
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/280566525

Improving Process Robustness by Identifying Vulnerabilities using Fault Tree

Analysis

Conference Paper · May 2015

CITATIONS

0
READS

36

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Using Formal Verification Methods to Improve Medical Safety View project

Automated derivation of requirements for components used in human-intensive systems View project

Huong Phan

University of Massachusetts Amherst

5 PUBLICATIONS   31 CITATIONS   

SEE PROFILE

George S. Avrunin

University of Massachusetts Amherst

126 PUBLICATIONS   4,561 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Huong Phan on 30 July 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/280566525_Improving_Process_Robustness_by_Identifying_Vulnerabilities_using_Fault_Tree_Analysis?enrichId=rgreq-a1f77ed6b03d77dbff0c8582c1ed1581-XXX&enrichSource=Y292ZXJQYWdlOzI4MDU2NjUyNTtBUzoyNTY5MDcxODEwMzE0MjdAMTQzODI2Mjg1MzkwMw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/280566525_Improving_Process_Robustness_by_Identifying_Vulnerabilities_using_Fault_Tree_Analysis?enrichId=rgreq-a1f77ed6b03d77dbff0c8582c1ed1581-XXX&enrichSource=Y292ZXJQYWdlOzI4MDU2NjUyNTtBUzoyNTY5MDcxODEwMzE0MjdAMTQzODI2Mjg1MzkwMw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Using-Formal-Verification-Methods-to-Improve-Medical-Safety?enrichId=rgreq-a1f77ed6b03d77dbff0c8582c1ed1581-XXX&enrichSource=Y292ZXJQYWdlOzI4MDU2NjUyNTtBUzoyNTY5MDcxODEwMzE0MjdAMTQzODI2Mjg1MzkwMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Automated-derivation-of-requirements-for-components-used-in-human-intensive-systems?enrichId=rgreq-a1f77ed6b03d77dbff0c8582c1ed1581-XXX&enrichSource=Y292ZXJQYWdlOzI4MDU2NjUyNTtBUzoyNTY5MDcxODEwMzE0MjdAMTQzODI2Mjg1MzkwMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a1f77ed6b03d77dbff0c8582c1ed1581-XXX&enrichSource=Y292ZXJQYWdlOzI4MDU2NjUyNTtBUzoyNTY5MDcxODEwMzE0MjdAMTQzODI2Mjg1MzkwMw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Huong_Phan5?enrichId=rgreq-a1f77ed6b03d77dbff0c8582c1ed1581-XXX&enrichSource=Y292ZXJQYWdlOzI4MDU2NjUyNTtBUzoyNTY5MDcxODEwMzE0MjdAMTQzODI2Mjg1MzkwMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Huong_Phan5?enrichId=rgreq-a1f77ed6b03d77dbff0c8582c1ed1581-XXX&enrichSource=Y292ZXJQYWdlOzI4MDU2NjUyNTtBUzoyNTY5MDcxODEwMzE0MjdAMTQzODI2Mjg1MzkwMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Massachusetts_Amherst2?enrichId=rgreq-a1f77ed6b03d77dbff0c8582c1ed1581-XXX&enrichSource=Y292ZXJQYWdlOzI4MDU2NjUyNTtBUzoyNTY5MDcxODEwMzE0MjdAMTQzODI2Mjg1MzkwMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Huong_Phan5?enrichId=rgreq-a1f77ed6b03d77dbff0c8582c1ed1581-XXX&enrichSource=Y292ZXJQYWdlOzI4MDU2NjUyNTtBUzoyNTY5MDcxODEwMzE0MjdAMTQzODI2Mjg1MzkwMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George_Avrunin?enrichId=rgreq-a1f77ed6b03d77dbff0c8582c1ed1581-XXX&enrichSource=Y292ZXJQYWdlOzI4MDU2NjUyNTtBUzoyNTY5MDcxODEwMzE0MjdAMTQzODI2Mjg1MzkwMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George_Avrunin?enrichId=rgreq-a1f77ed6b03d77dbff0c8582c1ed1581-XXX&enrichSource=Y292ZXJQYWdlOzI4MDU2NjUyNTtBUzoyNTY5MDcxODEwMzE0MjdAMTQzODI2Mjg1MzkwMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Massachusetts_Amherst2?enrichId=rgreq-a1f77ed6b03d77dbff0c8582c1ed1581-XXX&enrichSource=Y292ZXJQYWdlOzI4MDU2NjUyNTtBUzoyNTY5MDcxODEwMzE0MjdAMTQzODI2Mjg1MzkwMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George_Avrunin?enrichId=rgreq-a1f77ed6b03d77dbff0c8582c1ed1581-XXX&enrichSource=Y292ZXJQYWdlOzI4MDU2NjUyNTtBUzoyNTY5MDcxODEwMzE0MjdAMTQzODI2Mjg1MzkwMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Huong_Phan5?enrichId=rgreq-a1f77ed6b03d77dbff0c8582c1ed1581-XXX&enrichSource=Y292ZXJQYWdlOzI4MDU2NjUyNTtBUzoyNTY5MDcxODEwMzE0MjdAMTQzODI2Mjg1MzkwMw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Improving Process Robustness
by Identifying Vulnerabilities
using Fault Tree Analysis

