchronous, while if |Pendingc(T)| > 0 then for all
i, |Pendingc(S

i)| ≤ |Pendingc(T)|.

To see how Theorem 5 can be applied to our Jacobi ex-
ample, let us again consider the question of the correctness
of the ghost cells. We saw in §3.2 how to verify this prop-
erty using a finite-state model that required buffering, but
we will now see that there is a way to safely restrict to syn-
chronous executions. The idea is just to delay the check
that tmp = iter until a point where all channels are empty
and then apply Theorem 5. Specifically, we add to each
process a boolean variable flag that is initially 0. After
each receive operation, we check to see if tmp 6= iter, and,
if that is the case, we set flag to 1. Now we ask Spin to
check that at the point just after the MPI_Allreduce, the
value of flag can never be 1. Because the model is free of
partial deadlock, we know that if flag is ever set to 1 by a
process p, then p will eventually reach the point just after
the MPI_Allreduce statement. Furthermore, by Theorem 4,
we know that this point can be reached by an execution
prefix T such that, just after execution of T , all channels
will be empty. By Theorem 5, there exists a synchronous
execution S such that S↓p ∼ T↓p for all p. In particu-
lar, for each p, the state of p after execution of S is the
same as that resulting from the execution of T , and so if
T results in a state for which some flag = 1, so will S.
Hence if there exists a violation of the property, there exists
a synchronous violation, and therefore if we can verify the
property for synchronous executions we have verified that
it holds in general. Using this synchronous approach, Spin
explored only 35, 391 global states, rather than the 527, 036
required by the buffering approach described in §3.2.

3.4 Locally Deterministic Models
We now consider a particularly well-behaved class of mod-

els of MPI programs, which we call locally deterministic
models. These are models in which there are not only no
wildcard receives, but no non-deterministic local choices in
the automaton for any process.

Definition 3. We say that a model M of an MPI program
is locally deterministic if it has no wildcard receives, and, for
every local-event state u, there is precisely one transition t
departing from u.

Notice that the model M0 of our example program is not
locally deterministic because of the non-deterministic choice

made by the coordinator in choosing between the two pos-
sible values for the global error. However, there are locally
deterministic models of the program that can be used to
reason about the program, and which we now describe.

Suppose, more generally, that we are given any MPI pro-
gram that uses only the MPI functions enumerated in §2,
contains no wildcard receives, and uses no non-deterministic
functions (such as a function that returns a random value).
Say we are also given an input vector v for that program,
i.e., a vector specifying the initial value of every variable in
the program. Then we may consider the full-precision real
model MR(v) in which every floating-point variable of the
program is treated as a real number, and the initial state of
the model is determined by v. Since all of the arithmetic
and other functions are deterministic, MR(v) is a locally-
deterministic model.

We may also consider the floating-point model MF(v), in
which the variables and arithmetic are represented exactly
as they are on a particular computing platform. Because
floating-point arithmetic is only an approximation to real
arithmetic, MF(v) is not necessarily equivalent to MR(v).
In particular, there are ways in which MF(v) can fail to be
locally deterministic. This may happen if reduction func-
tions such as MPI_ALLREDUCE are used with operations
that are not strictly associative and commutative, like float-
ing-point addition. This is the case with our example pro-
gram. The problem is that the MPI Standard allows the
MPI implementation to apply the reduction operation to
the terms in any order it likes, so the results returned by
two calls to MPI_ALLREDUCE may differ, even if given the
same input.

In any case, given a locally deterministic model, the anal-
ysis is greatly simplified. For even though there may still
exist many possible executions of the model—due to the
interleaving and buffering choices allowed by MPI—these
executions must all be the same in certain significant ways.
In particular, the same messages will always be sent on each
channel, in the same order, and the same paths will be fol-
lowed in each process automaton (except possibly for the
order in which the send and receive operations take place
within a send-receive call). The precise result is:

Theorem 6. Suppose M is a locally deterministic model
of an MPI program. Then there exists an execution prefix
S for M with the following property: if T is any execution
prefix of M, then for all p ∈ Proc, T↓p � S↓p.

