
Improving the Precision of INCA by Preventing
Spurious Cycles�

Stephen F. Siegel
Department of Computer Science

University of Massachusetts
Amherst, MA 01003-4610

siegel@cs.umass.edu

George S. Avrunin
Department of Mathematics and Statistics

University of Massachusetts
Amherst, MA 01003-4515

avrunin@math.umass.edu

ABSTRACT
The Inequality Necessary Condition Analyzer (INCA) is a
�nite-state veri�cation tool that has been able to check prop-
erties of some very large concurrent systems. INCA checks
a property of a concurrent system by generating a system of
inequalities that must have integer solutions if the property
can be violated. There may, however, be integer solutions
to the inequalities that do not correspond to an execution
violating the property. INCA thus accepts the possibility
of an inconclusive result in exchange for greater tractability.
We describe here a method for eliminating one of the two
main sources of these inconclusive results.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri�-
cation

General Terms
Design, Reliability, Veri�cation

Keywords
INCA, �nite-state veri�cation, cycles, integer programming

1. INTRODUCTION
Finite-state veri�cation tools deduce properties of �nite-
state models of computer systems. They can be used to
check such properties as freedom from deadlock, mutually
exclusive use of a resource, and eventual response to a re-
quest. If the model represents all the executions of a system
(perhaps by making use of some abstraction), a �nite-state
veri�cation tool can take into account all the executions of

�Research partially supported by the National Science Foun-
dation under grant CCR-9708184. The views, �ndings, and
conclusions presented here are those of the authors and
should not be interpreted as necessarily representing the oÆ-
cial policies or endorsements, either expressed or implied, of
the National Science Foundation, or the U.S. Government.

the system. Moreover, �nite-state veri�cation tools can be
applied at any stage of system development at which an ap-
propriate model can be constructed. Such tools thus repre-
sent an important complement to testing, especially for con-
current systems where nondeterministic behavior can lead to
very di�erent executions arising from the same input data.

The main obstacle to �nite-state veri�cation of concurrent
systems is the state explosion problem: the number of states
a concurrent system can reach is, in general, exponential
in the number of concurrent processes in the system. This
problem confronts the analyst immediately|even for small
systems, the number of reachable states can be large enough
so that a straightforward approach that examines each state
is completely infeasible|and complexity results tell us that
there is no way to avoid it completely. Every method for
�nite-state veri�cation of concurrent systems must pay some
price, in accuracy or range of application, for practicality.

The Inequality Necessary Conditions Analyser (INCA) is
a �nite-state veri�cation tool that has been used to check
properties of some systems with very large state spaces. The
INCA approach is to formulate a set of necessary conditions
for the existence of an execution of the program that vi-
olates the property. If the conditions are inconsistent, no
execution can violate the property. If the conditions are
consistent, the analysis is inconclusive; since the conditions
are necessary but not suÆcient, it may still be the case that
no execution of the program can violate the property. INCA
thus accepts the possibility of an inconclusive result in ex-
change for greater tractability. There are two main sources
of inconclusive results. In this paper, we show how one of
these, caused by cycles in �nite state automata representing
the components of the concurrent system, can be eliminated
at what seems to be only moderate cost.

In the next section, we describe the INCA approach. Sec-
tion 3 explains our technique for improving INCA's preci-
sion, and the fourth section presents some preliminary data
on its application. The �nal section summarizes the paper
and discusses other issues related to the precision of INCA.

2. INCA
A complete discussion of the INCA approach, along with a
careful analysis of its expressive power, is contained in [8]. In
this paper, we will use a small (and quite contrived) example
to sketch the basic INCA approach and show how certain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISSTA '00, Portland, Oregon.
Copyright 2000 ACM 1-58113-266-2/00/0008…$5.00.
ISSTA '00,

189190191

cycles in the automata corresponding to the components of
a concurrent system can lead to imprecision in the INCA
analysis. We refer readers who want more detail to [8].

2.1 Basic Approach
The basic INCA approach is to regard a concurrent sys-
tem as a collection of communicating �nite state automata
(FSAs). Transitions between states in these FSAs corre-
spond to events in an execution of the system. INCA treats
each FSA as a network with ow, and regards each occur-
rence of a transition from state s to state t, corresponding
to an event e, as a unit of ow from node s to node t. The
sequence of transitions in a particular FSA corresponding
to events in a segment of an execution of the system thus
represents a ow from one state of the FSA to another.

To check a property of a concurrent system using INCA, an
analyst speci�es the ways that an execution might violate
the property in terms of a sequence of segments of an exe-
cution. Suppose that an analyst wants to show that event
b can never be preceded by event a in any execution of the
system. A violation of this property is an execution in which
a occurs and then b occurs. In INCA this could be speci�ed
as a single segment running from the start of the execution
until the occurrence of a b, with the requirement that an a
occur somewhere in the segment. (It could also be speci�ed
as a sequence of two segments, the �rst running from the
start of the execution until an occurrence of an a, and the
second starting immediately after the �rst and ending with
a b. The former speci�cation is generally more eÆcient, but
the latter may provide additional precision in some cases.
See Section 2.2.) INCA provides a query language allowing
the analyst to specify various aspects of the segments (called
\intervals" in the INCA query language) of execution.

