
Engineering Medical Processes to Improve
Their Safety

An Experience Report

Leon J. Osterweil l, George S. Avrunin 1, Bin Chen 1, Lori A. Clarke 1, Rachel
Cobleigh 1, Elizabeth A. Henneman 2 and Philip L. Henneman 3

1 Laboratory for Advanced Software Engineering Research (LASER)
University of Massachusetts at Amherst, Amherst, MA 01003

{ljo, avrunin, chenbin, clarke, rcobleig} @ cs.umass.edu
2 School of Nursing, University of Massachusetts at Amherst, Amherst,

MA 01003, henneman@nursing.umass.edu
3 Baystate Medical Center, Springfield, MA and Tufts University
School of Medicine, Boston, MA, philip.henneman@bhs.org

Abstract. This paper describes experiences in using precise definitions of
medical processes as the basis for analyses aimed at finding and correcting
defects leading to improvements in patient safety. The work entails the use of
the Little-JIL process definition language for creating the precise definitions,
the Propel system for creating precise specifications of process requirements,
and the FLAVERS systems for analyzing process definitions. The paper
describes the details of using these technologies, employing a blood
transfusion process as an example. Although this work is still ongoing, early
experiences suggest that our approach is viable and promising. The work has
also helped us to learn about the desiderata for process definition and analysis
technologies that are intended to be used to engineer methods.

1 Introduction: The Problem and Our Proposed Approach

Medical errors cause approximately 98,000 patients to die each year [1] in the
United States. US institute of Medicine (IOM) reports have suggested that the
delivery of healthcare must fundamentally change to address medical error (eg. see
[1, 2]). In particular, these studies suggest that many serious medical errors result
from system rather than individual failures, leading the IOM to advocate the
development of healthcare systems that directly address patient safety. In particular,
the IOM report states, "what is most disturbing is the absence of real progress. . , in
information technology to improve clinical processes [italics ours]" ([1 pg. 3]).

Please use the following format when citing this chapter:

Osterweil, L. J., Avrunin, G. S., Chen, B., Clarke, L. A., Cobleigh, R., Henneman, E. A., Henneman, P. L., 2007, in IFIP
International Federation for Information Processing, Volume 244, Situational Method Engineering: Fundamentals and
Experiences, eds. Ralytd, J., Brinkkemper, S., Henderson-Sellers B., (Boston Springer), pp. 267-282.

268 Leon J. Osterweil et al.

Encouraged by these findings, the authors of this paper began a project to investigate
how software engineering research in process definition and analysis might be
applied and extended to help reduce errors and improve safety in medical processes.

Our preliminary research (eg. [3]) showed that in many cases current medical
processes are often described only at a high-level of generality and are usually not
defined completely and precisely. These processes typically describe standard
practices, but usually do not address how healthcare providers should react when
unusual, yet expectable, situations arise. Because of this, healthcare providers can
often find themselves in situations that are not directly addressed by the processes
they learned, and thus are often unsure of whether or not their actions conform to
recommended care guidelines. In addition, aspects of current care process
descriptions are frequently vague, ambiguous, or inconsistent, allowing different
providers to arrive at different understandings about their specifics. Such
descriptions may lead workers to believe they are following recommended care
guidelines when, in fact, their care has deviated, increasing the possibility of error.

In the work we describe here, software engineering researchers and medical
experts developed precise, rigorous definitions of medical processes that capture not
only the standard cases, but also the exceptional situations that can arise. The
process definitions also captured the inherent concurrency and multi-tasking
frequently undertaken by busy healthcare providers, as well as details of the complex
use of resources in performing medical processes. The processes defined covered
different aspects of medical care, such as blood transfusion, chemotherapy, and
emergency department patient flow. In all of these domains, the literature indicates
that errors can be frequent and can result in serious negative consequences [1, 4, 5].

This preliminary investigation indicated somewhat different goals for the
engineering of methods in these different areas of medical practice, and thus
suggested somewhat different approaches. The Emergency Department (ED) sought
to reduce patient waiting time, as delay is a safety hazard (and a source of pain and
inconvenience). Moreover, the highly concurrent nature of Emergency Department
activities is believed to increase the chance of incorrect process execution, which
also leads to safety hazards. Other concerns included identifying bottlenecks and
improving resource utilization. This suggested the desirability of analyzing precise,
rigorous process definitions to study their concurrency and resource utilization.

In blood transfusion and chemotherapy there was concern for the identification
and removal of process defects that create hazards to patient health and safety.
These concerns suggested the value of at least two complementary engineering
approaches, namely fault tree analysis and finite-state verification, each applied to a
precise definition of safety-critical processes. Analysis of fault trees promises to
indicate possible effects of incorrect performance of process steps [6, 13], while
finite state verification (eg., [8, 9]) promises to identify sequences of tasks that, even
if performed perfectly, could still lead to safety hazards [1610].

