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Abstract. In this paper we demonstrate how static concurrency analysis tech- 
niques can be used to verify application-specific properties of an architecture 
description. Specifically, we use two concurrency analysis tools, INCA, a flow 
equation based tool, and FLAVERS, a data flow analysis based tool, to detect er- 
rors or prove properties of a WRIGHT architecture description of the gas station 
problem. Although both these tools are research prototypes, they illustrate the 
potential of static analysis for verifying that architecture descriptions adhere to 
important properties, for detecting problems early in the lifecycle, and for helping 
developers understand the changes that need to be made to satisfy the properties 
being analyzed. 

1 I n t r o d u c t i o n  

With the advent of improved network technology, distributed systems are becoming in- 
creasingly common. Such systems are more difficult to reason about than sequential 
systems because of their inherent nondeterminism. In recognition of this, software ar- 
chitecture research is attempting to define architecture description languages to help 
developers describe distributed system designs. These high-level descriptions allow de- 
velopers to focus on structural, high-level design issues before lower level details are 
addressed, thereby helping to discover areas of high risk and to address these risks as 
early in the lifecycle as possible. To be truly beneficial, developers should be given 
tools to help them reason about their architecture descriptions, to help them discover 
problems as early as possible, and to help them verify that desired properties would 
indeed be maintained by these designs as well as by any systems correctly derived 
from these designs. It has been demonstrated that detecting errors early in the lifecycle 
[3] greatly reduces the cost of fixing those errors. Architecture description languages 
combined with appropriate analysis tools could therefore be an important means for 
reducing costs and improving reliability. 

A number of architecture description languages have been developed, such as 
WRIGHT [2], Rapide [13], Darwin [t4, 15], and UniCon [20]. There has also been some 
work on validating aspects of architecture designs. Using architectures specified in Uni- 
Con, for instance, developers can estimate local timing information and use those es- 
timates to check time-dependent properties with the RMA real-time analysis toot [ t 2]. 
Another approach is to use model-theoretic proof techniques to verify conformance of 
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elaborated architecture descriptions to higher-level architecture designs [14, 18]. De- 
velopers using the Rapide architecture description language can simulate executions of 
the system and verify that the traces of those executions conform to high-level specifi- 
cations of the desired behavior [13]. Although one would expect the number of traces 
through an architecture description to be much less than the number of possible exe- 
cutions in the corresponding software system, for most interesting systems there are 
still far too many such traces to explore them all. Thus, this is basically a sampling 
technique, and while it increases confidence in the architecture, it does not verify that 
all executions conform to the specifications. Another validation approach that has been 
explored is the use of static analysis techniques to verify general properties of archi- 
tecture descriptions. When successful, this type of analysis does verify that all possible 
executions conform to the specification. Allen and Garlan [ 1 ] use the static analysis tool 
FDR [7] to prove freedom from deadlock as well as compatibility between the compo- 
nents and connectors in an architecture description. These are general properties that 
are desirable for all architecture descriptions. 

The primary goal of this work is to investigate the applicability of existing static 
analysis techniques for verifying application-specific properties of architectures. We 
investigate one example architecture, a WRIGHT description of the gas station problem, 
and illustrate the kinds of properties that can be verified and the kinds of errors that can 
be found early in the lifecycle. Two versions of a WRIGHT architecture specification of 
the gas station example were graciously provided to us by David Garlan. We applied 
two static analysis tools: INCA, which is based on flow equations, and FLAVERS, 
which is based on data flow" analysis. Both of these tools are research prototypes that 
illustrate the potential for static analysis to verify that architecture descriptions adhere 
to important properties, to detect problems early in the lifecycle, and to help developers 
understand the changes that need to be made to satisfy the properties being analyzed. 

The next section gives a high-level overview of the two static analysis tools used in 
this case study. Section 3 gives a brief description of the gas station problem and the 
WRIGHT specification of the problem. Section 4 introduces the properties we selected 
to prove about this architecture and describes the analysis process and the results of 
that process. Section 5 summarizes the overall results, describes the benefits of this 
approach, and points out some interesting directions for future research. 