Applying Theorem 6 to MR(v), we conclude that, for a
given v, the same values would be computed by any execu-
tion of the program, if all arithmetic used in execution were
precisely real arithmetic. If the program uses no reduction
functions on operations that are not associative and commu-
tative, the same reasoning applies to MF(v); in this case we
can conclude that, for a given v, any two executions of the
program on the same platform will return the exact same
floating-point results. If the program does contain such re-
duction functions, the only source for differences between
two executions is the error introduced by the failure of the
floating-point operations to be associative and commutative.

Questions concerning deadlock are also easily answered
for locally deterministic models:

Corollary 7. Let M be a locally deterministic model of
an MPI program, and Σ ⊆ Proc. Then

101

1. M is Σ-deadlock-free if, and only if, there exists a syn-
chronous execution prefix T such that either T is infi-
nite or T is finite and ends with every process in Σ at
its final state.

2. M is free of partial Σ-deadlock if, and only if, there
exists a synchronous execution prefix T such that for
each p ∈ Σ, either T↓p is infinite or T↓p is finite and
ends with p at its final state.

Hence one need only examine a single synchronous execution
to determine whether or not that model is deadlock-free.
There is no need to examine all possible executions.

4. CONCLUSION
We believe that FSV techniques, such as model checking,

have considerable potential for finding bugs in, or verifying
correctness properties of, parallel programs. In particular,
we are concerned with programs that carry out large scale
computations using MPI. Such programs are hard to write
correctly, and extremely hard to debug. Several features of
MPI, such as the unpredictable buffering of messages, make
the state spaces of such programs especially large and thus
present significant obstacles to the successful application of
FSV techniques.

In this paper, we have considered programs written using
a subset of the MPI communication constructs. This subset
includes the standard blocking send and receive operations
and the collective operations, such as MPI_BARRIER and
MPI_ALLREDUCE, but excludes both MPI_ANY_SOURCE
and MPI_ANY_TAG. Although this subset omits many of
the MPI functions, it is rich enough to express a large class
of parallel algorithms. We have presented several theorems
that can be used to substantially reduce the state space that
must be considered in finite-state verification of programs
written using this subset and have illustrated these results
by applying them to a small but realistic example.

While the example we used in this paper was very simple,
the theorems have also been applied to significantly more
complex codes. One interesting case concerns a component
from the FLASH project [2], a sophisticated parallel mul-
tiphysics application. The code implements a block redis-
tribution algorithm for an adaptively refined mesh, which
requires that blocks of data be redistributed periodically
among the processes according to a complex communica-
tion pattern. The original redistribution routine, which was
known to deadlock in some scenarios, was replaced with a
routine written entirely in our restricted subset of MPI. This
made it relatively easy, using Corollary 7, to establish free-
dom from deadlock for the new version.

For our initial applications of FSV techniques to MPI
programs, we have created finite-state models for Spin and
other FSV tools by hand. There are three important limita-
tions to this approach. First, it is extremely labor-intensive,
requiring the analyst to come to a thorough understanding
of the program being analyzed. While merely difficult for
small programs, this would be virtually impossible for large,
complex ones. Second, it requires the analyst to be an expert
in the modeling language being used. Third, in addition to
being labor-intensive, manual creation of models of complex
systems is error-prone, making the fidelity of such models
a special concern. We therefore plan to develop a tool that
will take the program code as input and produce a model
in the input language of an FSV tool as output, building

on recent research in automatic model extraction and con-
struction for FSV (e.g., [4]). We are also exploring other
ways to extend the applicability of FSV techniques to larger
classes of MPI programs, including sophisticated techniques
for automating abstractions like those used in the models of
the Jacobi example given in this paper.

The results presented here depend crucially on the avoid-
ance of the wildcard constructs MPI_ANY_SOURCE or MPI-
_ANY_TAG, which allow a receive operation to collect a mes-
sage from any of several channels. For programs making
use of wildcard receives, other, somewhat weaker, reduction
methods are possible [12]. Furthermore, we believe that at
least some programs using wildcard receives can be rewrit-
ten to avoid them. While this may incur a cost in compact-
ness or understandability, this cost may well be offset by the
improvement in analyzability, leading to lower development
cost and greater reliability.