Our project aims to evaluate the effectiveness of defining medical processes
using a rigorously defined language, carrying out rigorous analysis of the processes
to detect defects, and then improving the processes by defect removal. Here we
address in detail only one research activity, namely our work in improving processes
related to blood transfusion in a clinical setting and only touch briefly upon some of
our other activities. In the next section we present the Little-JIL process definition

Engineering Medical Processes to Improve Their Safety 269

language and provide some examples of how it was used to define a blood
transfusion process. Section 3 describes and evaluates our experiences, and Section 4
summarizes some related work. Section 5 summarizes some of our other work on
medical processes, and suggests future directions for this research.

2 An Example: A Clinical Blood Transfusion Process

The administration of blood and blood products is a common, high-risk,
resource-intensive medical intervention. Despite strict regulation by the US Food and
Drug Administration as well as healthcare accreditation agencies, the error rate in
transfusion medicine is significant and believed to be underreported [l l]. To
investigate whether the precise definition and analysis of this process could help
identify defects that lead to such errors, we used the Little-JIL process definition
language [12, 13] to define a transfusion process in detail. We then used the Propel
property definition system [14] to specify desired properties, and then used the
FLAVERS finite-state verification system [9] to determine whether the properties
could ever be violated by any path through the defined process.

2.1 Principal Features of Little-JIL

Little-JIL [12, 13] is a language originally developed for defining the processes
by which software is developed and maintained. Wise [13] provides full technical
details of the language. Here we outline its salient features. A Little-JIL process is
defined by means of specification of three components, an artifact collection, a
resource repository, and a coordination specification. Each addresses a different area
of concern. The artifact collection contains the various items, initial, intermediate,
and final, that are the focus of the activities carried out by the process. The resource
repository specifies the agents and other capabilities available to support performing
the activities. The coordination specification ties these together by specifying which
agents, aided by which supplementary capabilities, will perform which activities
upon which artifacts at which time(s). Because of its central role in specifying this,
the coordination diagram is generally the central focus of a Little-JIL process
definition.

A Little-JIL coordination specification has a visual representation, but is,
nevertheless, precisely defined using finite-state automata. This renders processes
defined in Little-JIL amenable to definitive analyses that are analogous to those used
to evaluate application software. Among the key features of Little-JIL that
distinguish it from most process languages are its I) use of abstraction to support
scalability and clarity, 2) use of scoping to make the use of step parameterization
clear, 3) facilities for specifying parallel processing, 4) extensive capabilities for
defining how to handle exceptional conditions, and 5) clarity and precision in
specifying iteration.

A Little-JIL coordination specification is defined using hierarchically
decomposed steps (Figure 1), where a step represents a task to be done by an
assigned agent. Each step has a name and a set of badges to represent control flow

270 Leon J. Osterweil et al.

among its sub-steps, its interface (a specification of its input/output artifacts and the
resources it requires), the exceptions it handles, etc. A step with no sub-steps is
called a leaf step and represents an activity to be performed by an agent, without any
guidance from the process.

Resources and Agents--Each Little-JIL step contains as part of its interface a
specification of the types of resources that are required in order to support the
execution of the step. Some examples of resources are physicians, blood units, beds,
and accesses to medical records of various sorts. The assignment of an actual
resource instance is carried out by a separate Resource Manager, which maintains a
repository of available resources and their capabilities, and identifies a specific
resource instance to be assigned in response to the step's request. Each step always
requires one specially designated resource instance, called its agent, which is the
resource that is assigned responsibility for the performance of the step. Little-JIL
agents may be either humans or automated devices. In some cases either might be
appropriate, and the choice is then made by the Resource Manager, rather than being
dictated by the process definition.

Substep Decomposition--Little-JIL steps may be decomposed into substeps of
two different kinds, ordinary substeps and exception handlers. The ordinary substeps
define the details of how the step is to be executed. The substeps are connected to
their parent by edges, which may be annotated by specifications of the artifacts that
flow between parent and substep and also by cardinality specifications. Cardinality
specifications define the number of times the substep is to be instantiated and may be
a fixed number, a Kleene *, a Kleene +, or a Boolean expression (indicating whether
the substep is to be instantiated). Exception handlers define how exceptions thrown
by the step's descendants are handled. The edge from exception handler to parent is
annotated with the type of the exception being handled, parameters being passed, and
an indication of how execution continues after the exception has been handled.

Step sequencing-A non-leaf step has a sequencing badge (an icon embedded on
the left of the step bar; e.g., the right arrow in Figure l), which defines the order of
substep execution. For example, a sequential step (right arrow) indicates that its
substeps execute from left to right. A parallel step (equal sign) indicates that its
substeps execute in any (possibly interleaved) order. A choice step (circle slashed
with a horizontal line) indicates that step execution is by choosing any of the
alternative substeps. A try step (right arrow with an X on its tail) mandates a
sequence in which substeps are to be tried as alternatives.