2 Too l s  U s e d  

A number of automated static concurrency analysis techniques have been proposed. 
They span such approaches as reachability analysis (e.g. [I 1,21,8]), symbolic model 
checking [4, 17], flow equations [5], and data flow analysis [6, 16]. The goal of this 
work is to demonstrate the applicability of static analysis techniques to architecture 
descriptions but not, at least at this point in time, to determine which approach might 
be best. Thus, we selected two different static analysis tools, based on fundamentally 
different approaches, with which we have considerable expertise. One tool, INCA [5], 
is based on flow equations, and the other, FLAVERS [6], is based on data flow analysis. 
Both these tools can be used to check whether all executions of a concurrent system 
satisfy a property, such as the mutually exclusive use of some resource. Although these 
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tools use different approaches, they both are conservative in that if they determine that 
a property holds, it is guaranteed to hold for all executions. When the tools fail to prove 
that a property holds, however, this may be because the system does indeed violate 
the property or it may be because the analysis, in order to assure conservativeness and 
improve efficiency, has over-approximated the executable behavior of the system. Thus, 
when a property fails to hold, the results are inconclusive and usually require further 
investigation. A brief description of each of these tools is given here. 

Inequality Necessary Conditions Analysis (INCA) derives a set of necessary con- 
ditions for the existence of an execution violating the property. In INCA, the sequential 
processes making up the concurrent system are translated into finite state automata 
(FSAs) from which necessary conditions, expressed as linear inequalities on the occur- 
rences of transitions in those automata, are derived. These inequalities reflect certain 
kinds of compatibility conditions among the executions of the individual processes that 
must be satisfied in an execution of the full program. The violation of the property is 
also expressed as inequalities in terms of occurrences of the FSA transitions. The con- 
sistency of the resulting system of linear inequalities is checked using standard integer 
linear programming (ILP) techniques. This approach is inherently compositional, in the 
sense that the inequalities are generated from the automata corresponding to the indi- 
vidual processes, rather than from a single automaton representing the full concurrent 
system. Thus, INCA avoids considering the state space of the full system. The size of 
the system of inequalities is essentially linear in the number of processes in the system. 
Furthermore, the use of properly chosen cost functions in solving the ILP problems can 
guide the search for a solution. ILP is itself an NP-hard problem in general, and the stan- 
dard techniques for solving ILP problems (branch-and-bound methods) are potentially 
exponential. In practice, however, the ILP problems generated from concurrent systems 
have large, totally unimodular subproblems and seem particularly easy to solve. Experi- 
ence suggests that the time to solve these problems grows approximately quadratically 
with the size of the system of inequalities (and thus with the number of processes in the 
system). 

The FLow Analysis for VERifying Software (FLAVERS) static analysis tool em- 
ploys data flow analysis to verify that a model of the system must always be consistent 
with a property. In FLAVERS, the control flow graph representation of each sequential 
process, annotated with events of interest, is composed into a trace flow graph, which 
explicitly represents the communications among the distributed processes as well as the 
interteavings of events among those processes. The node size of the trace flow graph 
is at worst quadratic, and for all practical examples we considered it is sub-linear, in 
the number of program instructions. The properties to be checked are translated into a 
finite state automaton, where the transitions are annotated with the appropriate events 
of interest. Using a data flow analysis algorithm that is O(N2S), where N is the node 
size of the trace flow graph and S is the state size of the automaton, FLAVERS deter- 
mines whether the sequences of events that can be observed on system executions are 
accepted by the language of the automaton. If  at the terminal node of the flow graph all 
event sequences are in the language of the property, we know that the property holds 
on all executions of the system. When some event sequences are in the language of the 
property and some are not, the results of the analysis are inconclusive, since it has to 
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be determined whether the event sequences that violate the property happen on any real 
executions of the system. FLAVERS offers a means to deal with inconclusive results by 
allowing the analyst to add additional constraints, in the form of finite state automata, 
which limit the behaviors represented by the task flow graph. For example, a constraint 
can model the behavior of a single variable in the system. This additional information 
about the system restricts the data propagation through the flow graph during the anal- 
ysis, thereby improving the accuracy of the analysis. 

INCA and FLAVERS are based on very different analysis techniques, although both 
avoid enumerating the total state space of a distributed system. In addition, both tech- 
niques have been used to prove a wide range of properties of distributed systems. Be- 
cause of this and our expertise with these tools, we chose them for our initial exploration 
of analyzing application-specific properties of architectures. 