Acknowledgments
We thank Andrew Siegel and Rusty Lusk for a great many
helpful discussions about MPI and scientific computation.

This research was partially supported by the U.S. Army
Research Laboratory and the U.S. Army Research Office
under agreement number DAAD190110564.

5. REFERENCES
[1] G. R. Andrews. Foundations of Multithreaded,

Parallel, and Distributed Programming.
Addison-Wesley, 2000.

[2] ASCI/Alliance Center for Astrophysical
Thermonuclear Flashes web site.
http://flash.uchicago.edu.

[3] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled.
Model Checking. MIT Press, Cambridge, 1999.

[4] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach,
C. S. Păsăreanu, Robby, and H. Zheng. Bandera:
Extracting finite-state models from Java source code.
In Proceedings of the 22nd International Conference
on Software Engineering, pages 439–448, June 2000.

[5] G. J. Holzmann. The Spin Model Checker.
Addison-Wesley, Boston, 2004.

[6] M. Kaufmann, P. Manolios, and J. S. Moore.
Computer-Aided Reasoning: An Approach. Kluwer
Academic Publishers, 2000.

[7] R. J. Lipton. Reduction: A method of proving
properties of parallel programs. Communications of
the ACM, 18:717–721, Dec. 1975.

[8] G. Luecke, Y. Zou, J. Coyle, J. Hoekstra, and
M. Kraeva. Deadlock detection in MPI programs.
Concurrency and Computation: Practice and
Experience, 14:911–932, 2002.

[9] Message Passing Interface Forum. MPI: A
Message-Passing Interface standard, version 1.1.
http://www.mpi-forum.org/docs/, 1995.

[10] Message Passing Interface Forum. MPI-2: Extensions
to the Message-Passing Interface.
http://www.mpi-forum.org/docs/, 1997.

[11] S. Owre, N. Shankar, J. M. Rushby, and D. W. J.
Stringer-Calvert. PVS System Guide. Computer
Science Laboratory, SRI International, Menlo Park,
CA, Sept. 1999.

102

[12] S. F. Siegel. Efficient verification of halting properties
for MPI programs with wildcard receives. In
R. Cousot, editor, Verification, Model Checking, and
Abstract Interpretation: 6th International Conference,
VMCAI 2005, Paris, January 17–19, 2005,
Proceedings, volume 3385 of Lecture Notes in
Computer Science, pages 413–429, 2005.

[13] S. F. Siegel and G. S. Avrunin. Modeling MPI
programs for verification. Technical Report
UM-CS-2004-75, Department of Computer Science,
University of Massachusetts, 2004.

[14] S. F. Siegel and G. S. Avrunin. Verification of
MPI-based software for scientific computation. In
S. Graf and L. Mounier, editors, Model Checking
Software: 11th International SPIN Workshop,
Barcelona, Spain, April 1–3, 2004, Proceedings,
volume 2989 of Lecture Notes in Computer Science,
pages 286–303. Springer-Verlag, 2004.

[15] J. S. Vetter and B. R. de Supinski. Dynamic software
testing of MPI applications with Umpire. In
Supercomputing ’00: Proceedings of the 2000
ACM/IEEE Conference on Supercomputing
(CDROM). IEEE Computer Society, 2000. Article 51.

APPENDIX

A. PROOFS
Space limitations prevent us from giving complete proofs

of the theorems in this paper; they can be found in [13].
In this appendix, however, we establish some of the key
technical results needed to prove the theorems stated above,
and sketch the proofs of some of those theorems. The proofs
of the other theorems have a similar flavor.

The basic idea of the proofs is to show that, given an exe-
cution prefix for a model M, we can reorder certain transi-
tions to obtain another execution prefix. These reorderings
change the interleaving of transitions from different pro-
cesses, but do not affect the relative order of transitions
in a single process. Thus, for example, given a potentially
deadlocked execution for a model without wildcard receives,
we can reorder the transitions to obtain a potentially dead-
locked execution in which all the communication takes place
synchronously. These techniques are related to those de-
veloped in the large literature on reduction and atomicity,
beginning with [7].