By generating the equations describing ow within each FSA
(requiring that the ow into a node equal the ow out) ac-
cording to the speci�ed sequence of segments of a system
execution, and adding equations and inequalities relating
certain transitions in di�erent FSAs according to the se-
mantics of communication in the system, INCA produces a
system of equations and inequalities. Any execution that
satis�es the analyst's speci�cation (and therefore violates
the property being checked) corresponds to an integer solu-
tion of this system of equations and inequalities. INCA then
uses standard integer linear programming (ILP) methods to
determine whether there is an integer solution. If no integer
solution exists, no execution can violate the property, and
the property holds for all executions of the concurrent sys-
tem. If there is an integer solution, however, we do not know
that the property can be violated. The system of equations
and inequalities represents only necessary conditions for the
existence of an execution violating the property, and it is
possible for a solution to exist that does not correspond to
a real execution.

To see more concretely how this works, consider the Ada
program shown in Figure 1. This program describes three
concurrent processes (tasks). Task t1 begins by rendezvous-
ing with task t2 at the entry c. It then enters a loop. At
the select statement, t1 nondeterministically chooses to ren-
dezvous with t2 at entry a or with t3 at entry b, if both are
ready to communicate at the appropriate entries. If t1 ac-

package simple is
task t1 is task t2 is

entry a; end t2;
entry b;
entry c; task t3 is

end t1; end t3;
end simple;

package body simple is
task body t1 is task body t2 is
begin begin

accept c; t1.c;
loop loop
select t1.a;

accept a; end loop;
loop end t2;
select

accept a;
or

accept c;
exit; task body t3 is

end select; begin
end loop; t1.b;

or end t3;
accept b;
loop

accept a;
end loop;

end select;
end loop;

end t1;
end simple;

Figure 1: A small example

cepts a communication from t2 at entry a, it then enters a
loop in which it accepts rendezvous at entry a until it accepts
one at entry c. If t1 instead accepts a communication from
t3 at entry b, it then tries forever to repeatedly rendezvous
with t2 at entry a.

Figure 2 shows the FSAs constructed by INCA for this pro-
gram. The states and transitions are numbered for reference.
Each transition in this example represents the occurrence of
a rendezvous between two tasks; in the �gure, each transi-
tion is labeled with the entry at which the corresponding
rendezvous takes place.

Suppose that we wish to check that an occurrence of a ren-
dezvous at entry b cannot be preceded by a rendezvous at
entry a. As described earlier, we may specify the violation as
a segment of an execution running from the start of execu-
tion until the occurrence of a rendezvous at b and containing
a rendezvous at a. The ow equations for each task will then
describe the possible ows from the initial state of the task
to one of the states in which that task could be at the end
of the segment.

Since the segment ends with a rendezvous at the entry b,
represented by the transition numbered 2 in the FSA cor-
responding to task t1 and the transition numbered 9 in the
FSA corresponding to task t3, we know that the FSA t1
must be in state 3 and the FSA t3 must be in state 8 at
the end of the segment. Our ow equations for t1 therefore
describe ow starting in state 1 and ending in state 3, while
the ow equations for t3 describe ow starting in state 7
and ending in state 8. For t2, the fact that a rendezvous at
a occurs in the segment implies that that FSA must be in
state 6 at the end of the segment, so the ow equations for
t2 describe ow from state 5 to state 6.

To produce these ow equations, let xi be a variable measur-

190191192

t2 t3t1

a

c

a

b

aa

c

3

1

2

4

5

6 8

7

b

1

2 4

6

7 9

3 5

8

c

Figure 2: FSAs for example

ing the ow along the transition numbered i. At each state,
we generate an equation setting the ow in equal to the ow
out. We must, however, take into account the implicit ow
of 1 into the initial state of each FSA and the implicit ow
of 1 out of the end state of the ow. Thus, for example, the
equation for state 1 is

1 = x1

since the ow in is 1 because state 1 is the initial state and
the only ow out is on transition 1. Similarly, the equation
for state 8 is

x9 = 1

since the only ow in is on transition 9 and there is implicit
ow out of 1 since the ow in this FSA ends in state 8.

To complete the system of equations and inequalities, we
must add equations to reect the fact that the two tasks
participating in a rendezvous must agree on the number of
times it occurs. For instance, we need the equation

x3 + x4 + x5 = x8

saying that the number of occurrences of the rendezvous at
entry a in the FSA for t1 is the same as in the FSA for t2.
We also need an inequality to express the requirement that
there is at least one occurrence of a rendezvous at a. We use

x8 � 1

to state this. The full system of equations and inequalities
used to check the property that a rendezvous at entry b
cannot be preceded by a rendezvous at entry a is shown in
Figure 3. (The description here is actually somewhat over-
simpli�ed; INCA performs several optimizations to reduce
the size of the system of inequalities and the real system of
inequalities produced by INCA would be smaller. For ex-
ample, INCA would observe that there cannot be ow along
transition 3 in a violating execution (because the segment
of execution must end with transition 2), and would elim-
inate the variable x3 from the system. It would also do a
form of constant propagation to eliminate other variables
and equations.)