3 Architecture Specification of the Gas Station Example 

The Gas Station system [9] models a self-serve gas station. This example has been 
widely studied by the static analysis research community. It has also been used in the 
software architecture community, and was the example provided to us by Garlan. In the 
general case, this system consists of n customers who come to a gas station to obtain 
gas for their vehicles, ra cashiers who sell the gas, and p pumps that discharge the gas. 
The customers pay the cashiers (and get change in some versions), who order the pumps 
to discharge gas. We consider a specific instance of this system, with two customers, 
one cashier, and one pump. Garlan gave us WRIGHT specifications for two versions of 
this system. 

WRIGHT formally describes architectures as collections of components, which rep- 
resent computation units in the system, and connectors, which represent the means of 
information exchange among the components. Each component and connector is aug- 
mented with specifications that permit one to characterize the behavior of the compo- 
nents and their interactions. For a component the specification consists of a number of 
ports, and a computation. Each port represents a number of interactions in which the 
component may participate. In other words, a port partially describes the interface of the 
component, taking the point of view of the connector or connectors that communicate 
with this component through this port. The computation describes the internal func- 
tionality of the component. A connector is represented by a set of roles specifying the 
interface of this connector and the glue that specifies how the interactions actually take 
place. A system specification is composed of a set of component and connector type 
definitions, as described above, a set of instantiations of specific objects of these types, 
and attachments. Attachments specify which components are linked to which connec- 
tors. WRIGHT uses CSP [ 10] to describe the behavior of roles, ports, computations, and 
glues. 

Figure t shows the WRIGHT specification for the first version of the Gas Sta- 
tion. This architecture describes three types of components and three types of con- 
nectors for communications between the customers and the cashier, the cashier and the 
pump, and the customers and the pump. The concrete instantiation of this architec- 
ture contmns four components, C u s t o m e r l ,  C u s t o m e r 2 ,  C a s h i e r ,  and Pump and 
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Component Customer 
Port Pay = pay!x --~ Pay 
Port Gas = take --+ pump?x ~ Gas 
Computation = Pay.pay!x --+ Gas.take --+ Gas.pump?x --+ Computation 

Component Cashier 
Port Customerl = pay?x --~ Customerl 
Port Customer2 = pay?x --+ Customer2 
Port Topump = pump!x -+ Topump 
Computation = Customerl.pay?x --+ Topump.pump!x --+ Computation 

Customer2.pay?x --,, Topump.pump!x --+ Computation 
Component Pump 

Port Oill = take --+ pump!x -+ Oill 
Port 0i12 = take --+ pump!x ~ Oi12 
Port Fromcashier = pump?x --+ Fromcashier 
Computation = Fromcashier.pump?x --+ 

(Oill.take --+ Oitt.pump!x --~ Computation) 
0 (Oil2.take --+ Oil2.pump[x --+ Computation) 

Connector Customer_Cashier 
Role Givemoney = pay!x -+ Givemoney 
Role Getmoney = pay?x --+ Getmoney 
Glue = Givemoney.pay?x --4. Getmoney.pay!x --+ Glue 

Connector Customer.Pump 
Role Getoil = take --+ pump?x --+ Getoil 
Role Giveoil = take --~ pump!x --+ Giveoil 
Glue = Getoil.take --+ Giveoil.take ~ Giveoil.pump?x --+ Getoil.pump!x -+ Glue 

Connector Cashier_Pump 
Role Tell = pump!x -+ Tell 
Role Know = pump?x -+ Know 
Glue = Tell.pump?x --+ Know.pump!x ~ Glue 

Instances 
Customerl: Customer 
Customer2: Customer 
cashier: Cashier 
pump: Pump 
CustomerI_cashier: Customer_Cashier 
Customer2_cashier: Customer_Cashier 
Customerl _pump: Customer_Pump 
Customer2_pump: Customer_Pump 
cashier_pump: Cashier_Pump 

Attachments 
Customert ~Pay as Customerl_cashier.Givemoney 
Customerl.Gas as Customerl_pump.Getoil 
Customer2.Pay as Customer2_cashier.Givemoney 
Customer2.Gas as Customer2_pump.Getoil 
cashier.Customerl as Customerl_cashier.Getmoney 
cashier.Customer2 as Customer2_cashier.Getmoney 
cashier.Topump as cashier_pump.Tell 
pump.Fromcashier as cashier_pump.Know 
pump.Oill as Customerl_pump.Giveoil 
pump.Oil2 as Customer2_pump.Giveoil 