Artifacts and artifact f l ows - An artifact is an entity (e.g., a physical entity or
data item) that is used or produced by a step. Parameter declarations are specified in
the interface to a step (circle atop the step bar) as lists of the artifacts used by the step
(IN parameters) and the artifacts produced by the step (OUT parameters). Artifact
flow through steps can be defined to take place in one of two different ways, 1)
hierarchically, as the flow of artifacts between parent and child steps, and 2) by
means of data channels. The flow of artifacts along a parent-child edge is indicated
by attaching to the edge identification of the artifacts and their direction of flow.

Engineering Medical Processes to Improve Their Safety 271

0
V stepNs,- A

~ ~xcep:ion Hand er

Figure 1 - A Little-JIL step icon.

Data Channels - -Data Channels are named entities that directly connect
specifically identified source step(s) with specifically identified destination step(s).
A data channel acts much like a buffer, with some steps using the data channel as an
output and others using it as an input. This construct helps define how streaming
data, for example, is handled by a process. It can also be used to synchronize
concurrently executing steps, since steps may choose to block when sending or
receiving.

Requisi tes- A Little-JIL step optionally can be preceded or succeeded by a step
that is executed before or after execution of the main body of the step. A prerequisite
is represented by a down arrowhead to the left of the step bar, and a post-requisite is
represented by an up arrowhead to the right of the step bar. Requisites facilitate
checking for a condition either before executing a step or to assure that execution has
been acceptable. The failure of a requisite triggers the occurrence of an exception.

Exception H a n d l i n g - A step in Little-JIL can signal the occurrence of
exceptional conditions when some aspect of the step's execution fails (e.g., the
violation of one of the step's requisites). This triggers the execution of a matching
exception handler associated with an ancestor step that throws the exception (and
represented as a step attached by an edge to an X on the right of the step bar in
Figure 1). Little-JIL also incorporates a facility for specifying in which, of a variety
of ways, execution should proceed after completion of the exception handler. This is
an important feature that is difficult to represent in many other languages.

Scoping - The parent step and its descendants represent a scope in Little-JIL,
enabling specification that certain entities and datasets can be considered local to that
scope. Little-JIL also supports recursive specifications of steps within its own scope,
which clarifies the iterative application of a process step to its defined arguments.

2.2 An Example Using Little-JIL to Define a Blood Transfusion Process

Figure 2 is a blood transfusion process coordination diagram. The actual
process has 112 Little-JIL steps, and is too large to present here. Thus, we present a
version that fits the needs of terse exposition, but is still representative of the actual
process.

Figure 2 shows that the full transfusion process, Single-Unit Transfusion
Process, consists of four substeps to be executed in sequence (note the fight arrow in
the step bar), namely Bedgide Checks, Prepare for Infusion, Transfuse Blood, and
Post Transfusion Work. The first three are all decomposed into subprocesses that are

27 2 Leon J. Osterweil et al.

defined by separate diagrams. In this paper we show only the decomposition of the
first step, Bedside Checks (in Figure 3). The last of the four substeps, Post
Transfusion Work is further decomposed in Figure 2 into two substeps that can be
executed in parallel (note the equal sign in its step bar), namely Discard Transfusion
Materials and Record Infusion Information. Here too, these substeps are further
decomposed in separate coordination diagrams, each of which adds further details.
Substeps are the primary method of supporting the incorporation of details into
Little-JIL process definitions, since decomposition can proceed to any level of
abstraction.

Bedside Checks

Prepa

Single Unit Transfusion Process

/ \

Transfuse Blood /

iR~eaetion SUSEe¢ted

Handle Transfusion Reaction

Post Transfusion Work

Discard Transfusion Materials.

Record Infusion Information

Figure 2: A coordination diagram of a Little-JIL blood transfusion process.

Note also that the Transfuse Blood step has a postrequisite (indicated by the fact
that the arrowhead on the right of its step bar is colored in). We do not show the
decomposition of this step, but the postrequisite defines the activities to be
performed after this step's execution to determine whether there has been an adverse
reaction to the blood transfusion. If so, this postrequisite will throw a Reaction
Suspected exception, causing control to be transferred to the Handle Transfusion
Reaction exception handler, which is another substep of the parent, Single-Unit
Transfusion Process. Handle Transfusion Reaction is also elaborated by a structure
of substeps, again not shown here for lack of space. But, as might be expected, this
handler is of significant size and thus represented by a non-trivial structure. Note
that the exception handler edge is annotated with the type of exception that is
handled and with a right arrow icon indicating that execution continues as though the

Engineering Medical Processes to Improve Their Safety 273

step that threw the exception finished execution. Thus, the next step executed is Post
Transfusion Work.