In what follows, if t is a transition in a process automaton
from a state u to a state v, we define src(t) = u and des(t) =
v.

Definition 4. If π = (t1, . . . , tn) is a finite path through
Mp, we let terminus(π) be des(tn) if n ≥ 1 and the start
state of Mp otherwise. Let S be a finite execution prefix of
M. The terminal state of S is the global state terminus(S)
defined by terminus(S)p = terminus(S↓p).

Definition 5. Let ρ and σ be paths through Mp for some
p ∈ Proc. We say ρ and σ are compatible if there exists a
path π through Mp such that ρ � π and σ � π. We say that
two execution prefixes S and T of M are compatible if S↓p

is compatible with T↓p for all p ∈ Proc.

The following is not hard to verify:

��������
c!x

��		
		

	
d?y

��
55

55
5

��������
d?y

��
55

55
5 ��������

c!x
��		

		
	

��������

��������
c!x

��		
		

	
d?y

��
55

55
5

��������
d?y

��

��������
c!x

��		
		

	

��������

��������
c!x

��		
		

	
d?y

��
55

55
5

��������
d?y

��

��������
c!x

����������
(a) (b) (c)

Figure 2: Compatible paths from a send-receive
state. In each case, ρ, the path on the left (excluding
the dotted arrows), is compatible with σ, the path
on the right. In (a), ρ ∼ σ. In (b), ρ ≺ σ. In (c), ρ
and σ are non-comparable compatible paths. In all
cases, π may be taken to be either of the paths from
the top node to the bottom node of the diamond.

Lemma 8. Suppose ρ = (s1, s2, . . .) and σ = (t1, t2, . . .)
are compatible paths through Mp. If |ρ| 6= |σ|, then ρ ≺ σ
or σ ≺ ρ. If |ρ| = |σ| then either ρ ∼ σ or ρ is finite, say
|ρ| = n, and all of the following hold:

(i) terminus(ρn−1) = terminus(σn−1) and is a send-receive
state.

(ii) ρn−1 ∼ σn−1.

(iii) One of sn, tn is a send, and the other a receive.

(iv) If π = (s1, . . . , sn, t̄n) or π = (t1, . . . , tn, s̄n), where s̄n

and t̄n are chosen so that (sn, t̄n) is the dual path to
(tn, s̄n), then ρ � π and σ � π.

See Figure 2 for an illustration of the different cases of
compatibility described in the Lemma. The last case (|ρ| =
|σ| but ρ 6∼ σ) describes precisely the non-comparable com-
patible paths.

The next lemma provides the key inductive step for argu-
ments about compatibility.

Lemma 9. Let M be a model of an MPI program with no
wildcard receives. Let S = (s1, . . . , sn) be a finite execution
prefix and T an arbitrary execution prefix for M. Suppose
Sn−1 is compatible with T and sn is a send or receive. Then
S is compatible with T .

We observe that the set of sequences that may be ap-
pended to S to create universally permitted extensions de-
pends only on the states terminus(S)p and the sequences
Pendingc(S) (and not on the history of how one arrived at
those states and queues). From this observation, it follows
that if S and S′ are two finite execution prefixes such that
S↓p ∼ S′↓p for all p ∈ Proc, then there is a 1-1 correspon-
dence between the universally permitted extensions of S and
those of S′, with the property that if T corresponds to T ′

under this correspondence, then T \ S = T ′ \ S′.
Suppose now that we are given a fixed, finite, execution

prefix T , and a second execution prefix S that is compatible
with T . We will often have a need to extend S, in a uni-
versally permitted way, so that it maintains compatibility
with T . The following proposition shows that, if we extend
S far enough in this way, then we reach a point where any
further universally permitted extension must be compatible
with T . An even stronger statement can be made if T is
synchronous. Like most of the results in this paper, we re-
quire that there are no wildcard receives. This proposition
is a key part of the proofs of the theorems stated above.