Fig. 1. The WRIGHT Specification of the First Version of the Gas Station 
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Fig. 2. Gas Station system, version 1 

five connectors, Customerl_cashier, Customer2_cashier, Cashier_pump, 
Customerl_pump, and Customer2 _pump. As shown in Figure I, each Customer 
component has two ports, where Pay specifies the behavior of the Customer as viewed 
by the C u s t o m e r _ c a s h i e r  connector, and Gas  specifies the behavior as viewed by 
the C u s t o m e r _ p u m p  connector. The behavior of the Gas  port consists of repeatedly 
taking the hose ( t a k e  event) and pumping gas (pump ?x  event). The computation part 
of C u s t o m e r  specifies that a Cus t o m e r  does the following sequence of actions re- 
peatedly: pay for gas, take the hose, obtain gas from the pump. 

Figure 2 presents an informal diagram of this architecture, with shaded boxes rep- 
resenting WRIGHT components and clear boxes representing WRIGHT connectors. The 
components' ports and the connectors' roles are shown as trapezoids, and named in- 
teractions between the ports and the roles are shown as labeled directed edges. Note 
that this diagram does not describe the order in which the interactions occur locally 
to connectors and components, the way the formal WRIGHT specification in Figure 1 
does. 

In this architecture, the customers repeatedly pay the cashier, then take the hose, 
and then wait for gas. The cashier, upon receiving a payment, turns the pump on. After 
a customer takes the hose and the pump receives authorization from the cashier, the 
pump then discharges the amount of gas, specified by the cashier, to the customer. 

This version of the Gas Station is known to have a critical race. Specifically, it 
is possible for C u s t o m e r l  to pay before C u s t o m e r 2  pays but for C u s t o m e r 2  
to take the hose before C u s t o m e r l ,  thus getting the amount of gas purchased by 
Customerl. 
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Component Customer 
Port Pay = pay!x -+ Pay 
Port Gas = pump?x -+ Gas 
Computation = Pay.pay!x -+ Gas.pump?x --+ Computation 

Component Pump 
Port Oill = pump!x -+ Oill 
Port Oi12 : pump!x -+ Oi12 
Port Fromcashier = pump?x --+ Fromcashier 
Computation = Fromcashier.pumpl ?x -+ 

Oill.pump!x -+ Computation) 
I] Fromcashier.pump2?x -+ Oil2.pump !x -+ Computation) 

Component Cashier 
Port Customerl -- pay?x --+ Customerl 
Port Customer2 = pay?x --+ Customer2 
Port Topump = pumpl !x --+ Topump n pump2!x -+ Topump 
Computation = Customerl.pay?x -~ Topump.pumpl !x -+ Computation 

Customer2.pay?x --+ Topump.pump2!x --+ Computation 

Fig. 3. WRIGHT Components of the Second Version of the Architecture 

The second version of the Gas Station removes this race by combining taking the 
hose and pumping the gas into a single action and by having the cashier tell the pump 
which customer should get gas. This means that, instead of paying and actively re- 
questing gas by taking the hose, the customers now must pay and wait until the pump 
contacts them by sending gas. Figure 3 shows the second version of the specification for 
Customer, Pump, and Cashier components only, since changes to the connectors 
are trivial. Figure 4 contains the corresponding illustration. Note that the only differ- 
ence between the diagrams in Figures 2 and 4 is in communications between the ports 
of the components and the roles of the connectors. 

4 Checking Properties of the Gas Station Architecture 

The existing versions of INCA and FLAVERS do not accept WRIGHT specifications as 
input. While it should be relatively straightforward to build front-ends for both tools that 
would construct the appropriate internal representations directly from WRIGHT, this 
seemed inappropriate for the initial exploration we had in mind. Both tools accept Ada 
code as input, so we manually translated the WRIGHT specifications into Ada in order 
to apply the tools. The close relationship between the concurrency constructs in CSP 
and Ada made this translation fairly easy. Each component and connector instantiation 
of the architecture is represented by an Ada task. The "?" and "!" operations of CSP 
naturally correspond to Ada rendezvous. The non-deterministic and deterministic CSP 
choice operators are modeled with the Ada s e l e c t  statement. 
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Fig. 4. Gas Station system, version 2 