Flow Equations:

State Equation
1 1 = x1
2 x1 + x6 = x2 + x4
3 x2 + x3 = x3 + 1
4 x4 + x5 = x5 + x6
5 1 = x7
6 x7 + x8 = x8 + 1
7 1 = x9
8 x9 = 1

Communication Equations:

Entry Equation
a x3 + x4 + x5 = x8
b x2 = x9
c x1 + x6 = x7

Requirement Inequality:

a occurs x8 � 1

Figure 3: System of equations and inequalities for

example

Essentially all research on �nite-state veri�cation tools can
be viewed as aimed at ameliorating the state explosion prob-
lem for some interesting systems and properties. The ap-
proach taken by INCA avoids enumerating the reachable
states of the system and is inherently compositional, in the
sense that that the equations and inequalities are gener-
ated from the automata corresponding to the individual
processes, rather than from a single automaton represent-
ing the full concurrent system. The size of the system of
equations and inequalities is essentially linear in the num-
ber of processes in the system (assuming the size of each
process is bounded). Furthermore, the use of properly cho-
sen cost functions in solving the problems can guide the
search for a solution. ILP is itself an NP -hard problem in
general, and the standard techniques for solving ILP prob-
lems (branch-and-bound methods) are potentially exponen-
tial. In practice, however, the ILP problems generated from
concurrent systems have large totally unimodular subprob-
lems and seem particularly easy to solve. Experience sug-
gests that the time to solve these problems grows approxi-
mately quadratically with the size of the system of inequal-
ities (and thus with the number of processes in the system).

Comparisons of this approach with other �nite-state veri�ca-
tion methods [2, 3, 4, 5] show that the performance of each
method varies considerably with the system and property
being veri�ed, but that INCA frequently performs as well
as, or better than, such tools as SPIN and SMV. The INCA
approach has also been extended to check timing properties
of real-time systems [1, 6] and to prove trace equivalence of
certain classes of systems [7].

2.2 Sources of Imprecision
The systems of equations and inequalities generated by INCA
represent necessary conditions for there to be a violation of
the property being veri�ed. As noted earlier, however, they
only represent necessary, not suÆcient, conditions. A so-
lution of the system of equations and inequalities may not
correspond to an actual execution.

191192193

There are two main reasons for this. The �rst has to do with
the order in which events occur. Strictly speaking, the equa-
tions and inequalities generated by INCA refer only to the
total number of occurrences of the various events in each
segment of the execution, and do not directly impose re-
strictions on the order in which those events occur within
the segment. In fact, the ow equations for a single FSA
typically imply fairly strong conditions on order, but the
communication equations relating the occurrence of events
in di�erent FSAs do not impose strong restrictions on the
order of occurrence of events from di�erent processes. To
see why, consider a system comprising two processes. The
�rst process begins by trying to communicate with the sec-
ond process on channel A and then, after completing that
communication, tries to communicate with the second pro-
cess on channel B. The second process tries to complete
the communications in the reverse order. This system will
obviously deadlock, but the equations generated by INCA
would say only that the number of communications on each
channel in the �rst process is equal to the number in the
second process, allowing a solution in which each commu-
nication occurs. (This is a slight over-simpli�cation. INCA
would actually detect the deadlock in this case, but not in
more complicated examples with several processes.) The
only mechanism INCA provides for directly constraining the
order of events in di�erent processes is the use of additional
segments of the execution. While this is often enough to
eliminate solutions that do not correspond to real execu-
tions of the system, it is expensive and restricts the range
of application of INCA. We will return to this point in the
�nal section of this paper.

The second source of imprecision is the existence of cycles
in the FSAs. Consider the ow equation for state 3 that is
shown in Figure 3. Transition 3 is a self-loop at state 3, and
ow along that transition counts both as ow into state 3
and out of state 3. The equation x2 + x3 = x3 + 1 does not
constrain the variable x3 at all; we can simply cancel the x3
terms. Similarly, the variables x5 and x8 are not constrained
by the ow equations in which they appear. These variables
are constrained only by the communication equation that
says x2 + x3 + x5 = x8. Since three of these variables are
otherwise unconstrained, this equation does not restrict the
solution set.

In fact, although the system of Figure 1 has no execution in
which a pre�x ending with a rendezvous at entry b contains
a rendezvous at entry a, there is a solution to the system
of equations and inequalities shown in Figure 3 with x1,
x2, x5, x7, x8, and x9 all equal to 1, and x3, x4, and x6
all equal to 0. In this solution, the requirement that the
number of rendezvous at a be at least 1 is met by setting the
unconstrained variables x5 and x8 to 1. Figure 4 shows the
FSAs with the transitions having ow indicated by bold arcs.
The ow in the FSA for t1 has two connected components,
one from the initial state to state 3, as expected, and one
made up of ow in the cycle at state 4, not connected to
the ow from state 1 to state 3. It is obvious that the ow
in each FSA corresponding to an actual execution must be
connected, so this is a spurious solution, one that does not
correspond to a real execution.

This example illustrates the problem but is not of much

t2 t3t1

a

c

a

b

aa

c

3

1

2

4

5

6 8

7

b

1

2 4

6

7 9

3 5

8

c

Figure 4: Solution with disconnected cycle

independent interest. The same problem, however, occurs
with some frequency in the analysis of more interesting sys-
tems. For instance, in our recent analysis of the Chiron
user interface development system [2], we encountered solu-
tions with disconnected cycles in trying to verify 2 of the 10
properties we checked. In those cases, we were able to re-
formulate the properties by specifying additional segments,
verifying other properties that allowed us to eliminate some
solutions, or choosing other events to represent the high-
level requirement. These modi�cations, however, represent
a considerable expense in increased analyst e�ort and veri�-
cation time. In the next section, we describe a technique for
eliminating these solutions with more than one component
of ow in an FSA.