We note that the diagrams in Figures 2 and 3 do not contain all the information
comprising a complete coordination specification. The Visual-JIL editor is used to
create Little-JIL coordination diagrams, and it can elide much information in the
interests of reducing visual clutter. In particular the step's agent and resource
requirements are not shown in these diagrams, but are represented iconically by the
circle above the step. Likewise, the artifacts that are arguments to the various steps
must be specified on the edges of a Little-JIL diagram and as part of the information
attached to the circle above each step. This information too is elided here for
clarity.

While the process depicted in Figure 2 presents a straightforward top-level view
of the transfusion process, this view is somewhat illusory. There is considerable
additional complexity that must be defined in detail in order to capture salient issues
in blood transfusion, thereby rendering them amenable to definitive analysis. To
illustrate this, we decompose the first substep, Bedside Cheeks. This step, depicted
in Figure 3, represents the checking that is to be done prior to a transfusion, and is
thus of central importance in establishing a good basis for safety analysis.

Note that the hierarchical elaboration of Bedside Check~ makes it clear that this
step consists of two separate checks, one to assure the transfusion is being given to
the right patient and one to assure the blood to be transfused is correct. The equal
sign in the Bedtide Checks step bar indicates that these two checks can be performed
in any order, and indeed can be interleaved with each other. The details of the two
checks are interesting and important, and also indicate the value of some of the
semantic power of a language such as Little-jiL. Note, for example, that the first
substep, Check Patient ID, consists of the execution of Get Patient ID, followed by
the execution of Check ID to Patient Match. Each of these requires considerable
further elaboration (not shown for lack of space), as they can be seriously
complicated by various combinations of situations such as an unconscious patient, a
patient who is bleeding profusely, and a patient who has no ID band. The full
elaboration of these substeps deals with combinations of these situations, using
language features such as exception handling. Of central concern to this step,
however, is the possibility that the Check ID to Patient Match step might fail. This
may happen for many different reasons, but here we indicate that it might happen as
a consequence of the evaluation of this step's postrequisite, in which case this
contingency is handled by throwing the ID and Patient Don't Match exception. The
handling of this exception is done by recursively calling the Check Patient ID step.
Here we note that, because Little-JIL steps are abstractions, and thus function very
much like procedure calls, this recursive call of Check Patient ID occurs in the scope
and context of the exception handler, thus making available to the step information
that may be carried along as arguments to the recursive call. Thus, Little-JIL
supports sending information about the reasons that the check has failed. This is a
faithful representation of what would happen in the real-world situation, where this
information would be used to guide the next execution of the Get Patient ID step (eg.
gathering new information on the patient),and the next invocation of the Check
Patient ID step. This shows the value of providing strong support for abstraction.

274 Leon J. Osterweil et al.

®

//
/-

Get ~ ID

Checl~

Be~eks

~ t ID ~\ ~ .

"~. N~rses~:agree

ID
A

/

~h Agent: Nurse #1 Agent: Nurse #2
A • @

Figure 3: The hierarchical elaboration of the Bedside Check~ step

The other checking step, Redundant Product Check, provides examples of the
value of other Little-JIL language features. Here we note that this step consists of
the parallel execution of two different instances of the Check Product step, not
elaborated here for lack of space. But we have specified that the resources required
as agents for the two steps are two different nurses (Nurse #1 and Nurse #2),who are
obliged to perform the identical check to be sure that the blood product is correct.

Redundant Product Check has a postrequisite, a comparison (not shown here) of
the reports from the two nurses to make sure that both agree that the blood product is
correct. We show two possible exceptions that can be thrown. If the two nurses
disagree, a Nurses Disagree exception is thrown, and is handled by rethrowing
(upward arrow) the exception to an ancestor step for resolution. If there is agreement
that the blood product is incorrect, a Wrong Product exception is thrown, and is
handled by the Get Blood Product step, which is a reinstantiation of the step defining
how a blood product is requested from the blood bank. That step appeared
previously in this process definition, but is not shown for lack of space. Again, note
that the fact that Get Blood Product is called in the context of the handling of this
exception means that the report from the nurses providing details about what was
wrong with the blood product can now be transmitted to the blood bank.