Huong Phan, George Avrunin, Lori Clarke, and Leon Osterweil

University of Massachusetts Amherst, MA 01002, USA
{hphan,avrunin,clarke,ljo}@cs.umass.edu

http://laser.cs.umass.edu

Abstract. This paper presents a systematic, incremental approach to
identifying vulnerabilities in models of complex processes. The approach
builds upon Fault Tree Analysis (FTA), but enhances it to deliver supe-
rior results. FTA has been applied to process models to determine what
combinations of events can lead to a specified hazard—an undesired pro-
cess outcome. Such combinations, called cut sets, provide valuable in-
sights into process vulnerabilities, and thus, are useful for improving
process robustness. Manual FTA can be tedious and error-prone. Re-
sults of previous automated FTA work, however, are incomplete as they
fail to recognize some vulnerabilities. Also, they often do not provide
enough information to understand the real vulnerabilities, or they pro-
vide too many cut sets to be helpful, especially when processes are large
and complex. Our approach takes into account processes data and con-
trol dependences to generate more thorough results. It supports selective
vulnerability exploration by initially presenting users with cut sets for a
high-level, and thus smaller, fault tree; users can then select a cut set
for more detailed analysis, culminating in concrete scenarios which show
how events in the cut set could lead to the hazard. Our approach also
produces more precise results by automatically eliminating inconsistent
and spurious cut sets.

Key words: fault tree analysis, vulnerability identification, process ro-
bustness improvement

1 Introduction

Using Fault Tree Analysis (FTA) to identify vulnerabilities in processes is one
way to help improve process robustness. FTA has been widely used to study
system safety in various domains such as aviation, nuclear power, chemical en-
gineering, etc. [1]. Chen adapted this technique to analyze process models [2, 3].
As manual fault tree construction and analysis are tedious and error prone, he
developed systems that automatically derive a fault tree from a process model
given a hazard—an undesired situation; and then automatically compute cut
sets—combinations of events that lead to the hazard. Such cut sets are use-
ful in understanding vulnerabilities, and thus, can suggest process modifications

http://laser.cs.umass.edu


2 Huong Phan et al.

that lead to process improvements. Once modifications are made to the process
model, the analysis can be performed again with minimal effort to validate that
such modifications are effective.

Chen’s FTA approach has been shown to be useful in some preliminary work
to analyze process models in the medical and election domains [3, 4, 5]. It does,
however, have some drawbacks. This approach uses data flows and a limited set
of control flow primitives in a process model to trace back to possible causes
of a hazard, but does not consider control dependences, and therefore fails to
identify some vulnerabilities. Moreover, cut sets that are computed often do
not provide analysts with enough information to readily gain sufficiently deep
understandings of the nature of underlying process vulnerabilities. In addition,
when processes are complex with a large numbers of steps and parameters, this
approach typically produces huge fault trees and numerous cut sets that are
often difficult to understand.

In our work we present a systematic, incremental approach to using FTA to
identify process vulnerabilities. We still use templates to automatically derive
fault trees from process models and we compute cut sets as in Chen’s approach,
but we exploit more process details to deliver sharper analytic results, and use
an iterative approach to help users gain deeper understandings more easily. The
contributions of this work are as follows. First, we produce more comprehensive
results, and therefore identify cut sets that were not previously identified, by
considering all control dependences together with all data dependences. Second,
we reduce users’ efforts in interpreting analytic results by supporting selective
incremental exploration of the fault tree. We initially present users with cut sets
derived from a high-level, and thus relatively smaller, fault tree. Users can then
select a cut set as the basis for more detailed analysis. This analysis generates an
elaborated fault tree that focuses on only the cut set of interest, and produces
as its final result concrete scenarios — a scenario is a process execution path
that contains all the events in a cut set, showing how the events in the cut
set could lead to the hazard. Third, we improve the precision of the results by
automatically removing inconsistent and spurious cut sets.

The rest of the paper is organized as follows. We first briefly describe FTA
in section 2. In section 3 we present our approach with the example of a small
process “issue ballot”. In section 4 we discuss our preliminary results of applying
the approach to two larger processes, “count votes” and “blood transfusion”, and
end with a conclusion.

