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Abstract. This paper describes experiences in using precise definitions of 
medical processes as the basis for analyses aimed at finding and correcting 
defects leading to improvements in patient safety. The work entails the use of 
the Little-JIL process definition language for creating the precise definitions, 
the Propel system for creating precise specifications of process requirements, 
and the FLAVERS systems for analyzing process definitions. The paper 
describes the details of using these technologies, employing a blood 
transfusion process as an example. Although this work is still ongoing, early 
experiences suggest that our approach is viable and promising. The work has 
also helped us to learn about the desiderata for process definition and analysis 
technologies that are intended to be used to engineer methods. 

1 Introduction: The Problem and Our Proposed Approach 

Medical errors cause approximately 98,000 patients to die each year [1] in the 
United States. US institute of  Medicine (IOM) reports have suggested that the 
delivery of  healthcare must fundamentally change to address medical error (eg. see 
[1, 2]). In particular, these studies suggest that many serious medical errors result 
from system rather than individual failures, leading the IOM to advocate the 
development of healthcare systems that directly address patient safety. In particular, 
the IOM report states, "what is most disturbing is the absence of real progress. . ,  in 
information technology to improve clinical processes [italics ours]" ([1 pg. 3]). 
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Encouraged by these findings, the authors of this paper began a project to investigate 
how software engineering research in process definition and analysis might be 
applied and extended to help reduce errors and improve safety in medical processes. 

Our preliminary research (eg. [3]) showed that in many cases current medical 
processes are often described only at a high-level of generality and are usually not 
defined completely and precisely. These processes typically describe standard 
practices, but usually do not address how healthcare providers should react when 
unusual, yet expectable, situations arise. Because of this, healthcare providers can 
often find themselves in situations that are not directly addressed by the processes 
they learned, and thus are often unsure of whether or not their actions conform to 
recommended care guidelines. In addition, aspects of current care process 
descriptions are frequently vague, ambiguous, or inconsistent, allowing different 
providers to arrive at different understandings about their specifics. Such 
descriptions may lead workers to believe they are following recommended care 
guidelines when, in fact, their care has deviated, increasing the possibility of error. 

In the work we describe here, software engineering researchers and medical 
experts developed precise, rigorous definitions of medical processes that capture not 
only the standard cases, but also the exceptional situations that can arise. The 
process definitions also captured the inherent concurrency and multi-tasking 
frequently undertaken by busy healthcare providers, as well as details of the complex 
use of resources in performing medical processes. The processes defined covered 
different aspects of medical care, such as blood transfusion, chemotherapy, and 
emergency department patient flow. In all of these domains, the literature indicates 
that errors can be frequent and can result in serious negative consequences [ 1, 4, 5]. 

This preliminary investigation indicated somewhat different goals for the 
engineering of methods in these different areas of medical practice, and thus 
suggested somewhat different approaches. The Emergency Department (ED) sought 
to reduce patient waiting time, as delay is a safety hazard (and a source of pain and 
inconvenience). Moreover, the highly concurrent nature of Emergency Department 
activities is believed to increase the chance of incorrect process execution, which 
also leads to safety hazards. Other concerns included identifying bottlenecks and 
improving resource utilization. This suggested the desirability of analyzing precise, 
rigorous process definitions to study their concurrency and resource utilization. 

In blood transfusion and chemotherapy there was concern for the identification 
and removal of process defects that create hazards to patient health and safety. 
These concerns suggested the value of at least two complementary engineering 
approaches, namely fault tree analysis and finite-state verification, each applied to a 
precise definition of safety-critical processes. Analysis of fault trees promises to 
indicate possible effects of incorrect performance of process steps [6, 13], while 
finite state verification (eg., [8, 9]) promises to identify sequences of tasks that, even 
if performed perfectly, could still lead to safety hazards [ 1610]. 

Our project aims to evaluate the effectiveness of defining medical processes 
using a rigorously defined language, carrying out rigorous analysis of the processes 
to detect defects, and then improving the processes by defect removal. Here we 
address in detail only one research activity, namely our work in improving processes 
related to blood transfusion in a clinical setting and only touch briefly upon some of 
our other activities. In the next section we present the Little-JIL process definition 
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language and provide some examples of how it was used to define a blood 
transfusion process. Section 3 describes and evaluates our experiences, and Section 4 
summarizes some related work. Section 5 summarizes some of our other work on 
medical processes, and suggests future directions for this research. 