2.3 Using Propel and FLAVERS Analysis to Look for Process Defects

We now provide a very brief and simplified example of how we applied finite-
state verification to the blood transfusion process definition. Our approach to finite-

Engineering Medical Processes to Improve Their Safety 275

state verification is described in detail in [9]. In that paper we describe how
FLAVERS performs exhaustive checks of all possible paths through a system in
order to determine whether or not the execution of any path would cause a violation
of a desired property. For our purposes, a property is a specification of the
requirements for some aspect of the behavior of a system. As a requirement, the
property is a specification against which a system is to be verified. For example, a
property may specify that a certain event may not occur until another event has
occurred. In our work we compare a process against such properties. In cases
where the property is violated we modify the process (note, we ignore for the
moment the possibility that the property may be incorrectly specified) and verify the
modified process to the property again, continuing until the verification succeeds,
thereby improving the process. For our analysis, properties are represented as finite-
state automata and describe certain sequences of events that must (or must not) occur
in every execution of the process. Figure 4 shows an example of one such property
for our blood transfusion process. This automaton specifies that after executing the
Get Patient ID step, executing the Check ID to Patient Match step moves the process
into a state where Transfuse Blood is acceptable as the next step. The automaton
also specifies, however, that Transfuse Blood is not acceptable if Get Patient ID or
Check ID to Patient Match has not yet been executed. This would cause the
automaton to be moved to the error state. Note also that if Check lD to Patient
Match is followed by Get Patient ID, the automaton is moved back into the initial
state, from which Transfuse Blood again causes a transition to the ERROR State.
This event sequence occurs if Check ID to Patient Match is followed by the throwing
of an exception, because the match has failed. The exception is handled by
reinvoking the Check Patient ID step. Because its first substep is Get Patient ID,
this repeated execution of Get Patient ID indicates that the Check ID to Patient
Match step has failed and that Transfuse Blood is not acceptable now. Automata
such as that indicated in Figure 4 were generated with the aid of our Propel system
[14], which facilitates the generation of such automata by using a question tree to
elicit specifics of the properties. Propel also features a natural language facility to
describe the semantics of the automaton in natural English. Note, that for this
example there are several other important properties that need to be verified,
including one that states that Check ID to Patient Match must always be immediately
preceded (e.g., no intermediate Transfuse Blood events) by Get Patient ID.

Once a process and an automaton are defined, using Little-JIL and Propel
respectively, we use the FLAVERS finite-state verification system to determine
whether any execution of the process could drive the automaton to the error state.
While the verification may appear straightforward for this example, we note that
even this small example poses serious challenges. The parallel step allows all
possible interleavings of substep executions, and the recursive invocation adds
further complexity. Finally, the sheer size of the final process (112 steps) makes the
verification problem very large. A verifier such as FLAVERS, which employs a
number of optimization techniques, is usually able to handle the verification of
properties of modest-sized processes such as this one.

276 Leon J. Osterweil et al.

Get Patient ID

Check ID to
Patient Match Tra:nsfuse Blood

-~(Check ID to Patient
Transfuse Blood)

Transfuse Blood,
;t Patient ID) Any Event

Transfuse Blood

~ ERROR STATE

Figure 4: This finite-state automaton requires Transfuse Blood to happen only if Check ID to

Patient Match has executed, but NOT been followed by Get Patient 1D.

3 Experiences and Evaluation

Our experience in defining and analyzing the blood transfusion process suggests
the value in this approach, as it has resulted in detection and correction of process
defects. Some of our experiences were as expected, but many were unexpected.

3.1 Process Elicitation

Many process deficiencies were realized just in the interviewing that was
necessary to elicit the complete, detailed process. We quickly found that the original
process guidelines often did not use terms consistently. For example, we found that
a word such as "check" sometimes was used in the same way as the word "verify",
but sometimes it had different connotations. Careful elicitation of what was meant,
by using Little-JIL to clarify the exact meanings, often led to the desired
understandings. This led the medical professionals to examine their terms, to define
them more carefully, and to use them more consistently. In doing so, the resulting
process definitions left less room for confusion, misunderstanding, and ambiguity.

It was not uncommon for the process guidelines to leave responses to exceptions
unspecified. For example, in some cases a process required a "check" for a
condition, with the understanding that some alternative processing was necessary if
the "check" fails. In many cases, however, the existing process description assumed

Engineering Medical Processes to Improve Their Safety 277

that check would always succeed and provided little or no guidance about what to do
in case of a failure. Here again specifying details of the process quickly raised such
issues and led the medical professionals to synthesize responses, thereby improving
the process.

We note that the Little-JIL language itself was very helpful in this regard. We
found that bundling resource specification, exception management, pre- and post-
requisites, and artifact flow together in the definition of a step caused interviewers to
ask about each of these issues each time the need for a new step was recognized. In
asking such questions as "where is this exception handled?" and "what kind of agent
is responsible for execution of this step?" important issues were raised, and
significant process improvements were made. We have concluded that a language
offering rich semantics can be important in suggesting the absence of important
details from a process definition and in suggesting the need for elaboration.