2 Background: Fault Tree Analysis

FTA is a deductive, top-down analytic technique used in various domains to
study hazards. FTA starts with the analyst identifying a hazard, which is an
undesired system state. FTA works backward from this hazard to produce a
fault tree—a graphical representation of the various combinations of events that
lead to the hazard.



Improving Process Robustness by Identifying Vulnerabilities using FTA 3

LegendA

H

B C D

GE F

Intermediate event X

Primary event X

OR gate

AND gate

X

X

Fig. 1. Fault Tree Example: A occurs if B,
C or D occurs; B occurs if both E and F
occur. Four cut sets: {E,F}, {G}, {H}, and
{D}.

Events and gates are the basic elements of a fault tree (Fig. 1). The event at
the root (top) of the tree represents the hazard. There are two types of events,
intermediate events, which are elaborated, and primary events, which are not
further elaborated. A gate connects one or more input events (below) to a single
output event (above). We consider two types of gates: (1) AND gates specifying
that the output event occurs only if all input events occur (inputs are assumed
to be independent), and (2) OR gates specifying that the output event occurs
if any input event occurs. Given the fault tree, simple Boolean Algebra can
be used to compute cut sets—sets of primary events that when all occur will
cause the hazard. Cut sets indicate potential vulnerabilities, which are flaws
or weaknesses in a system’s design, implementation, operation, or management
that could potentially allow the hazard to occur.

3 Our Approach: Using FTA to Identify Vulnerabilities

This work is built upon Chen’s template-based FTA approach that derives fault
trees from rigorously defined process models. Even though Chen’s FTA imple-
mentation generates fault trees only from processes that are defined in the Little-
JIL process definition language [6], his approach could be adapted to generate
fault trees from processes defined in other languages that incorporate sufficient
data flow and control flow semantics. Our approach is similarly independent of
the choice of process language, although this paper describes its application to
a very simple control flow graph (CFG) representation of a process.

In this work, a hazard is defined to be an incorrect artifact input to or output
from a specific step or activity of the process. Predefined templates exploit the
process’s control and data flows to trace back through the process representation
to identify where incorrect step or activity performance could lead to the haz-
ard. The templates are applied iteratively to elaborate all intermediate events
until all intermediate events have been fully elaborated, resulting in a fault tree
whose leaves are all primary events. Our new approach defines more templates,
categorized into simple and detailed templates. The simple templates are used
to derive a fault tree at the high level. It is only when users select a specific cut
set from the initial high-level fault tree that the detailed templates are used to
get an elaborated fault tree, as described later in this section.

Fig. 2 shows two of the simple templates we use in our new approach. The
first one is used to elaborate the intermediate event of type “o output from S



4 Huong Phan et al.

Fig. 2. Simple templates for event of types “o output from S is incorrect” (left) and
“execution incorrectly reaches S.” (right)

is incorrect” – S is a CFG node and o is one of its outputs. This event can be
caused by either S being performed incorrectly; execution incorrectly reaching S;
or one input of S being incorrect 1. The last two events are intermediate events
and therefore can be further elaborated using other templates.

START

END

verify registered

issue regular issue provisional

cast vote

in: voterName, votingRoll

out: registered

in: 

out: ballot

in: 

out: ballot

in: ballot

out: ballot

registered==true

registered==false

verify not-voted

notVoted==true

notVoted==falsein: voterName, votingRoll

out: notVoted

START

END

verify registered

issue regular issue provisional

cast vote

registered==true

registered==false

verify not-voted

notVoted==true

notVoted==false

Fig. 3. Left: CFG of the “issue ballot” process. Right: example scenario of how a regis-
tered voter, who already voted, gets a regular ballot – “verify not-voted” is highlighted
RED because the step is performed incorrectly producing incorrect notVoted.

Fig. 3 (left) shows a CFG representation of “issue ballot”, a very much sim-
plified portion of an election process. As an example of our approach, consider
the hazard “ballot input into ‘cast vote’ is incorrect”, we can initially auto-
matically derive a high-level fault tree from this process and compute its cut
sets. Besides obvious single-event cut sets such as {“ ‘issue regular’ is performed
incorrectly producing incorrect ballot”}, there are more complicated cut sets,

1 As mentioned in the introduction, Chen’s FTA does not consider control depen-
dences – its templates do not consider the case “execution incorrectly reaching S”.



Improving Process Robustness by Identifying Vulnerabilities using FTA 5

e.g., {“verify not-voted” is performed incorrectly producing incorrect notVoted,
notVoted==true} 2.

Our new approach allows users to zoom in on a specific cut set by

1. creating a projection of the initial fault tree that keeps only events relevant
to this cut set;

2. applying detailed templates to this projected fault tree to derive a more
elaborated fault tree, called focused-elaborated fault tree; and then

3. automatically computing the new cut sets of the focused-elaborated fault
tree and generating concrete scenarios showing ways that the events in the
cut sets can occur and how they can then lead to the hazard.