2 An Example:  A Clinical Blood Transfusion Process 

The administration of blood and blood products is a common, high-risk, 
resource-intensive medical intervention. Despite strict regulation by the US Food and 
Drug Administration as well as healthcare accreditation agencies, the error rate in 
transfusion medicine is significant and believed to be underreported [l l]. To 
investigate whether the precise definition and analysis of this process could help 
identify defects that lead to such errors, we used the Little-JIL process definition 
language [ 12, 13] to define a transfusion process in detail. We then used the Propel 
property definition system [14] to specify desired properties, and then used the 
FLAVERS finite-state verification system [9] to determine whether the properties 
could ever be violated by any path through the defined process. 

2.1 Principal Features of Little-JIL 

Little-JIL [12, 13] is a language originally developed for defining the processes 
by which software is developed and maintained. Wise [13] provides full technical 
details of the language. Here we outline its salient features. A Little-JIL process is 
defined by means of  specification of three components, an artifact collection, a 
resource repository, and a coordination specification. Each addresses a different area 
of concern. The artifact collection contains the various items, initial, intermediate, 
and final, that are the focus of the activities carried out by the process. The resource 
repository specifies the agents and other capabilities available to support performing 
the activities. The coordination specification ties these together by specifying which 
agents, aided by which supplementary capabilities, will perform which activities 
upon which artifacts at which time(s). Because of its central role in specifying this, 
the coordination diagram is generally the central focus of a Little-JIL process 
definition. 

A Little-JIL coordination specification has a visual representation, but is, 
nevertheless, precisely defined using finite-state automata. This renders processes 
defined in Little-JIL amenable to definitive analyses that are analogous to those used 
to evaluate application software. Among the key features of Little-JIL that 
distinguish it from most process languages are its I) use of abstraction to support 
scalability and clarity, 2) use of scoping to make the use of step parameterization 
clear, 3) facilities for specifying parallel processing, 4) extensive capabilities for 
defining how to handle exceptional conditions, and 5) clarity and precision in 
specifying iteration. 

A Little-JIL coordination specification is defined using hierarchically 
decomposed steps (Figure 1), where a step represents a task to be done by an 
assigned agent. Each step has a name and a set of badges to represent control flow 
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among its sub-steps, its interface (a specification of its input/output artifacts and the 
resources it requires), the exceptions it handles, etc. A step with no sub-steps is 
called a leaf step and represents an activity to be performed by an agent, without any 
guidance from the process. 

Resources and Agents--Each Little-JIL step contains as part of its interface a 
specification of the types of resources that are required in order to support the 
execution of the step. Some examples of resources are physicians, blood units, beds, 
and accesses to medical records of various sorts. The assignment of an actual 
resource instance is carried out by a separate Resource Manager, which maintains a 
repository of available resources and their capabilities, and identifies a specific 
resource instance to be assigned in response to the step's request. Each step always 
requires one specially designated resource instance, called its agent, which is the 
resource that is assigned responsibility for the performance of the step. Little-JIL 
agents may be either humans or automated devices. In some cases either might be 
appropriate, and the choice is then made by the Resource Manager, rather than being 
dictated by the process definition. 

Substep Decomposition--Little-JIL steps may be decomposed into substeps of 
two different kinds, ordinary substeps and exception handlers. The ordinary substeps 
define the details of how the step is to be executed. The substeps are connected to 
their parent by edges, which may be annotated by specifications of the artifacts that 
flow between parent and substep and also by cardinality specifications. Cardinality 
specifications define the number of times the substep is to be instantiated and may be 
a fixed number, a Kleene *, a Kleene +, or a Boolean expression (indicating whether 
the substep is to be instantiated). Exception handlers define how exceptions thrown 
by the step's descendants are handled. The edge from exception handler to parent is 
annotated with the type of the exception being handled, parameters being passed, and 
an indication of how execution continues after the exception has been handled. 

Step sequencing-A non-leaf step has a sequencing badge (an icon embedded on 
the left of the step bar; e.g., the right arrow in Figure l), which defines the order of 
substep execution. For example, a sequential step (right arrow) indicates that its 
substeps execute from left to right. A parallel step (equal sign) indicates that its 
substeps execute in any (possibly interleaved) order. A choice step (circle slashed 
with a horizontal line) indicates that step execution is by choosing any of the 
alternative substeps. A try step (right arrow with an X on its tail) mandates a 
sequence in which substeps are to be tried as alternatives. 