3. ELIMINATING SPURIOUS CYCLES
3.1 A Straightforward Approach
A related problem is well known in the optimization liter-
ature. When formulating the Traveling Salesman Problem
as an integer programming problem, it is essential to en-
sure that the solution represents a single tour visiting all
the cities, rather than a collection of disconnected subtours
each visiting a proper subset of the cities. A standard ap-
proach for eliminating solutions with disconnected subtours
is to add inequalities that prevent the solution from visit-
ing cities in a subset U unless the solution includes an arc
from a city not in U to one in U . Thus, if the variable xi;j
is 1 if the solution represents a tour in which the salesman
goes directly from city i to city j, and 0 otherwise, the stan-
dard formulation of the Traveling Salesman problem would
include, for each j, the inequality

X

i

xi;j = 1 (1)

to enforce the requirement that each city is entered and left
exactly once. To eliminate the possibility of a subtour in
the subset U we would add the inequality

X

i=2U;j2U

xi;j � 1, (2)

which requires that the salesman travel from a city outside
U to a city in U . (Of course, we need an inequality like (2)

192193194

for every subset U of size at least 2 and at most N�2, where
N is the number of cities.)

In our case, to prevent a solution in which there is ow in
a disconnected cycle C, we can add an inequality requiring
that, when there is ow in C, there must be ow entering
C from outside. This is a little more complicated than the
situation for the Traveling Salesman Problem. In that case,
we know by (1) that the solution must enter each city ex-
actly once. In our case, we do not want to require ow into
one of the states making up C unless there is ow along
one of the transitions in C. For instance, we only want to
require ow on transition 4 in our example when there is
ow on transition 5. To do this in general, we would need a
quadratic inequality such as

x4x5 � x5. (3)

Integer quadratic programming is, however, much harder
than integer linear programming and we would like to avoid
introducing quadratic inequalities. The standard technique
is to impose an upper bound B on all the variables (i.e.,
to assume that no transition occurs more than B times),
and to replace the quadratic inequality (3) with the linear
inequality

x5 �Bx4 � 0. (4)

The integer solutions of (3) having x4; x5 � B are exactly
the same as those of (4). (We note that imposing an upper
bound on all the variables would mean that INCA's analysis
is no longer strictly conservative. If the system of inequal-
ities has no solutions with the xi all less than or equal to
B, we only know that no execution on which each transition
occurs at most B times can violate the property. Since B
can be taken to be quite large, such as 10; 000 or 100; 000,
this restriction is unlikely to be a serious one in practice.)

The problem with these approaches is that they may require
too many extra inequalities. The number of subtours that
have to be eliminated in the Traveling Salesman Problem is
essentially the number of subsets of the set of cities and is
clearly exponential in the number of cities. Similarly, the
number of cycles in an FSA can be essentially equal to the
number of subsets of its set of states. We have constructed
a small concurrent Ada program with only 90 lines of code
in which the FSA for one task has only 42 states but has
1,160,290,624 distinct subsets of states each forming at least
one cycle. An integer programming problem with that many
inequalities is infeasible. A better method is required.

3.2 A More Practical Method
In this section, we describe a method for preventing spurious
cycles that requires, for each FSA and segment of execution,
S+T new variables and S +2T � 1 new inequalities, where
S is the number of states in the FSA and T is the number
of transitions.

The basic idea is essentially as follows. Suppose we have a
solution to the system of equations and inequalities origi-
nally generated by INCA. For each FSA and each segment
of execution, we attempt to construct a subgraph with the
same vertices as the FSA but whose edges are a subset of
those that have positive ow in the solution. We require
that (i) if there is ow into a vertex v in the solution, some

edge terminating in v must occur in the subgraph, and (ii)
each vertex v of the subgraph can be assigned a \depth" dv
in such a way that the depth of a given node is greater than
that of any of its predecessors in the subgraph.

If the original solution has no disconnected cycles, we can
choose for our subgraph a spanning tree for the edges with
ow and take the depth of a vertex to be the distance from
the root of the tree to the vertex. If the solution has a
disconnected cycle C, however, we cannot construct such
a subgraph. To see why, suppose we could construct the
subgraph, and let v be a vertex in C for which dv � du
for all u 2 C. Since there is ow into v in the solution, v
must have some predecessor u in the subgraph. Since the
cycle C is disconnected from the ow starting at the initial
state of the FSA, the state u must also lie in C. But if
u is a predecessor of v in the subgraph, we have dv > du,
contradicting the minimality of dv on C.

Of course, we do not want to consider the possible solu-
tions to the system of equations and inequalities generated
by INCA one at a time, attempting to construct the sub-
graph separately for each solution. Instead, we add new
variables and inequalities, leading to an augmented system
of equations and inequalities whose integer solutions corre-
spond exactly to the integer solutions of the original system
for which the appropriate subgraph can be constructed.

We describe the procedure for generating this augmented
system for the case of a single FSA F and a single segment
of execution. For each variable xi in the original system cor-
responding to a transition in F , we introduce a new variable
si with bounds

0 � si � 1. (5)

This variable will be 1 if the corresponding edge is in the
subgraph, and 0 otherwise.

For each state v in F , we introduce a new variable dv with
bounds

0 � dv � N , (6)

where N is some integer which is at least the maximum
length of any non-self-intersecting path through the FSA.
For instance, N can be taken to be the number of states in
F . The variable dv will be the depth of v.