103

����������
1

����
��

��

2 ,,���������������� ��������3

c!1
ll

����������
5

����
��

��
6

��
::

::
::

��������
c?1

4

\\ ��������
d?1

7

\\

����������
8

����
��

��

9 ,,���������������� ��������10

d!1
ll

Figure 3: A Model of an MPI Program with 3 Pro-
cesses. Edges with no label represent local-event
transitions. Process 0 (left) chooses to either termi-
nate, or to move to a state from which it will send
a message to process 1 on channel c, then return to
its start state and repeat. Process 2 (right) does
the same for channel d. Process 1 (middle) chooses,
once and for all, whether to move to a state from
which it will loop forever receiving messages on c,
or to do that for d.

Proposition 10. Let M be a model of an MPI program
with no wildcard receives. Let S and T be compatible finite
execution prefixes for M. Then there is a universally per-
mitted finite extension S′ of S, with the property that any
universally permitted extension of S′ is compatible with T .
Moreover, if T is synchronous, then S′ may be chosen so
that T↓p � S′↓p for all p ∈ Proc.

Let us look at an example using the model illustrated in
Figure 3. We will take

T = (2, 3, 2, 3, 1, 9, 10, 9, 10, 8, 6, 7).

To summarize T , first process 0 sends two messages on c
and terminates, then process 2 sends two messages on d and
terminates, then process 1 chooses the d branch and receives
one message on d. Suppose that

S = (2, 3, 9, 10).

Clearly, S is compatible with T , as S↓p ≺ T↓p for all p.
Now, there are many universally permitted extensions of S
that are not compatible with T , for example

(2, 3, 9, 10, 5, 4).

This cannot be compatible with T since the projection onto
process 1 begins with transition 5, while the projection of T
onto that process begins with transition 6.

Let us consider however the following universally permit-
ted extension of S:

S′ = (2, 3, 9, 10, 6, 7, 9, 10, 7, 2, 8).

We have S′↓0 ≺ T↓0, T↓1 ≺ S′↓1, and S′↓2 = T↓2. Clearly,
no extension of S′ could receive any messages on c, and
therefore no universally permitted extension of S′ could send
any more messages on c. This means that no universally per-
mitted extension of S′ can have any additional transitions
in process 0. Since in the other two processes, S′ has al-
ready “covered” T , any universally permitted extension of
S′ will be compatible with T . So S′ is the sort of prefix
whose existence is guaranteed by Proposition 10.

The second part of the proposition says that if T were
synchronous, then there would exist an S′ that “covers” T
on every process.

The idea behind the proof of Proposition 10 is to choose
an S′ that maximizes its “coverage” of T . To make this

|ρ|

dσ(ρ)

Figure 4: dσ(ρ) as a function of |ρ|

precise, we introduce the following function. Suppose ρ and
σ are compatible paths through some Mp and ρ is finite. We
want to measure the part of σ that is not “covered” by ρ.
Recall from Lemma 8 that if |σ| > |ρ| we must have ρ ≺ σ,
while if |σ| = |ρ|, ρ and σ are equivalent except possibly for
the last transition in each. Define

dσ(ρ) =

max(0, |σ| − |ρ|) if |σ| 6= |ρ|
1 if |σ| = |ρ| but σ � ρ

0 if σ ∼ ρ.

Figure 4 shows the graph of dσ(ρ) as a function of the length
of ρ for the case where |σ| = 4. Note that dσ(ρ) is a non-
increasing function of |ρ|.

It follows from this that if ρ′ is also compatible with σ,
and ρ � ρ′, then dσ(ρ) ≥ dσ(ρ′).

Proof of Proposition 10. Let S and T be as in the
statement of the proposition. For any execution prefix R
that is compatible with T , and p ∈ Proc, define

dp(R) = dσ(p)(R↓p),

where σ(p) = T↓p. Define

d(R) =
∑

p∈Proc

dp(R).

Next, consider the set of all universally permitted finite ex-
tensions of S that are compatible with T , and let S′ be an
element of that set that minimizes the function d. (The set of
such extensions is non-empty, as S is a universally permitted
extension of itself.) It follows from the previous paragraph
that if R is any extension of S′ that is compatible with T
then dp(R) ≤ dp(S′) for all p ∈ Proc; so if R is also univer-
sally permitted then in fact we must have dp(R) = dp(S′)
for all p.