Artifacts and artifact f l ows -  An artifact is an entity (e.g., a physical entity or 
data item) that is used or produced by a step. Parameter declarations are specified in 
the interface to a step (circle atop the step bar) as lists of the artifacts used by the step 
(IN parameters) and the artifacts produced by the step (OUT parameters). Artifact 
flow through steps can be defined to take place in one of two different ways, 1) 
hierarchically, as the flow of artifacts between parent and child steps, and 2) by 
means of data channels. The flow of artifacts along a parent-child edge is indicated 
by attaching to the edge identification of the artifacts and their direction of flow. 
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Figure 1 - A Little-JIL step icon. 

Data Channels - -Data  Channels are named entities that directly connect 
specifically identified source step(s) with specifically identified destination step(s). 
A data channel acts much like a buffer, with some steps using the data channel as an 
output and others using it as an input. This construct helps define how streaming 
data, for example, is handled by a process. It can also be used to synchronize 
concurrently executing steps, since steps may choose to block when sending or 
receiving. 

Requisi tes-  A Little-JIL step optionally can be preceded or succeeded by a step 
that is executed before or after execution of the main body of the step. A prerequisite 
is represented by a down arrowhead to the left of the step bar, and a post-requisite is 
represented by an up arrowhead to the right of the step bar. Requisites facilitate 
checking for a condition either before executing a step or to assure that execution has 
been acceptable. The failure of a requisite triggers the occurrence of an exception. 

Exception H a n d l i n g -  A step in Little-JIL can signal the occurrence of 
exceptional conditions when some aspect of the step's execution fails (e.g., the 
violation of one of the step's requisites). This triggers the execution of a matching 
exception handler associated with an ancestor step that throws the exception (and 
represented as a step attached by an edge to an X on the right of the step bar in 
Figure 1). Little-JIL also incorporates a facility for specifying in which, of a variety 
of ways, execution should proceed after completion of the exception handler. This is 
an important feature that is difficult to represent in many other languages. 

Scoping - The parent step and its descendants represent a scope in Little-JIL, 
enabling specification that certain entities and datasets can be considered local to that 
scope. Little-JIL also supports recursive specifications of steps within its own scope, 
which clarifies the iterative application of a process step to its defined arguments. 

2.2 An Example Using Little-JIL to Define a Blood Transfusion Process 

Figure 2 is a blood transfusion process coordination diagram. The actual 
process has 112 Little-JIL steps, and is too large to present here. Thus, we present a 
version that fits the needs of terse exposition, but is still representative of the actual 
process. 

Figure 2 shows that the full transfusion process, Single-Unit Transfusion 
Process, consists of four substeps to be executed in sequence (note the fight arrow in 
the step bar), namely Bedgide Checks, Prepare for Infusion, Transfuse Blood, and 
Post Transfusion Work. The first three are all decomposed into subprocesses that are 



27 2 Leon J. Osterweil et al. 

defined by separate diagrams. In this paper we show only the decomposition of the 
first step, Bedside Checks (in Figure 3). The last of the four substeps, Post 
Transfusion Work is further decomposed in Figure 2 into two substeps that can be 
executed in parallel (note the equal sign in its step bar), namely Discard Transfusion 
Materials and Record Infusion Information. Here too, these substeps are further 
decomposed in separate coordination diagrams, each of which adds further details. 
Substeps are the primary method of supporting the incorporation of details into 
Little-JIL process definitions, since decomposition can proceed to any level of 
abstraction. 

Bedside Checks 

Prepa 

Single Unit Transfusion Process 

/ \ 

Transfuse Blood / 

iR~eaetion SUSEe¢ted 

Handle Transfusion Reaction 

Post Transfusion Work 

Discard Transfusion Materials. 

Record Infusion Information 

Figure 2: A coordination diagram of a Little-JIL blood transfusion process. 