We then generate inequalities involving these new variables.
Each variable si corresponds to a transition from some state
u of F to a state v. We generate the inequalities

xi � si (7)

dv � du + (N + 1)si �N . (8)

The �rst inequality says that si must be 0 if xi is 0, so
that the corresponding edge can be in the subgraph only if
the solution has positive ow along that edge. The second
inequality requires that dv be greater than du if the edge
from u to v is in the subgraph. If the edge is not in the
subgraph (i.e., if si is 0), the inequality reads dv � du �N ,
and the bounds on dv and du make that vacuous.

Finally, let In(v) denote the number of transitions into the
state v. For each state v of F , other than the initial state,

193194195

we generate the inequality

B In(v)
X

j

sj �
X

j

xj , (9)

where the sums are taken over all transitions into the state
v and B is an upper bound on all the variables. (As noted
earlier, B can be taken to be quite large.) If all the xj
are 0, this inequality is satis�ed vacuously, but if any xj is
positive, the inequality forces some sj to be positive. This
means that, in a solution with ow into state v, some edge
terminating in v belongs to the subgraph.

The argument sketched at the beginning of this section proves
the following theorem, showing that this method eliminates
only solutions with disconnected cycles.

Theorem 1. Let P be the system of equations and in-
equalities generated by INCA to check a particular property
of a given concurrent system. Let P 0 be the augmented sys-
tem constructed from P as described above. A solution of
P

0 assigns values to all the variables in P as well as addi-
tional variables; we thus obtain an assignment of values to
the variables in P from a solution to P 0 by projection. The
set of integer solutions of P with all variables taking values
at most B and no disconnected cycles is exactly equal to the
set of projections of integer solutions of P 0 with all variables
taking values at most B.

In general, a query can specify more than one execution
segment, so the situation is a bit more complicated. In the
general case, INCA constructs a owgraph as follows. First,
it creates one copy of each FSA for each segment speci�ed in
the query. Each copy can then be optimized independently,
removing unnecessary states or transitions, based on the re-
strictions imposed in the query for that segment. As seen in
the example in Section 2.1, INCA can determine from the
query the states in which each FSA could be at the end of
each segment. It then adds a \connect" edge from each of
the possible end states for segment i to the corresponding
state in segment i+ 1. These edges connect the ow repre-
senting events in one segment of an execution to ow in the
next segment. Finally, an initial node is added with con-
nect edges to certain states in the �rst segment of each task,
and a �nal node is added with incoming connect edges from
the possible end states in the �nal segment of each task.
This owgraph is the actual structure which INCA uses to
generate the ILP system.

The algorithm described in this section can actually be ap-
plied to any subset of vertices in the owgraph, rather than
to the whole owgraph, thereby eliminating only those spu-
rious solutions in which there is a disconnected cycle con-
tained in that subset. For given a subset W of vertices of
the owgraph, one can form a new graph V as follows. Cre-
ate a vertex in V for each vertex in W , and also add an
initial and a �nal vertex to V . For each edge joining two
vertices in W , create a corresponding edge in V . For each
edge originating outside W and terminating in W , create
a corresponding edge in V from the initial vertex to the
corresponding vertex. For each edge originating in W and
terminating outside of W , create a corresponding edge in V
from the corresponding vertex to the �nal vertex.

Each edge in V has associated to it an ILP variable, which
is the variable associated to the corresponding edge in the
original owgraph. So we can apply the algorithm to V ,
generating new variables and inequalities which are added
to those INCA originally produced from the owgraph, and
the same arguments given above go through.

Restricting the algorithm in this way has many practical ap-
plications. Suppose, for example, that a solution contains
a single disconnected cycle. It is clear that that cycle must
lie within a single segment of a single task in the owgraph.
That is because there are no edges from a state in one seg-
ment to a state in a preceding segment, and there are no
edges from states of one task to another. Now, to apply the
cycle-elimination algorithm to the entire owgraph might be
very expensive, both in terms of the time and memory to
generate the new variables and constraints, and the time and
memory needed by the ILP tool to solve the new system. In
this case, it makes sense to apply the algorithm only to the
problematic segment of the problematic task. Typically, the
segments behave quite independently, and the existence of
spurious cycles in one segment is not related to the existence
of spurious cycles in other segments.

One might be tempted to be as conservative as possible and
apply the cycle-elimination algorithm to only those vertices
involved in the o�ending cycle. This is usually fruitless, as,
more often than not, another spurious solution will be found
by expanding the cycle to include other vertices. However,
no matter how much the cycle expands, it still must lie en-
tirely in the single segment of the single task, and therefore
the best strategy might be to apply the algorithm to the en-
tire problematic segment in that task as soon as one spurious
cycle appears there.

4. PRELIMINARY EXPERIMENTS
The current version of INCA consists of about 12,000 lines
of Common Lisp. INCA writes out a �le describing the sys-
tem of equations and inequalities in a standard format (the
MPS format), and we then use a commercial package called
CPLEX to read this �le and solve the system. (We also
use a separate program to translate Ada programs into the
native input language of INCA). The optimizations INCA
uses to reduce the number of variables and inequalities make
the introduction of new variables and inequalities somewhat
complicated, and integrating our method into INCA will
involve a substantial programming e�ort. For our initial
exploration of the e�ect of applying our method, we have
therefore chosen to proceed by modifying the MPS �le pro-
duced by INCA. We have written a Java program that reads
this �le, and a �le describing the owgraph, and produces a
new MPS �le representing the augmented system of equa-
tions and inequalities. We can then compare the perfor-
mance of CPLEX on the original system and the augmented
system. At this stage, however, we cannot measure how long
it would take INCA to generate the augmented system of
equations and inequalities.