Figure 5 gives the Ada code for the Customerl component for the first WRIGHT 
specification. The assignment statement sets the variable c a s h  to the value of a func- 
tion whose body is not specified; the analysis tools treat this as a nondeterministic as- 
signment. After choosing an amount of gas with this assignment, the Cus t o m e r l  task 
calls the g e t m o n e y _ p a y  entry of the C u s t o m e r l _ e a s h i e r  task with the parame- 
ter c a s h .  This rendezvous corresponds to the pay!x event. The Cus t o m e r  ! task then 
calls the g e t o i t _ t a k e  entry of the C u s t o m e r l _ p u m p  task, and then accepts a call 
at its own gas_pump entry. Note that a separate Ada entry exists for each interaction 
type between a role and a port, the name of the entry being the name of the receiving 
port or role, to which the name of the interaction is appended via the underscore symbol. 
For example, the interaction pump between the Gas  port of C u s t o m e r l  component 
and C u s t o m e r _ c a s h i e r  connector corresponds in the Ada version of C u s t o m e r l  
to the entry named gas_pump.  The complete Ada code for all versions of the example 
can be found in [t9]. 

Our goal was to investigate whether existing static concurrency analysis tools could 
be usefully applied to check application-specific properties of architecture descriptions. 
Since the gas station is relatively simple, however, we focused on properties that reflect 
high-level requirements for a self-service gas station. Since we do not have any "offi- 
cial" requirements documents for the gas station, we chose a small number ofproperties 
that seemed to us to reflect reasonable requirements. Our goal was simply to explore the 
applicability of the static analysis tools to architectures; we make no claim that these 
are the most important or significant requirements. 
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task body Customerl is 
cash : AMOUNT; 

begin 
loop 

cash := Some_Amount; 
Customerhcashier.getmoney_pay ( cash ); 
Customerl_pump.getoihtake; 
accept gas_pump ( gas_amount : in AMOUNT); 

end loop; 
end Customerl; 

Fig. 5. Ada Translation of the Customer Specification 

In the remainder of this section, we show how INCA and FLAVERS were used to 
check several properties of the gas station architectures, identifying certain faults and 
verifying that modifications to the architectures corrected these faults. 

4.1 The Critical Race to the Pump 

As mentioned above, the first WRIGHT specification has a critical race, in which one 
customer pays for gas and the second customer then pays and takes the pump before the 
first customer gets gas. In this case, the second customer gets the gas paid for by the first 
customer. The first requirement we considered was that customers get gas in the order 
in which they pay. We wanted to know whether INCA and FLAVERS could detect the 
violation of this property in the first WRIGHT version, and whether they could show 
that the property holds in the second version. 

We begin with the first version. The property we want to check is stated in terms 
of customers paying and getting gas. For the analysis, we must identify locations in 
the code that correspond to these events. We identified a customer paying with the 
corresponding rendezvous between the connector task fi'om that customer to the cashier 
and the cashier task, and the customer getting gas with the rendezvous between the 
pump task and the connector task from the pump to the customer. 

The INCA approach is to produce necessary conditions for an execution of the sys- 
tem that violates the property. We express a violation of the property as an INCA query. 
By symmetry, it is enough to ask for an execution in which Customer2 pays and gets 
gas while Cus t o m e r l  has paid but not yet gotten gas. So we wrote a query describing 
an execution in which a rendezvous between C u s t o m e r l _ c a s h i e r  and C a s h i e r  
occurs, followed by a rendezvous between C u s t o m e r 2 _ c a s h i e r  and C a s h i e r  and 
a rendezvous between Pump and Pump_Customer2  be~bre the next rendezvous be- 
tween pump and pump_Cus tomer l .  