Note also that the Transfuse Blood step has a postrequisite (indicated by the fact 
that the arrowhead on the right of its step bar is colored in). We do not show the 
decomposition of this step, but the postrequisite defines the activities to be 
performed after this step's execution to determine whether there has been an adverse 
reaction to the blood transfusion. If so, this postrequisite will throw a Reaction 
Suspected exception, causing control to be transferred to the Handle Transfusion 
Reaction exception handler, which is another substep of the parent, Single-Unit 
Transfusion Process. Handle Transfusion Reaction is also elaborated by a structure 
of substeps, again not shown here for lack of space. But, as might be expected, this 
handler is of significant size and thus represented by a non-trivial structure. Note 
that the exception handler edge is annotated with the type of exception that is 
handled and with a right arrow icon indicating that execution continues as though the 
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step that threw the exception finished execution. Thus, the next step executed is Post 
Transfusion Work. 

We note that the diagrams in Figures 2 and 3 do not contain all the information 
comprising a complete coordination specification. The Visual-JIL editor is used to 
create Little-JIL coordination diagrams, and it can elide much information in the 
interests of reducing visual clutter. In particular the step's agent and resource 
requirements are not shown in these diagrams, but are represented iconically by the 
circle above the step. Likewise, the artifacts that are arguments to the various steps 
must be specified on the edges of a Little-JIL diagram and as part of the information 
attached to the circle above each step. This information too is elided here for 
clarity. 

While the process depicted in Figure 2 presents a straightforward top-level view 
of the transfusion process, this view is somewhat illusory. There is considerable 
additional complexity that must be defined in detail in order to capture salient issues 
in blood transfusion, thereby rendering them amenable to definitive analysis. To 
illustrate this, we decompose the first substep, Bedside Cheeks. This step, depicted 
in Figure 3, represents the checking that is to be done prior to a transfusion, and is 
thus of central importance in establishing a good basis for safety analysis. 

Note that the hierarchical elaboration of Bedside Check~ makes it clear that this 
step consists of two separate checks, one to assure the transfusion is being given to 
the right patient and one to assure the blood to be transfused is correct. The equal 
sign in the Bedtide Checks step bar indicates that these two checks can be performed 
in any order, and indeed can be interleaved with each other. The details of the two 
checks are interesting and important, and also indicate the value of some of the 
semantic power of a language such as Little-jiL. Note, for example, that the first 
substep, Check Patient ID, consists of the execution of Get Patient ID, followed by 
the execution of Check ID to Patient Match. Each of these requires considerable 
further elaboration (not shown for lack of space), as they can be seriously 
complicated by various combinations of situations such as an unconscious patient, a 
patient who is bleeding profusely, and a patient who has no ID band. The full 
elaboration of these substeps deals with combinations of these situations, using 
language features such as exception handling. Of central concern to this step, 
however, is the possibility that the Check ID to Patient Match step might fail. This 
may happen for many different reasons, but here we indicate that it might happen as 
a consequence of the evaluation of this step's postrequisite, in which case this 
contingency is handled by throwing the ID and Patient Don't Match exception. The 
handling of this exception is done by recursively calling the Check Patient ID step. 
Here we note that, because Little-JIL steps are abstractions, and thus function very 
much like procedure calls, this recursive call of Check Patient ID occurs in the scope 
and context of the exception handler, thus making available to the step information 
that may be carried along as arguments to the recursive call. Thus, Little-JIL 
supports sending information about the reasons that the check has failed. This is a 
faithful representation of what would happen in the real-world situation, where this 
information would be used to guide the next execution of the Get Patient ID step (eg. 
gathering new information on the patient),and the next invocation of the Check 
Patient ID step. This shows the value of providing strong support for abstraction. 
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Figure 3: The hierarchical elaboration of the Bedside Check~ step 

The other checking step, Redundant Product Check, provides examples of the 
value of other Little-JIL language features. Here we note that this step consists of 
the parallel execution of two different instances of the Check Product step, not 
elaborated here for lack of space. But we have specified that the resources required 
as agents for the two steps are two different nurses (Nurse #1 and Nurse #2),who are 
obliged to perform the identical check to be sure that the blood product is correct. 

Redundant Product Check has a postrequisite, a comparison (not shown here) of 
the reports from the two nurses to make sure that both agree that the blood product is 
correct. We show two possible exceptions that can be thrown. If the two nurses 
disagree, a Nurses Disagree exception is thrown, and is handled by rethrowing 
(upward arrow) the exception to an ancestor step for resolution. If there is agreement 
that the blood product is incorrect, a Wrong Product exception is thrown, and is 
handled by the Get Blood Product step, which is a reinstantiation of the step defining 
how a blood product is requested from the blood bank. That step appeared 
previously in this process definition, but is not shown for lack of space. Again, note 
that the fact that Get Blood Product is called in the context of the handling of this 
exception means that the report from the nurses providing details about what was 
wrong with the blood product can now be transmitted to the blood bank. 