For these experiments, we used INCA version 3.4, Harlequin
Lispworks 4.1.0, and CPLEX version 6.5.1 on a Sun Enter-
prise 3500 with two processors and 2 GB of memory, running
Solaris 2.6. The upper bound B representing the maximum
number of times an edge may be traversed in a violating ex-

194195196

ecution was taken to be 10; 000. We used the default options
on CPLEX, except for the following changes: mip strategy
nodeselect was set to 2, mip strategy branch was set to 1,
and mip limits solutions was set to 1. (The �rst two af-
fect choices made in the branch-and-bound algorithm and
the third stops the search as soon as an integer solution is
found.) For each ILP problem, we ran CPLEX �ve times
and took the average time. The times reported here were
collected using the time command, and include both user
and system time.

4.1 A Scalable Version of the Example from
Section 2

For the �rst experiment, we created a scalable version of the
simple example described in Section 2.1. Given an integer
n � 1, we modi�ed the Ada program in Figure 1 to have n
copies of task t2 and to have n+1 alternatives in the outer
select statement. Each of the new copies of task t2 calls
the same entries in t1. (In detail, we replaced task t2 with
n copies of itself, calling these tc1, : : : ,tcn. In the body
of t1, we replaced the �rst accept c line with n copies of
itself and replaced the body of text beginning with the �rst
accept a and ending with the last or with n copies of itself.)

As before, we wish to verify that a rendezvous at entry a can
never precede a rendezvous at entry b. INCA constructs an
FSA for t1 in which there are 2n+4 nodes and 4n2+3 edges.
(The picture is slightly di�erent from what one might expect
because we have added a start vertex and an end vertex,
and INCA performs some trimming of the FSA.) There are
2n + n � 1 distinct subsets of the vertex set for t1 which
form cycles.

For each n, INCA �nds a spurious solution involving a dis-
connected cycle in t1. Applying the algorithm in Section 3.2
to the portion of the owgraph coming from the FSA for
task t1, however, yields an ILP problem that CPLEX re-
ports has no integer solutions, thus verifying that an a can
never precede a b.

For n � 3, the number of variables in the INCA-generated
ILP system is 4n2+2n, and the number of constraints (equa-
tions and inequalities) is 5n+1. The number of variables in
the new system is

(4n2 + 2n) + (4n2 + 2n+ 7) = 8n2 + 4n+ 7;

and the number of constraints is

(5n+ 1) + (8n2 + 2n+ 9) = 8n2 + 7n+ 10:

The time that it takes CPLEX to �nd a spurious solution to
the original system and the time it takes to determine the in-
consistency of the augmented system are shown in Figure 5.
These times are very modest, all under 10 seconds, and are
in fact dwarfed by the time it takes INCA to generate its
internal representations of the problem and the original ILP
system. (For n = 30, this was about 30 minutes.) It seems,
however, that for large n, the substantial increase in the
number of constraints in the augmented system, due to the
large number of edges in the FSA for t1, does begin to have
a signi�cant impact on the time to solve the ILP problem.

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30 35

tim
e

(s
ec

on
ds

)

n

Conclusive result with cycle elimination
Spurious solution without cycle elimination

Figure 5: CPLEX times for scaled simple example

4.2 Spurious Cycles in Chiron
The second experiment involves the Chiron user interface
system [9]. A Chiron client comprises some abstract data
types to be depicted, artists that maintain mappings be-
tween these ADTs and the visual objects appearing on the
screen, and runtime components that provide coordination.
In particular, certain events indicating changes in the state
of the ADTs are de�ned, and an ADT Wrapper task noti�es
a Dispatcher task whenever an event occurs. The Dispatcher
maintains an array for each event that records which artists
are interested in being noti�ed of that event. (Artists reg-
ister and unregister for an event to indicate their current
interest in being noti�ed.) After receiving the event from
the ADT Wrapper, the Dispatcher then loops through the
artists in the appropriate array and calls an entry in each
artist to notify it of the event. The Chiron architecture is
highly concurrent and even a toy Chiron interface represents
about 1000 lines of Ada code. In [2], we compared the perfor-
mance of several �nite-state veri�cation tools (FLAVERS,
INCA, SMV, and SPIN) in checking a number of properties
of a Chiron interface with two artists and n di�erent kinds
of events, for n ranging from 2 to 70.

One of the properties we wish to verify about this system,
called Property 4 in [2], is that the Dispatcher noti�es the
artists of the right event. For example, if the Dispatcher
receives event e1 from the ADT Wrapper, we wish to show
that it does not notify any artist of event e2 until it has
noti�ed the appropriate artists of e1. To formulate this
property as an INCA query takes 2 segments.

We were in fact able to verify this property using INCA, but
only in systems where the number of kinds of events, n, is
at most 5. (FLAVERS and SPIN were able to verify this
property up to at least n = 40 and n = 36, respectively.)
To scale the problem further with INCA, we needed to de-
compose the Dispatcher task into a subsystem. This entails
creating a new task Dispatch ei, for i = 1; : : : ; n, which
maintains the array for event ei. The Dispatcher task itself
is left as an interface which just passes register, unregister,
and noti�cation requests on to the appropriate Dispatch ei
in a way such that no additional concurrency is introduced.