Let S̃ = (s1, s2, . . .) be a universally permitted extension

of S′. We will assume S̃ is not compatible with T and arrive
at a contradiction.

Let n be the greatest integer such that S̃n is compatible
with T . Let σ = S̃n↓p, where sn+1 is a transition in Mp. By

definition, σ and T↓p are compatible. Moreover, n ≥ |S′|
since S′ is compatible with T . Finally, by Lemma 9, sn+1

must be a local-event transition.
Now precisely one of the following must hold: (i) T↓p �

σ, (ii) σ ≺ T↓p, or (iii) T↓p and σ are non-comparable.

104

However, (i) cannot be the case, for it would imply that

T↓p � S̃n+1↓p, which in turn implies that T is compatible

with S̃n+1, which contradicts the maximality of n.
Nor can (iii) be the case. For then σ and T↓p would

be non-comparable compatible paths, and Lemma 8 would
imply that terminus(σ) is either a sending or receiving state.
But since sn+1 is a local-event transition, terminus(σ) must
be a local-event state.

Hence σ ≺ T↓p, i.e., σ is a proper prefix of a sequence

τ that is equivalent to T↓p. Now let t be the (|σ| + 1)th

transition of τ , so that sn+1 and t are distinct local-event
transitions departing from the same state.

Consider the sequence R = (s1, . . . , sn, t). Then R is an
execution prefix, it is a universally permitted extension of S′,
and it is compatible with T . However, dp(R) ≤ dp(S′) − 1,
a contradiction, completing the proof of the first part of
Proposition 10.

Now suppose that T is synchronous. By replacing S with
S′, we may assume that S and T are compatible and that
any universally permitted extension R of S is compatible
with T and satisfies dp(R) = dp(S) for all p ∈ Proc. Write
S = (s1, . . . , sn) and T = (t1, t2, . . .).

We wish to show T↓p � S↓p for all p. So suppose this
is not the case, and let k be the greatest integer such that
T k↓p � S↓p for all p. Now let t = tk+1 and let p be the
element of Proc for which t is a transition of Mp, and we
have T k+1↓p 6� S↓p. We will arrive at a contradiction by
showing there exists a universally permitted extension R of
S with dp(R) < dp(S).

For each r ∈ Proc there is a path

σr = (sr
1, . . . , s

r
n(r))

through Mr that is equivalent to S↓r such that for all r 6= p,

T k↓r = T k+1↓r = (sr
1, . . . , s

r
m(r))

for some m(r) ≤ n(r), and such that

T k+1↓p = (sp
1, . . . , s

p
m(p), t).

We will consider first the case that m(p) = n(p).
Suppose t is a send, say label(t) = c!x. Then label(tk+2) =

c?x, as T is synchronous. Moreover, Pendingc(T
k) is empty.

Let q be the receiving process of c. If p = q then src(t)
is a send-receive state with the same sending and receiving
channel, but let us assume for now that p 6= q. Let u =
src(tk+2), so that u = terminus(T k)q. Say that t is the ith

send on c in T k+1. Then there are i−1 sends on c in S, and
therefore no more than i−1 receives on c in S. This implies
m(q) = n(q): if not, there would be at least i receives on c
in S. Hence Pendingc(S

n) is empty. Now, whether or not
p = q, let R = (s1, . . . , sn, t, tk+2). Then R is a universally
permitted extension of S satisfying dp(R) < dp(S).

If t is a local-event transition, we may take

R = (s1, . . . , sn, t). (2)

Suppose t is a receive, say label(t) = c?x, and say t is the
ith receive on c in T . Then tk must be the matching send,
i.e., tk must be the ith send on c in T and label(tk) = c!x.
Let q be the process that sends on c. Since T k↓q � S↓q,

there must be at least i sends on c in S, and the ith element
of Sentc(S) is x. As there are i− 1 receives on c in S↓p, we
may conclude that Pendingc(S

n) begins with x. So taking
R as in (2) will again suffice.

Now we turn to the case where m(p) < n(p). Since T k+1↓p

and S↓p are compatible and neither T k+1↓p � S↓p nor

S↓p � T k+1↓p, Lemma 8 implies n(p) = m(p) + 1 and one
of s = sp

m(p)+1, t is a send, and the other, a receive.