2.3 Using Propel and FLAVERS Analysis to Look for Process Defects 

We now provide a very brief and simplified example of how we applied finite- 
state verification to the blood transfusion process definition. Our approach to finite- 
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state verification is described in detail in [9]. In that paper we describe how 
FLAVERS performs exhaustive checks of all possible paths through a system in 
order to determine whether or not the execution of any path would cause a violation 
of a desired property. For our purposes, a property is a specification of the 
requirements for some aspect of the behavior of a system. As a requirement, the 
property is a specification against which a system is to be verified. For example, a 
property may specify that a certain event may not occur until another event has 
occurred. In our work we compare a process against such properties. In cases 
where the property is violated we modify the process (note, we ignore for the 
moment the possibility that the property may be incorrectly specified) and verify the 
modified process to the property again, continuing until the verification succeeds, 
thereby improving the process. For our analysis, properties are represented as finite- 
state automata and describe certain sequences of events that must (or must not) occur 
in every execution of the process. Figure 4 shows an example of one such property 
for our blood transfusion process. This automaton specifies that after executing the 
Get Patient ID step, executing the Check ID to Patient Match step moves the process 
into a state where Transfuse Blood is acceptable as the next step. The automaton 
also specifies, however, that Transfuse Blood is not acceptable if Get Patient ID or 
Check ID to Patient Match has not yet been executed. This would cause the 
automaton to be moved to the error state. Note also that if Check lD to Patient 
Match is followed by Get Patient ID, the automaton is moved back into the initial 
state, from which Transfuse Blood again causes a transition to the ERROR State. 
This event sequence occurs if Check ID to Patient Match is followed by the throwing 
of an exception, because the match has failed. The exception is handled by 
reinvoking the Check Patient ID step. Because its first substep is Get Patient ID, 
this repeated execution of Get Patient ID indicates that the Check ID to Patient 
Match step has failed and that Transfuse Blood is not acceptable now. Automata 
such as that indicated in Figure 4 were generated with the aid of our Propel system 
[14], which facilitates the generation of such automata by using a question tree to 
elicit specifics of the properties. Propel also features a natural language facility to 
describe the semantics of the automaton in natural English. Note, that for this 
example there are several other important properties that need to be verified, 
including one that states that Check ID to Patient Match must always be immediately 
preceded (e.g., no intermediate Transfuse Blood events) by Get Patient ID. 

Once a process and an automaton are defined, using Little-JIL and Propel 
respectively, we use the FLAVERS finite-state verification system to determine 
whether any execution of the process could drive the automaton to the error state. 
While the verification may appear straightforward for this example, we note that 
even this small example poses serious challenges. The parallel step allows all 
possible interleavings of substep executions, and the recursive invocation adds 
further complexity. Finally, the sheer size of the final process (112 steps) makes the 
verification problem very large. A verifier such as FLAVERS, which employs a 
number of optimization techniques, is usually able to handle the verification of 
properties of modest-sized processes such as this one. 
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Figure 4: This finite-state automaton requires Transfuse Blood to happen only if Check ID to 

Patient Match has executed, but NOT been followed by Get Patient 1D. 

3 Experiences and Evaluation 

Our experience in defining and analyzing the blood transfusion process suggests 
the value in this approach, as it has resulted in detection and correction of process 
defects. Some of our experiences were as expected, but many were unexpected. 

3.1 Process Elicitation 

Many process deficiencies were realized just in the interviewing that was 
necessary to elicit the complete, detailed process. We quickly found that the original 
process guidelines often did not use terms consistently. For example, we found that 
a word such as "check" sometimes was used in the same way as the word "verify", 
but sometimes it had different connotations. Careful elicitation of what was meant, 
by using Little-JIL to clarify the exact meanings, often led to the desired 
understandings. This led the medical professionals to examine their terms, to define 
them more carefully, and to use them more consistently. In doing so, the resulting 
process definitions left less room for confusion, misunderstanding, and ambiguity. 