The semantic features of Little-JIL were useful in this work. In particular we
found that the facilities for handling exceptions were valuable and generally effective
in representing exceptional behavior. The facilities for specifying agent types for
each step were also useful and important. As we proceeded with the detailed
elaboration of the blood transfusion process, the value of abstraction, scoping, and
hierarchy became increasingly apparent. While this example gives only a hint of
scaling issues, as our process became larger, the problems posed by increasing size
became more apparent. Hierarchy is a well-established device for dealing with
scaling issues, and its use in Little-JIL underscored that point. But hierarchy in
Little-JIL also incorporates the use of abstraction. Thus, for example, specifying the
same step in more than one place causes the elaboration of that step, but Little-JIL's
use of scoping causes each elaboration to be done in the context of its enclosing
scope(s). The previous example indicated how useful this can be.

Thus our experience suggested that a process definition language should offer
facilities for abstraction, scoping, hierarchy, exception management, resource
specification, and artifact specification--at the very least. This experience also
suggested the value of other features not present in Little-JIL, for example
transaction semantics and real-time specification.

Finally it seems important to note that the Little-JIL pictorial notation proved to
be quite accessible to the medical professionals. Although we expected to find
medical professionals unwilling to learn the semantics and iconography of Little-JIL
we discovered that within an hour most were relatively comfortable with the
language and were becoming increasingly adept at using its features skillfully.

3.2 Property Elicitation

Our work also indicated the importance of eliciting the properties that are
required of the process being elicited. We were especially interested in properties
that are stated at a high enough level to apply not just to the specific process we had
elicited, but to other processes intended to achieve the same goals. In particular, we
would like to use finite-state verification not just to detect possible problems with the
existing process but also to evaluate proposed modifications to that process. Our
experience demonstrated that property elicitation is valuable additionally as another

278 Leon J. Osterweil et al.

vehicle for drawing out important process details. We found that it was not
uncommon for medical domain experts to specify the details of what they do without
having a clear idea of what higher-level goals they are trying to achieve when they
perform certain activities in certain ways. By using property specification as a way
to place a focus on the goals, motivations, and desiderata for a process, we were
often able to cause process performers to think about their processes in a new light,
sometimes leading to realizations of possible improvements. In other cases we found
that the careful specification of process desiderata, phrased in terms of required or
forbidden sequences of steps, led quickly to a realization that some of the steps were
missing from the process definition, were misnamed in the process definition, or
were used incorrectly in the process definition. Thus, property elicitation also led to
improvements in the process. It complemented the focus on "what do you do?" with
"why do you do that?" or "what are you really trying to do here?".

We found that Propel was an important aid to the elicitation of precise property
specifications. Experience with other projects had demonstrated that it is quite
common to specify a property formally in terms of a finite-state automaton or some
form of temporal logic, only then to find that important property details were not
captured correctly. For example, the property, "A consent form must be signed prior
to blood transfusion", leaves unanswered such questions as, "does one consent form
suffice for multiple transfusions?" and "can the consent be revoked prior to
transfusion?". Propel uses a question tree to automatically pose such questions, thus
improving the likelihood that the specified property will correctly reflect the full
intent of the person specifying the property. Propel's use on this project supported
this conclusion.

3.3 Verification of the Process

Our work on this project is just beginning to employ the FLAVERS finite-state
verifier to analyze the blood transfusion process for adherence to some properties.
To date we have been able to verify adherence to a small number of properties, most
of which have been relatively trivial. There have been numerous verification
failures, but most have been due to errors in the process definition itself or the
property definition. Although to date we have not yet uncovered serious defects in
the process itself, we expect that process defects will start to appear once we begin to
verify larger portions of the process and verify them against more stringent
properties.

In analyzing larger portions of the process, however, it has become increasingly
clear that it is important to employ the services of a reasoning system that can handle
this scale. We note that processes, such as blood transfusion, that entail substantial
amounts of concurrency and exception handling have accordingly very large
execution state spaces, thus making scaling an important issue, lndeed the
underlying graph structures that we generated from our process definitions and used
as the basis for our finite-state verification often had tens of thousands of nodes and
edges. The relative terseness of Little-JlL often serves to mask the size of this state
space, but it is this state space that must be explored in order to verify properties.

Engineering Medical Processes to Improve Their Safety 279

Our experiences so far suggest that the performance of FLAVERS does seem to
scale acceptably well.

4 Related Work

There has been some prior work in using process definition and analysis to
improve medical processes. For example, the Protocure II project [15] has goals that
are quite similar to ours, but uses a rather different, AI-based, linguistic paradigm for
defining processes. Noumeir has also pursued similar goals, but using a notation like
UML to define processes [16]. Others (eg. [17]), view medical processes as
workflows and use a workflow-like language to define processes and drive their
execution. But, we note that these projects seem to place less emphasis on analysis.

There have been other approaches to improving medical safety, as well, but
much of the emphasis of this work has been targeted towards quality control
measures [5,18], error reporting systems [19], and process automation in laboratory
settings [20], such as those where blood products are prepared for administration. In
other work, Bayesian belief networks have been used as the basis for discrete event
simulations of medical scenarios and to guide treatment planning (eg. [21]).