Suppose s is the send and t the receive. Then there is a re-
ceive transition t̄ with label(t̄) = label(t) and src(t̄) = des(s).
Arguing as in the case in which n(p) = m(p), we see that
the extension R = (s1, . . . , sn, t̄) is universally permitted,
and satisfies dp(R) < dp(S).

If, on the other hand, s is the receive and t the send, then
tk+2 must be the receive matching t. Let t̄ be the transition
departing from des(s) (so label(t̄) = label(t)). Arguing just
as in the m(p) = n(p) case we see that we may take

R = (s1, . . . , sn, t̄, tk+2),

completing the proof of Proposition 10.

Corollary 11. Let M be a model of an MPI program
with no wildcard receives, and let T be a finite execution
prefix for M. Then there exists a finite synchronous execu-
tion prefix S for M, with the property that any synchronous
extension of S is compatible with T .

Proof. Apply Proposition 10 to the empty sequence and
T , and recall that for a synchronous prefix, an extension is
universally permitted if, and only if, it is synchronous.

Using the Proposition, it is fairly easy to prove Theorem 1.

Proof of Theorem 1. If M is Σ-deadlock-free then, by
definition, it has no execution prefix that is potentially Σ-
deadlocked. So it suffices to prove the opposite direction.

So suppose M is synchronously Σ-deadlock-free, and that
T is a finite execution prefix with terminus(T)p not the
unique final state of Mp for some p ∈ Σ. We must show
there exists a universally permitted proper extension T ′ of
T .

By Corollary 11, there is a synchronous finite execution
prefix S with the property that any synchronous extension
of S is compatible with T .

By hypothesis, either terminus(S↓p) is the final state of Mp

for all p ∈ Σ or there exists a synchronous proper extension
S′ of S. If the former is the case then we must have |S↓p| >
|T↓p| for some p ∈ Σ, by compatibility. If the latter is the

case, then replace S with S′ and repeat this process, until
|S↓r| > |T↓r| for some r ∈ Proc; this must eventually be
the case as the length of S is increased by at least 1 in each
step.

Hence there is a finite synchronous execution prefix S,
compatible with T , and an r ∈ Proc for which |S↓r| > |T↓r|.
Now apply Proposition 10 to conclude there exists a finite,
universally permitted extension T ′ of T with the property
that S↓p � T ′↓p for all p ∈ Proc. We have

|T↓r| < |S↓r| ≤ |T ′↓r|,

so T ′ must be a proper extension of T .

The proof of Theorem 2 uses the following lemma.

Lemma 12. Let M be a model of an MPI program with
no wildcard receives and Σ ⊆ Proc. Assume M is syn-
chronously free of partial Σ-deadlock. Then given any finite
execution prefix T for M, there exists a finite synchronous
execution prefix S satisfying all of the following:

105

(i) S is compatible with T .

(ii) T↓p � S↓p for all p ∈ Σ.

(iii) T↓p ≺ S↓p if p ∈ Σ and terminus(T)p is not the final
state of Mp.

Proof. By Corollary 11, there is a synchronous finite
execution prefix S with the property that any synchronous
extension of S is compatible with T . Fix p ∈ Σ.

By hypothesis, either terminus(S)p is the final state of
Mp, or there exists a synchronous proper extension S′ of S
satisfying |S↓p| < |S′↓p|. Replace S with S′ and repeat,
until terminus(S)p is the final state of Mp or |S↓p| > |T↓p|.
At least one of those two conditions must become true after
a finite number of iterations, since in each iteration |S↓p| is
increased by at least 1.

Now we repeat the paragraph above for each p ∈ Σ. The
result is a finite synchronous prefix S that is compatible with
T . Again, let p ∈ Σ.

If terminus(S)p is the final state of Mp, then by Lemma 8,
S↓p and T↓p must be comparable. Since there are no transi-
tions departing from final states, we must have T↓p � S↓p,
with T↓p ∼ S↓p if, and only if, terminus(T)p is the final
state. So both (ii) and (iii) hold.