It was not uncommon for the process guidelines to leave responses to exceptions 
unspecified. For example, in some cases a process required a "check" for a 
condition, with the understanding that some alternative processing was necessary if 
the "check" fails. In many cases, however, the existing process description assumed 
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that check would always succeed and provided little or no guidance about what to do 
in case of a failure. Here again specifying details of the process quickly raised such 
issues and led the medical professionals to synthesize responses, thereby improving 
the process. 

We note that the Little-JIL language itself was very helpful in this regard. We 
found that bundling resource specification, exception management, pre- and post- 
requisites, and artifact flow together in the definition of a step caused interviewers to 
ask about each of these issues each time the need for a new step was recognized. In 
asking such questions as "where is this exception handled?" and "what kind of agent 
is responsible for execution of this step?" important issues were raised, and 
significant process improvements were made. We have concluded that a language 
offering rich semantics can be important in suggesting the absence of important 
details from a process definition and in suggesting the need for elaboration. 

The semantic features of Little-JIL were useful in this work. In particular we 
found that the facilities for handling exceptions were valuable and generally effective 
in representing exceptional behavior. The facilities for specifying agent types for 
each step were also useful and important. As we proceeded with the detailed 
elaboration of the blood transfusion process, the value of abstraction, scoping, and 
hierarchy became increasingly apparent. While this example gives only a hint of 
scaling issues, as our process became larger, the problems posed by increasing size 
became more apparent. Hierarchy is a well-established device for dealing with 
scaling issues, and its use in Little-JIL underscored that point. But hierarchy in 
Little-JIL also incorporates the use of abstraction. Thus, for example, specifying the 
same step in more than one place causes the elaboration of that step, but Little-JIL's 
use of scoping causes each elaboration to be done in the context of its enclosing 
scope(s). The previous example indicated how useful this can be. 

Thus our experience suggested that a process definition language should offer 
facilities for abstraction, scoping, hierarchy, exception management, resource 
specification, and artifact specification--at the very least. This experience also 
suggested the value of other features not present in Little-JIL, for example 
transaction semantics and real-time specification. 

Finally it seems important to note that the Little-JIL pictorial notation proved to 
be quite accessible to the medical professionals. Although we expected to find 
medical professionals unwilling to learn the semantics and iconography of Little-JIL 
we discovered that within an hour most were relatively comfortable with the 
language and were becoming increasingly adept at using its features skillfully. 

3.2 Property Elicitation 

Our work also indicated the importance of eliciting the properties that are 
required of the process being elicited. We were especially interested in properties 
that are stated at a high enough level to apply not just to the specific process we had 
elicited, but to other processes intended to achieve the same goals. In particular, we 
would like to use finite-state verification not just to detect possible problems with the 
existing process but also to evaluate proposed modifications to that process. Our 
experience demonstrated that property elicitation is valuable additionally as another 
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vehicle for drawing out important process details. We found that it was not 
uncommon for medical domain experts to specify the details of what they do without 
having a clear idea of what higher-level goals they are trying to achieve when they 
perform certain activities in certain ways. By using property specification as a way 
to place a focus on the goals, motivations, and desiderata for a process, we were 
often able to cause process performers to think about their processes in a new light, 
sometimes leading to realizations of possible improvements. In other cases we found 
that the careful specification of process desiderata, phrased in terms of required or 
forbidden sequences of steps, led quickly to a realization that some of the steps were 
missing from the process definition, were misnamed in the process definition, or 
were used incorrectly in the process definition. Thus, property elicitation also led to 
improvements in the process. It complemented the focus on "what do you do?" with 
"why do you do that?" or "what are you really trying to do here?". 

We found that Propel was an important aid to the elicitation of precise property 
specifications. Experience with other projects had demonstrated that it is quite 
common to specify a property formally in terms of a finite-state automaton or some 
form of temporal logic, only then to find that important property details were not 
captured correctly. For example, the property, "A consent form must be signed prior 
to blood transfusion", leaves unanswered such questions as, "does one consent form 
suffice for multiple transfusions?" and "can the consent be revoked prior to 
transfusion?". Propel uses a question tree to automatically pose such questions, thus 
improving the likelihood that the specified property will correctly reflect the full 
intent of the person specifying the property. Propel's use on this project supported 
this conclusion. 