The INCA query we used is shown in Figure 6. This specifies a segment of an exe- 
cution divided into two intervals. The first interval runs from the beginning of the exe- 
cution (specified by the : i n i  t i a l  keyword) and ends with some rendezvous between 
Customerl_cashier and Cashier at the customerl_pay entry (specified by 
the : e n d s - w i t h  keyword and the r e n d  function). This interval is followed immedi- 
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(defquery "race . . . .  nofair" 

(omega-star-less 

(sequence 
(interval :initial t :open t 

:ends-with '( 

(rend "customerl_cashier;cashier.customerl~ay") 
(interval 
:ends-with '((rend "p,~mp;customer2~ump.getoil")) 

:require ' ( 

(rend "customer2_cashier;cashier.customer2~ay")) 
:forbid '((rend "pump;customerl~ump.getoil")))))) 

Fig. 6. INCA Query: Customers Get Gas in the Order They Pay. 

ately by a second one ending with a rendezvous between Pump and Cus tomer2 _pump 
at the ge toi i entry of Cus tomer2 _pump. The second interval contains a rendezvous 

between Customer2_cashier and Cashier at the customer2_pay entry (spec- 
ified by the : require keyword) and does not contain any rendezvous between Pump 
and Customerl_pump at the getoil entry (specified by the : forbid keyword). 

From the Ada code corresponding to the first WRIGHT specification and this query, 
INCA generated a system of inequalities. In this case, the sys temof  inequalities had 
an integer solution, and INCA gave us the behavior of each task corresponding to that 
solution. From these task behaviors, it is straightforward to construct an execution in 
which the desired property is violated. To check this property for the second WRIGHT 
specification, it was necessary to use two queries. (This is due to a technical reason in- 
volving certain cycles in the FSAs.) The first query checked that the cashier notifies the 
pump in the same order as customers pay, and the second query checked that the pump 
gives gas to the customers in the same order as it is notified by the cashier. The corre- 
sponding systems of inequalities were inconsistent, verifying that customers always get 
gas in the order that they pay with this second architecture. 

The FLAVERS analysis is similar. For a FLAVERS analysis, the events of interest 
are indicated by annotating the Ada code. In this case, we used automatically generated 
annotations on the accept statements. For example, the " a c c e p t  gas_pump"  state- 
ment in the C u s t o m e r l  task was annotated with the event c u s t o m e r l _ g a s _ p u m p .  
We then gave FLAVERS a property specification, in the form of a quantified regular 
expression (QRE), asking whether any execution could generate the sequence of events 
corresponding to a violation of the property. The QRE we used is shown in Figure 7. It 
consists of the alphabet, quantifier, and regular expression. The alphabet of the QRE ap- 
pears in braces and lists all events used for the specification of the property. The alphabet 
is followed by the "none" quantifier instructing FLAVERS to attempt to verify the prop- 
erty that no execution leads to a sequence of events in the alphabet that lies in the lan- 
guage of the regular expression that follows. In the regular expression, the period stands 
for the disjunction ofatl symbols, the asterisk is the transitive closure operator, the nota- 
tion [ - e  ] stands for the disjunction of all symbols in the alphabet other than e, and the 
semicolon is the concatenation operator. The language of the regular expression thus 
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{cashier_customerl_pay, 
customerl@ump_getoil, 

none 

*; 

cashier_customerl@ay; 
[-customerl@urap_getoil]*; 
cashier_customer2@ay; 
[-customerl@ump_getoil]*; 
customer2@ump_getoil; 
W 

cashier_customer2~ay, 
customer2~ump_getoil} 

Fig. 7. FLAVERS QRE: Customers Get Gas in the Order They Pay. 

consists of all strings over the alphabet in which a cashier_customerl_pay oc- 
curs, followed by a cashier_customer2_pay and a customer2_pump_getoil 
before a cue tomerl_pump_getoi i occurs. 

For the first WRIGHT specification, FLAVERS produces an execution in which the 
property is violated. For the second specification, FLAVERS verifies that this property 
holds for all executions. 

Thus, both tools were able to detect the fault in the first version of the architecture, 
show how it occurs, and verify that a modification to the architecture corrects the fault  
The remaining properties were checked on this modified version. 

4.2 No Free Gas 

We next checked the requirement that no customer receives gas without paying for it. 
This amounts to checking that, in every execution and for each customer, the events 
of paying for gas and receiving gas strictly alternate, with paying for gas coming first. 
By symmetry again, it is sufficient to check this for C u s t o m e r t .  We used the same 
rendezvous corresponding to the events of the customer paying and getting gas as in the 
previous section. 