If terminus(S)p is not the final state, then by construc-
tion, |S↓p| > |T↓p|. Again by Lemma 8, S and T must be
comparable, whence T↓p ≺ S↓p, and so (ii) and (iii) hold in
this case as well.

Proof of Theorem 2. If M is free of partial Σ-dead-
lock then, by definition, it has no execution prefix that is
Σ-ppd. So it suffices to prove the opposite direction.

So suppose T is a finite execution prefix, p ∈ Σ, and
terminus(T)p is not the final state. We must show there
exists a universally permitted proper extension T ′ of T with
|T↓p| < |T ′↓p|.

By Lemma 12, there is a finite synchronous execution pre-
fix S that is compatible with T and satisfies |S↓p| > |T↓p|.
Now apply Proposition 10 to conclude there exists a finite,
universally permitted extension T ′ of T with the property
that S↓r � T ′↓r for all r ∈ Proc. We have

|T↓p| < |S↓p| ≤ |T ′↓p|,

which completes the proof.

Theorems 1 and 2 show that, in checking for deadlock or
partial deadlock, we are justified in assuming all communi-
cation is synchronous. With a model checker such as Spin,
this means that we may use channels of depth 0. We now
sketch the proof of Theorem 5, which gives us some control
on the channel depths for other types of properties.

Proof of Theorem 5. By Lemma 12, there exists a fi-
nite synchronous execution prefix S̃ that is compatible with
T and satisfies T↓p � S̃↓p for all p ∈ Σ. Moreover, for any
p ∈ Proc, since terminus(T)p is not an immediate successor

to a send-receive state, Lemma 8 implies that T↓p � S̃↓p or

S̃↓p � T↓p.
We construct the sequence S as follows. We will begin

by letting S be a copy of S̃, and we will then delete certain
transitions from S. Specifically, for each p ∈ Proc, let

m(p) = min{|S̃↓p|, |T↓p|},

and then delete from S all the transitions that are in Mp

but that occur after the m(p)th transition in Mp. Hence

the resulting sequence S will have exactly m(p) transitions
in Mp for each p ∈ Proc. We will show that S has the
properties listed in the statement of Theorem 5.

First we must show that S is indeed an execution prefix.
It is clear that S↓p is a path through Mp for each p, and
that, if p ∈ Σ, S↓p ∼ T↓p. Now fix a c ∈ Chan and we must
show that Receivedc(S

n) is a prefix of Sentc(S
n) for all n.

To do this we argue as follows: let

r = |Receivedc(T)|
s = |Sentc(T)|

m = |Receivedc(S̃)| = |Sentc(S̃)|.

Now, if we project the sequence of labels of elements of S̃
onto the set of events involving c, the result is a sequence of
the form

C̃ = (c!x1, c?x1, c!x2, c?x2, . . . , c!xm, c?xm),

as S̃ is synchronous. Now let

r′ = min{r, m}
s′ = min{s, m}.

If we project the sequence of labels of elements of S onto
the set of events involving c, the result is the sequence C
obtained from C̃ by deleting all the receive events after the
r′-th such event, and deleting all the send events after the
s′-th such event. But since r ≤ s, we have r′ ≤ s′. This
means that

C = (c!x1, c?x1, . . . , c!xr′ , c?xr′ , c!xr′+1, . . . , c!xs′),

i.e., C begins with r′ send-receive pairs, followed by a se-
quence of s′ − r′ sends, which clearly satisfies the condition
that the messages received at each point are a subset of the
messages sent. Moreover, if s′ = r′ then each send on c
is immediately followed by a corresponding receive, while if
not then

|Pendingc(S
i)| ≤ s′ − r′

for all i in the domain of S.
Now if the process that receives on c belongs to Σ, then

r′ = r, whence

s′ − r′ ≤ s− r = |Pendingc(T)|.

So if |Pendingc(T)| = 0 then s′ = r′ and, as we have seen,
this implies that S is c-synchronous. If |Pendingc(T)| > 0,
then for all i in the domain of S we have

|Pendingc(S
i)| ≤ s′ − r′ ≤ |Pendingc(T)|,

as claimed.

106