195196197

(If the internal communications of the Dispatcher subsys-
tem are hidden, the new system is observationally equiva-
lent to the original one.) This decomposed system has the
advantage that as n increases, the size of each Dispatch ei
FSA remains constant, although the number of these tasks
increases. While in general this decomposition greatly im-
proves the performance of INCA, for this property INCA
yields an inconclusive result. The problem is a disconnected
cycle in the task Dispatch e1 in the second segment.

To get around this problem, we reformulated the property
using di�erent events to represent the high-level property.
This depended on the prior veri�cation of other properties
relating the events used in the original and new formulations
and was cumbersome and time-consuming. (Once the prop-
erty was reformulated, however, the performance of INCA
on this decomposed system was considerably better than
that of the other tools. By n = 30, the INCA time was al-
ready roughly an order of magnitude better than the times
for the other tools and INCA could verify the property for
much larger values of n. The di�erences in performance of
the tools on this property, for the two versions of the Chiron
system, are typical of what we observed on other properties.
The implications of this are discussed in [2].)

Using the cycle elimination algorithm described here, we
were able to verify the original property directly, for 2 �
n � 70. In this case there are 23 nodes and 63 edges in the
problematic task/segment for all n. Hence for each n our
algorithm adds 86 variables and 148 constraints to the ILP
system. For n � 3, the number of variables in the original
system is

82n+ �(n);

where �(n) is 58, 118, or 84, according as n is congruent
modulo 3 to 0, 1, or 2, respectively. (This reects the way
we chose to have artists register for events as we scaled up
the number of events.) The number of constraints in the
augmented system is

(133n+ �(n))=3;

where similarly the value of �(n) is 195, 281, or 235. In this
case, eliminating spurious cycles adds a constant number
of variables and constraints as n increases. The CPLEX
times for each n, for the original system for which CPLEX
found a spurious solution and the result of the analysis was
inconclusive, and for the augmented system for which the
property was conclusively veri�ed, are given in Figure 6.
Again, the times are all under 5 seconds and represent a
very small portion of the total analysis time. (For n =
70, this was about 2.5 minutes.) The spike at n = 55 in
the CPLEX time for the augmented system seems to be
due to the occurrence of certain numerical problems for this
particular system.

4.3 The Cost of Unnecessarily Preventing Spu-
rious Cycles

We also tried adding the cycle elimination variables and con-
straints to a system which already yielded a conclusive re-
sult. This might yield insight into the marginal cost of hav-
ing INCA add cycle elimination by default for any problem.

For this experiment, we used another property from [2]. In

0

1

2

3

4

5

0 10 20 30 40 50 60 70

tim
e

(s
ec

on
ds

)

events

Conclusive result with cycle elimination
Spurious solution without cycle elimination

Figure 6: CPLEX times for Chiron Property 4

this case, we used Property 1b, which says that an artist
never unregisters for an event unless it is already registered
for that event. As in [2], we restricted ourselves to checking
this for a single artist and event. The resulting property
requires 2 segments for its formulation as an INCA query.
Using the decomposed dispatcher version of the client code,
INCA veri�ed this property without any need for cycle elim-
ination, for n � 70. The number of variables in the INCA-
generated ILP system (for n � 3) is

100n + �(n);

where �(n) is 77, 146, or 107 according as n is congruent
modulo 3 to 0, 1, or 2, respectively. The number of con-
straints is

51n+ �(n);

where similarly �(n) is 69, 96, or 81.

We then applied the cycle-elimination algorithm to all of the
n + 6 FSAs (recall that there is a separate Dispatch ei for
each of the n event types) and both segments. (In the ex-
periment discussed in the previous section, we only applied
the algorithm to one FSA and one segment.) This entailed
adding

(457n + �(n))=3

new variables to the system, where �(n) is 552, 833, or 682,
and adding

(790n+ �(n))=3

new constraints, where �(n) is 897, 1391, or 1123. The times
required by CPLEX to �nd the conclusive result in each case
are graphed in Figure 7.

Although the ILP systems in the augmented case are quite
large (18,087 variables and 22,563 constraints for n = 70) for
the larger n, it still appears that CPLEX can determine the
inconsistency of the system in a very short time (less than
4 seconds). If this example is typical, the real cost in in-
troducing cycle elimination in INCA might lie in generating
the new ILP system, not in solving it.

196197198

0

1

2

3

4

0 10 20 30 40 50 60 70

tim
e

(s
ec

on
ds

)

events

Conclusive result with cycle elimination
Conclusive result without cycle elimination

Figure 7: CPLEX times for Chiron Property 1b

5. CONCLUSIONS AND FUTURE WORK
Some �nite-state veri�cation tools always provide a conclu-
sive result on any problem they can analyze. A tool that
walks a graph of the reachable states of a concurrent system
will never report that the system might deadlock when in
fact the system is deadlock-free (assuming, of course, that
the graph correctly represents the reachable state space of
the system). But such a tool must be able to store the full
set of reachable states, and is unable to report any results
for a system whose reachable state space exceeds the storage
available. Other tools, such as INCA, deliberately overesti-
mate the collection of possible executions of the system, and
thus accept the possibility of inconclusive results (or spuri-
ous reports of the possible faults), in order to increase the
range of systems to which they can be applied.