Using INCA, the standard way to show two events alternate is to use two queries. In 
this case, the first query describes a prefix of an execution in which the number of times 
the customer has paid for gas exceeds the number of times it has received gas by at least 
two. The second query describes a prefix of an execution in which the number of times 
the customer has received gas is greater than the number of times the customer has paid 
for gas. (For the complete set of  INCA queries and FLAVERS QREs, refer to [19].) 
INCA reported that the necessary conditions for the existence of such executions were 
inconsistent. This means that, in every prefix of an execution, the number of times the 
customer has paid for gas is either equal to the number of times it has received gas or 
is one greater than the number of times the customer has received gas, showing that the 
events of paying for gas and receiving it strictly alternate, with paying for gas occurring 
first. 

For FLAVERS, we used a QRE with the same alphabet as the one in Figure 7 
and a regular expression requiring the two events to alternate appropriately. Here the 
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regular expression, as opposed to the previous property, specifies what behavior must be 
observed on all executions. FLAVERS verified that the property holds on all executions. 

4.3 Customers Get the Right Amount of Gas 

We also checked whether a customer receives the amount of gas that he or she paid 
for. To facilitate the analysis, we allowed only two amounts (the type AMOUNT in our 
Ada programs had two values, 1 and 2). We then checked whether it was possible 
for a customer to pay for one amount of gas and then receive the other amount. By 
symmetry, it is sufficient to check only for one of the customers paying for one unit of 
gas and receiving two units. 

Our INCA query asked for a prefix of an execution in which the first interval ends 
with a rendezvous with parameter 1 between C u s t o m e r l _ c a s h i e r  and C a s h i e r  
at the c u s  t o m e r l _ p a y  entry (the event where the customer pays for one unit of gas) 
and the second interval ends with a rendezvous with parameter 2 between pump and 
C u s t o m e r l _ p u m p  at the g e t o i l  entry (the event where the customer receives two 
units of gas). The second interval was forbidden to contain a rendezvous with parameter 
1 between Pump and Customerl_pump at the getoil entry (the event where the 
customer receives the single unit of gas that was paid for). INCA reported that the 
system of inequalities it generated was inconsistent, so no such execution could exist. 
This showed that customers never get the wrong amount of gas. 

FLAVERS required additional event annotations to capture the numeric values of 
parameters that specify amounts of money and gas. Currently these annotations are 
manually added to the source code of the system under analysis in the form of com- 
ments. The QRE for this property specified that on no execution should it be possible 
that the event of C a s h i e r  receiving 1 at its c u s t o m e r l _ p a y  entry is followed by 
the event of Pump giving 2 to the g e t o i l  entry of the C u s t o m e r l _ p u m p  connector 
before Pump gives 1 to Cus tomer l_pump .  FLAVERS verified the property. 

4.4 Another Race Condition 

In checking the first two properties described earlier, we identified the event of a cus- 
tomer paying for gas with the pay?x action on the cashier's customer port (or, in the 
Ada code, with the corresponding rendezvous between the connector between the cus- 
tomer and cashier and the cashier task). Similarly, we identified the event of a cus- 
tomer receiving gas with the pump!x action on the pump's oil port (or with the cor- 
responding rendezvous between the pump and the connector between the pump and 
customer). Viewing events as actions taken by components, we have here taken the 
viewpoint of the cashier and pump components about when a customer pays or re- 
ceives gas. But we could just as well take the viewpoint of the customer component. 
In that case, we would identify the customer paying with the pay!x action on the cus- 
tomer's pay port and receiving gas with the pump?x action on the customer's gas port. 
The Ada rendezvous corresponding to the first action involves the customer and the 
C u s t o m e r _ c a s h i e r  connector; the rendezvous corresponding to the second action 
involves the Cus tomer_pump connector. In essence, we checked whether the pump 
"believes" customers get gas in the same order as the cashier "believes" they paid for 
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it. We could also check whether customers believe they get gas in the same order as 
they believe they paid for it. (Similarly, we could also check whether the pump believes 
customers get gas in the same order as the customers believe they paid for it, etc.) 

To check this property for the second version, we modified the INCA query and 
FLAVERS QRE described in Section 4.1 to use the rendezvous in the customer task. 
INCA found a solution to the inequalities and produced the corresponding behavior 
of each task. These behaviors yield an execution of the system in which the first cus- 
tomer completes the rendezvous with the connector between it and the cashier, followed 
by the corresponding rendezvous between the second customer and its connector, but 
the second customer's connector delivers the money to the cashier before the first cus- 
tomer's connector. (A similar race occurs with the connector between the pump and 
the customers even if the money arrives at the cashier in the correct order.) FLAVERS 
produced the same execution. 