We note that many languages and diagrammatic notations have been evaluated as
vehicles for defining processes. It was suggested that processes be defined using a
procedural language [22]. In MARVEL/Oz [23] processes were defined using rules.
SLANG [24] used modified Petri Nets to define processes. More recently, the
workflow [25] and electronic commerce [26] communities have pursued similar
research. This work has shown that some notations aid process understanding, while
others provide the semantic rigor needed to support verifying processes to varying
degrees of certainty. None, however, seems able to support process definitions that
are clear and precise enough. Main failings of these approaches include inadequate
specification of exception handling, weak facilities for controlling concurrency, lack
of resource management, and inadequate specification of artifact flows.

We also note that there has been a great deal of work on the analysis of software
artifacts. Most of this work has been focused on analysis of code or models of
systems. Finite-state verification, or model checking, techniques (eg. [8, 9, 27]),
work by constructing a finite model that represents all possible executions of the
system and then analyzing that model algorithmically to detect executions that
violate a particular property specified by the analyst. As noted above one of the
major concerns of these techniques is controlling the size of the state-space model,
while maintaining precision in the analysis result. Our team has been involved in the
analysis and evaluation of various finite-state verification approaches [9], and the
development of verifiers such as FLAVERS [9] and INCA [28]. Our work seems to
be among the first that has applied FSV approaches to process definitions [10].

280 Leon J. OsterweiI et al.

5. Extensions of the Work

We have used the blood transfusion process definition to automatically generate
a fault tree representation of the process and have used the fault tree to identify
single points of failure. This shows the use of process definitions to improve the
robustness of a process by identifying and removing single points of failure. Work
with chemotherapy processes has confirmed most of the findings stated above.
Work with patient flow in the Emergency Department, however, has led to
realization of the centrality and complexity of issues pertaining to resources.

We have applied our process improvement approach to processes to a broad
range of domains such as labor-management negotiation, elections, and scientific
data processing. The work in each domain has shown the need for additional
language facilities and a broader research focus, but has confirmed the general
applicability of our approach, thus, pointing to the need for interesting
complementary work.

In conclusion, we observe that this work has shown considerable promise and has
suggested extensions in several directions. We propose to pursue further research in
this domain. We expect that this research will lead to notable improvements in the
quality of medical processes, and we also expect it to lead to better understandings of
how process definition and analysis technology can become key components in the
more effective engineering of methods in this critically important domain.

Acknowledgements

This research was supported by the US National Science Foundation under
Award Nos. CCR-0204321 and CCR-0205575 and by the U. S. Department of
Defense/Army Research Office under Award No. DAAD19-03-1-0133. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon. The views and
conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or
implied, of the U.S. National Science Foundation, U. S. Department of
Defense/Army Research Office, or the U.S. Government.

The authors gratefully acknowledge the work of Sandy Wise, who had major
responsibility for the development of Little-JIL, as well as Barbara Lerner and Aaron
Cass, who also made major contributions. Many students participated in the case
studies described here, and major contributions were made by Irene Ros, Ethan Katz-
Bassett, Huong Phan, M.S. Raunak, and Dave Miller.

References

1. L.T. Kohn, J.M. Corrigan, M.S. Donaldson (Eds). To Err is Human: Building a Safer
Health System. Washington, DC: National Academy Press, 1999.

Engineering Medical Processes to Improve Their Safety 281

2. P.P. Reid, W.D. Compton, J.H. Grossman, G. Fanjiang (Eds). Building a Better Delivery
System." A new Engineering/Healthcare Partnership. Nat. Academies Press, Washington.
DC, 2005.

3. E.H. Henneman, R.L. Cobleigh, K. Frederick, E. Katz-Bassett, G.A. Avrunin, L.A. Clarke,
L.J. Osterweil, C. Andrzejewski, K. Merrigan, P.L. Henneman, Increasing patient Safety
and Efficiency in Transfusion Therapy using Formal Process Definitions, Transfusion
Medicine Reviews, 21, 1, pp. 49-57, January 2007

4. J.L. Callum, H.S. Kaplan, L.L. Merkley, et.al. Near-miss Event Reporting for Transfusion
Medicine: Improving Transfusion Safety, Transfusion, 41,1204-1211,2001.

5. D. Voak, J.F. Chapman, P. Phillips, Quality of transfusion practice beyond the blood
transfusion laboratory is essential to prevent ABO-incompatible death. Transfusion
Medicine 10: 95-96, 2000.

6. J. Burgmeier, Failure Mode and Effect Analysis: An Application in Reducing Risk in
Blood Transfusion. Quality Improvement 28, 331-339, 2002.