With the above mentioned cut set, the projected fault tree reveals that be-
cause notVoted is incorrectly true, the process execution incorrectly reaches the
step “issue regular”, therefore the output ballot from that step is considered
incorrect. But the analyst might then want to understand better how the exe-
cution can ever reach “verify not-voted” in the first place. We can facilitate the
understanding by applying our new detailed templates to derive the focused-
elaborated fault tree, which in turn has new elaborated cut sets, e.g. {registered
is correctly true, “verify not-voted” is performed incorrectly producing incorrect
notVoted, notVoted==true}. This final cut set gives the analyst a better idea of
how the hazard arises. In this case, it could be a collusion between a malicious
registered voter (hence registered correctly true), who already voted, and the
agent performing “verify not-voted”, who deliberately “verifies” that this voter
has not voted, so that the voter can get a regular ballot again (and again) (Fig.
3, right).

4 Preliminary Results and Conclusion

We have applied our new approach on processes of various sizes: the small size
“issue ballot” process as descibed above, a medium size process “count votes”
(CFG: 48 nodes, 48 edges) with the hazard of incorrect total vote counts being
reported, and a larger process “blood transfusion” (CFG: 315 nodes, 338 edges)
with the hazard of incorrect blood being transfused to a patient. As expected,
this new approach provides more scenarios showing how the hazards may arise,
and the analysis results are presented incrementally—from more abstract to more
detailed—so that the analysts are not overwhelmed with too much information.

We continue to develop the FTA tool that implements our approach. We also
continue to evaluate the approach by applying it on different process models,
letting domain experts use the tool and collecting their feedbacks.

We believe that this work provides a superior way to identify process vulner-
abilities and therefore helps to improve process robustness.

2 Chen’s FTA produces only two cut sets: {“ ‘issue regular’ is performed incorrectly
producing incorrect ballot”} and {“ ‘issue provisional’ is performed incorrectly pro-
ducing incorrect ballot”}.



6 Huong Phan et al.

Acknowledgement

This research was partially supported by the U.S. National Science Foundation
(NSF) under Award Nos. IIS-1239334 and CNS-1258588 and the U.S. National
Institutes of Science and Technology (NIST) under grant 60NANB13D165.

References

1. C. A. Ericson II, “Fault Tree analysis - A History,” in 17th International System
Safety Conference, 1999.

2. B. Chen, G. S. Avrunin, L. A. Clarke, and L. J. Osterweil, “Automatic Fault
Tree Derivation from Little-JIL Process Definitions,” in Software Process Change,
ser. Lecture Notes in Computer Science, Q. Wang, D. Pfahl, D. M. Raffo, and
P. Wernick, Eds. Springer Berlin Heidelberg, Jan. 2006, no. 3966, pp. 150–158.
[Online]. Available: http://link.springer.com/chapter/10.1007/11754305 17

3. B. Chen, “Improving Processes Using Static Analysis Techniques,” Ph.D. disserta-
tion, University of Massachusetts, Amherst, MA 01003, USA, Sep. 2010.

4. H. Phan, G. S. Avrunin, L. A. Clarke, O. J. Leon, and M. Bishop, “A Systematic
Process-Model-based Approach for Synthesizing Attacks and Evaluating Them,” in
Presented as part of the 2012 Electronic Voting Technology Workshop/Workshop on
Trustworthy Elections. Berkeley, CA: USENIX, 2012. [Online]. Available: https:
//www.usenix.org/conference/evtwote12/workshop-program/presentation/Phan

5. B. I. Simidchieva, S. J. Engle, M. Clifford, A. C. Jones, S. Peisert, M. Bishop,
L. A. Clarke, and L. J. Osterweil, “Modeling and Analyzing Faults to Improve Elec-
tion Process Robustness,” in Proceedings of the 2010 Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections (EVT/WOTE ’10), 2010.

6. A. Wise, “Little-JIL 1.5 Language Report,” Uinversity of Massachussetts Amherst,
Tech. Rep., 2006.

View publication statsView publication stats

http://link.springer.com/chapter/10.1007/11754305_17
https://www.usenix.org/conference/evtwote12/workshop-program/presentation/Phan
https://www.usenix.org/conference/evtwote12/workshop-program/presentation/Phan
https://www.researchgate.net/publication/280566525

	Improving Process Robustness by Identifying Vulnerabilities using Fault Tree Analysis
	Huong Phan et al.
	Introduction
	Background: Fault Tree Analysis
	Our Approach: Using FTA to Identify Vulnerabilities
	Preliminary Results and Conclusion
	References