For INCA, there are two main sources of imprecision in the
representation of executions of the system. The �rst of these
is the fact that semantic restrictions on the order of occur-
rence of events in di�erent concurrent processes are gener-
ally not represented in the equations and inequalities used
by INCA. The second source of imprecision is the fact that
the equations and inequalities allow solutions in which the
ow in the FSA representing a concurrent process may have
cycles not connected to the initial state. In this paper, we
have shown how imprecision caused by this second source
may be eliminated.

Speci�c cases of inconclusive results can often be addressed
by careful reformulation of the property being checked, al-
though this may require the veri�cation of additional prop-
erties to justify the reformulation. This process can require
very substantial amounts of e�ort on the part of the human
analysts, as well as considerable costs to carry out the nec-
essary veri�cations. We have also sometimes addressed in-
conclusive results by manually inserting special inequalities
to prevent disconnected ow on a small number of speci�c
cycles. The problem with generalizing this approach is that
the number of cycles may well be exponential in the size
of the concurrent system, and each of the cycles requires a
separate inequality. Even if it were feasible to automate the
generation of these inequalities, the resulting ILP problems

would be far too large to solve. The numbers of new vari-
ables and inequalities introduced by the method presented in
this paper are linear in the number of states and transitions
in the FSAs representing the processes of the concurrent
system being analyzed.

We have reported here the results of some preliminary ex-
periments aimed at assessing the cost, in increased time to
solve the systems of equations and inequalities, of apply-
ing our method. These experiments suggest that the cost
is relatively small, especially when the e�ort of the human
analysts is taken into account. We plan to carry out addi-
tional experiments of the same type, and to integrate our
technique into the INCA toolset so that we can also evalu-
ate the time needed to generate the additional variables and
inequalities.

We are also investigating approaches to eliminating some of
the imprecision caused by not representing restrictions on
the order of events in di�erent processes. Fully representing
the restrictions imposed by the semantics of the program-
ming language or design notation may not be practical and
might limit the applicability of INCA in the same way that
having to store the full set of reachable states limits the
applicability of tools based on exploring the graph of reach-
able states. We are therefore exploring methods that allow
the analyst to control the degree to which restrictions on
order are represented. For example, one approach that we
are considering is to formulate some of the ow and com-
munication equations in such a way that they hold at every
stage of an execution, not just the end. These reformulated
ow and communication equations therefore enforce some of
the restrictions on the order of events in di�erent processes.
They also determine a region in n-dimensional Euclidean
space, where n is the number of variables in the system of
equations and inequalities. We then look for a point satis-
fying the full system of equations and inequalities that can
be reached by taking certain integer-sized steps through this
region. Successfully reducing this kind of imprecision will be
important in applying the INCA approach to many systems
where interprocess communication is only through access to
shared data.

6. REFERENCES
[1] G. S. Avrunin, J. C. Corbett, L. K. Dillon, and J. C.

Wileden. Automated derivation of time bounds in
uniprocessor concurrent systems. IEEE Trans. Softw.
Eng., 20(9):708{719, Sept. 1994.

[2] G. S. Avrunin, J. C. Corbett, M. B. Dwyer, C. S.
P�as�areanu, and S. F. Siegel. Comparing �nite-state
veri�cation techniques for concurrent software.
Technical Report UM-CS-1999-069, Department of
Computer Science, University of Massachusetts
Amherst, Nov. 1999. URL: http://ext.math.umass.
edu/~avrunin/recent_pubs/comparing.ps.

[3] A. T. Chamillard, L. A. Clarke, and G. S. Avrunin. An
empirical comparison of static concurrency analysis
techniques. Technical Report 96-84, Department of
Computer Science, University of Massachusetts, 1996.
Revised May 1997.

[4] J. C. Corbett. An empirical evaluation of three

197198199

methods for deadlock analysis of Ada tasking
programs. In T. Ostrand, editor, Proceedings of the
1994 International Symposium on Software Testing and
Analysis (ISSTA), pages 204{215, Seattle, WA, Aug.
1994. ACM Press (Proceedings appeared as a special
issue of Software Engineering Notes).

[5] J. C. Corbett. Evaluating deadlock detection methods
for concurrent software. IEEE Trans. Softw. Eng.,
22(3):161{179, Mar. 1996.

[6] J. C. Corbett and G. S. Avrunin. A practical method
for bounding the time between events in concurrent
real-time systems. In T. Ostrand and E. Weyuker,
editors, Proceedings of the 1993 International
Symposium on Software Testing and Analysis (ISSTA),
pages 110{116, Cambridge, MA, June 1993. ACM Press
(Proceedings appeared in Software Engineering Notes,
18(3)). An updated version is available at
http://ext.math.umass.edu/~avrunin/recent_pubs/
issta_update.ps.

[7] J. C. Corbett and G. S. Avrunin. Towards scalable
compositional analysis. In D. Wile, editor, Proceedings
of the Second ACM SIGSOFT Symposium on
Foundations of Software Engineering, pages 53{61, New
Orleans, Dec. 1994. ACM Press (Proceedings appeared
in Software Engineering Notes, 19(5)).

[8] J. C. Corbett and G. S. Avrunin. Using integer
programming to verify general safety and liveness
properties. Formal Methods in System Design,
6:97{123, January 1995.

[9] K. Forester, C. MacFarlane, M. Cameron, and
G. Bolcer. Chiron-1 user manual. Arcadia Document
UCI-93-07, University of California, Irvine, Sept. 1993.

198199200