7. B. Chen, G.S. Avrunin, L.A. Clarke, L.J. Osterweil, Automatic Fault Tree Derivation from
Little-JIL Process Definitions, SPW/PROS1M 2006, Shanghai, China, May 20-22, 2006,
Springer-Verlag LNCS. 3966, pp. 150-158.

8. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
A. Tacchella, NuSMV vers. 2: An Open-Source Tool for Symbolic Model Checking,
Computer Aided Verification Conf., Springer-Verlag, 2002, 359-365.

9. M.B. Dwyer, L.A. Clarke, J.M. Cobleigh, G. Naumovich, Flow Analysis for Verifying
Properties of Concurrent Software Systems. ACM Trans. on Software Engineering and
Methodology, 13(4) 359-430, 2004.

10. J.M. Cobleigh, L.A. Clarke, L.J. Osterweil, Verifying Properties of Process Definitions,
ACM SIGSOFT Intl. Syrup. on Software Testing & Analysis, Portland, OR, ACM Press,
2000:96-101

11. J.V. Linden, K. Wagner, A.E. Voytovich, et.al., Transfusion Errors in New York State: An
Analysis of 10 Years' Experience, Transfusion, 40 (10), 1207-1213, 2000.

12. A.G. Cass, B.S. Lerner, E.K. McCall, et al. Little-JIL/Juliette: A Process Definition
Language and Interpreter, Intl Conf. on Software Engineering. Limerick, Ireland, 754-758,
2000.

13. A. Wise, Little-JIL 1.5 Language Report, Lab. for Advanced SW Eng. Research (LASER).
Dept. of Comp. Sci., UMass, Amherst, Tech. Report, 2006.

14. R.L. Smith, G.S. Avrunin, L.A. Clarke, L.J. Osterweil, PROPEL: An Approach To
Supporting Property Elucidation, 24th Intl. Conf. on Software Engineering, Orlando, FL,
11-21, 2002.

15. A. ten Teije, M. Marcos, M. Balser, J. van Croonenborg, C. Duelli, F. van Harmelen, P.
Lucas, S. Miksch, W. Reif, K. Rosenbrand, A. Seyfang, Improving Medical Protocols by
Formal Methods. Artificial Intell. in Medicine, 36 (3), 193-209, 2006.

16. R. Noumeir, Radiology interpretation process modeling. Journal of Biomedical
Informatics 39(2) 103-114, 2006.

17. M. Ruffolo, R. Curio, L. Gallucci, Process Management in Health Care: A System for
Preventing Risks and Medical Errors, Business Process Mgmt. 334-343 2005.

18. M.L. Foss, S.B. Moore, Evolution of Quality Management: Integration of Quality
Assurance Functions Into Operations, or "Quality is Everyone's Responsibility".
Transfusion 43 1330-1336, 2003.

19. J.B. Battles, H.S. Kaplan, T.W. van der Schaaf, C.E. Shea, The Attributes of Medical
Event Reporting Systems for Transfusion Medicine. Arch Pathology Laboratory Medicine
122, 231-238, 1998.

20. S.A. Galel, C.A. Richards, Practical Approaches to Improve Laboratory Performance and
Transfusion Safety, Am. J. Clinical Pathology 107 (Suppl 1):$43-$49, 1997.

282 Leon J. Osterweil et al.

21. L.C. van der Gaag, S. Renooji, C.L.M. Witteman, B.M.P. Aleman, B.G. Taal,
Probabilities for a Probabilistic Network: A Case-Study in Oesophageal Cancer, Artificial
Intelligence in Medicine, 25(2), 123-148.

22. S.M. Sutton Jr., D.M. Heimbigner, L.J. Osterweil, APPL/A: A Language for Software-
Process Programming, ACM Trans. on Software Engineering and Methodology, 4 (3), 221-
286, 1995.

23. I.Z. Ben-Shaul, G. Kaiser, A Paradigm for Decentralized Process Modeling and its
Realization in the Oz Environment, 16th Intl. Conference on Software Engineering, 179-
188, 1994.

24. S. Bandinelli, A. Fuggetta, C. Ghezzi, Process Model Evolution in the SPADE
Environment. IEEE Transactions on Software Engineering 19(12) 1993.

25. S. Paul, E. Park, J. Chaar, RainMan: A Workflow System for the Internet, Usenix
Symposium on Internet Technologies and Systems, 1997.

26. B. Grosof, Y. Labrou, H.Y. Chan, A Declarative Approach to Business Rules in
Contracts: Courteous Logic Programs in XML, A CM Conf. on Electronic Commerce (EC
99), Denver, CO, 68-77, 1999.

27. G. J. Holzmann, The SPIN Model Checker, Addison-Wesley, 2004.
28. J.C. Corbett, G.S. Avrunin, Using Integer Programming to Verify General Safety and

Liveness Properties, Formal Methods in System Design, 6, 97-123, 1995.