3.3 Verification of the Process 

Our work on this project is just beginning to employ the FLAVERS finite-state 
verifier to analyze the blood transfusion process for adherence to some properties. 
To date we have been able to verify adherence to a small number of properties, most 
of which have been relatively trivial. There have been numerous verification 
failures, but most have been due to errors in the process definition itself or the 
property definition. Although to date we have not yet uncovered serious defects in 
the process itself, we expect that process defects will start to appear once we begin to 
verify larger portions of the process and verify them against more stringent 
properties. 

In analyzing larger portions of the process, however, it has become increasingly 
clear that it is important to employ the services of a reasoning system that can handle 
this scale. We note that processes, such as blood transfusion, that entail substantial 
amounts of concurrency and exception handling have accordingly very large 
execution state spaces, thus making scaling an important issue, lndeed the 
underlying graph structures that we generated from our process definitions and used 
as the basis for our finite-state verification often had tens of thousands of nodes and 
edges. The relative terseness of Little-JlL often serves to mask the size of this state 
space, but it is this state space that must be explored in order to verify properties. 
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Our experiences so far suggest that the performance of FLAVERS does seem to 
scale acceptably well. 

4 Related Work 

There has been some prior work in using process definition and analysis to 
improve medical processes. For example, the Protocure II project [15] has goals that 
are quite similar to ours, but uses a rather different, AI-based, linguistic paradigm for 
defining processes. Noumeir has also pursued similar goals, but using a notation like 
UML to define processes [16]. Others (eg. [17]), view medical processes as 
workflows and use a workflow-like language to define processes and drive their 
execution. But, we note that these projects seem to place less emphasis on analysis. 

There have been other approaches to improving medical safety, as well, but 
much of the emphasis of this work has been targeted towards quality control 
measures [5,18], error reporting systems [ 19], and process automation in laboratory 
settings [20], such as those where blood products are prepared for administration. In 
other work, Bayesian belief networks have been used as the basis for discrete event 
simulations of medical scenarios and to guide treatment planning (eg. [21]). 

We note that many languages and diagrammatic notations have been evaluated as 
vehicles for defining processes. It was suggested that processes be defined using a 
procedural language [22]. In MARVEL/Oz [23] processes were defined using rules. 
SLANG [24] used modified Petri Nets to define processes. More recently, the 
workflow [25] and electronic commerce [26] communities have pursued similar 
research. This work has shown that some notations aid process understanding, while 
others provide the semantic rigor needed to support verifying processes to varying 
degrees of certainty. None, however, seems able to support process definitions that 
are clear and precise enough. Main failings of these approaches include inadequate 
specification of exception handling, weak facilities for controlling concurrency, lack 
of resource management, and inadequate specification of artifact flows. 

We also note that there has been a great deal of work on the analysis of software 
artifacts. Most of this work has been focused on analysis of code or models of 
systems. Finite-state verification, or model checking, techniques (eg. [8, 9, 27]), 
work by constructing a finite model that represents all possible executions of the 
system and then analyzing that model algorithmically to detect executions that 
violate a particular property specified by the analyst. As noted above one of the 
major concerns of these techniques is controlling the size of the state-space model, 
while maintaining precision in the analysis result. Our team has been involved in the 
analysis and evaluation of various finite-state verification approaches [9], and the 
development of verifiers such as FLAVERS [9] and INCA [28]. Our work seems to 
be among the first that has applied FSV approaches to process definitions [ 10]. 
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5. Extensions of the Work 

We have used the blood transfusion process definition to automatically generate 
a fault tree representation of the process and have used the fault tree to identify 
single points of failure. This shows the use of process definitions to improve the 
robustness of a process by identifying and removing single points of failure. Work 
with chemotherapy processes has confirmed most of the findings stated above. 
Work with patient flow in the Emergency Department, however, has led to 
realization of the centrality and complexity of issues pertaining to resources. 

We have applied our process improvement approach to processes to a broad 
range of domains such as labor-management negotiation, elections, and scientific 
data processing. The work in each domain has shown the need for additional 
language facilities and a broader research focus, but has confirmed the general 
applicability of our approach, thus, pointing to the need for interesting 
complementary work. 

In conclusion, we observe that this work has shown considerable promise and has 
suggested extensions in several directions. We propose to pursue further research in 
this domain. We expect that this research will lead to notable improvements in the 
quality of medical processes, and we also expect it to lead to better understandings of 
how process definition and analysis technology can become key components in the 
more effective engineering of methods in this critically important domain. 
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