The problem here is that, while communication between a component and a con- 
nector is synchronous, the communication between two components mediated by that 
connector is not. We can think of it as the customer "mailing" the money to the cashier, 
and the pump similarly "mailing" the gas to the customer--the customer passes the 
money into the connector, but has no way of knowing when the connector delivers it to 
the cashier. This is in contrast to the original Ada versions of the gas station presented 
by Hetmbold and Luckham[9], where the communication between customers and the 
cashier was via direct Ada rendezvous between the two tasks. 

In a certain sense, of course, this is not a critical requirement for the gas station, 
since customers do get the gas they pay for. In a real gas station, though, it would 
certainly make customers unhappy. We therefore decided to modify the architecture to 
ensure that customers receive gas in the order they pay, as viewed by the customers 
themselves. There are a number of ways in which such a modification might be car- 
ried out. One would be to use a single connector tying both customers to the cashier, 
and a single connector from the pump to the two customers. Another would be to add 
additional connectors from the cashier to the customers and from the customers to the 
pumps, allowing the components to signal when they had received money or gas. In- 
stead, we chose to keep the basic "boxes and arrows" structure, but to modify the com- 
ponents and connectors so that the connectors signal the component that sends infor- 
mation when that information has been delivered. We did this by adding "callback" and 
"go_ahead" actions to the communication between the customers and cashier, and be- 
tween the pump and the customers. The new versions of the customer and cashier tasks 
and the customer-cashier connectors are shown in Figure 8; the other modifications are 
similar. Figure 9 illustrates this architecture. 

We then analyzed this modified architecture, translating it into Aria in the same 
way as the first two versions (i.e., with one task for each component and connector, 
etc.). Now, however, we identified the event of a customer paying for gas with the 
rendezvous representing the callback from the connector signaling that the money had 
been delivered to the cashier. As for the previous case, we identified the event of the 
customer getting gas with the rendezvous between the customer and the customer-pump 
connector at the customer's Gas_pump entry. 
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Component Customer 
Port Pay = pay!x --+ callback --+ Pay 
Port Gas = pump?x --+ go_ahead -+ Gas 
Computation = Pay.pay!x --+ Pay.callback --+ Gas.pump?x --~ Gas.go_ahead 

--+ Computation 

Component Cashier 
Port Customerl = pay?x -+ go_ahead --+ Customerl 
Port Customer2 = pay?x --+ go_ahead -+ Customer2 
Port Topump = pumpl !x -+ Topump M pump2!x -+ Topump 
Computation = Customerl.pay?x -+ Customerl.go_ahead -+ Topump.pumpl !x 

-+ Computation U Customer2.pay?x --+ Customer2.go_ahead 
--+ Topump.pump2!x --+ Computation 

Connector Customer_Cashier 
Role Givemoney = pay!x --+ callback --+ Givemoney 
Role Getmoney = pay?x --+ go_ahead ~ Getmoney 
Glue = Givemoney.pay?x -~ Getmeney.pay!x --+ Givemoney.callback 

-+ Getmoney.go_ahead --+ Glue 

Fig. 8. Modified Customer, Cashier, and Customer_cashier with Callback and Go_ahead 

For INCA, it was necessary for technical reasons (again involving cycles in the 
FSAs) to decompose the property into two queries. We first wrote a query to check 
whether the cashier tells the pump to give gas to the customers in the same order as 
the customers pay for gas (in terms of  the callback rendezvous). INCA verified this 
property. We then used a query that checked whether customers get gas in the same 
order as the cashier tells the pump to give it to them. INCA also verified this. Together, 
these show that customers get gas in the same order as they pay. Using QREs for the 
same two subproperties, FLAVERS also verified the property. 

We also verified the other properties for this version of  the architecture, using both 
INCA and FLAVERS. 

4.5 Performance 

INCA and FLAVERS are research prototypes, and so the absolute time that analyses of  
the properties took are indicative of  neither the real potential of  the tools nor their scal- 
ability. However, we briefly discuss these times here to illustrate the current state of  the 
tools. We ran all experiments on a DEC Alpha Station 200 4/233 with 128 megabytes 
of  physical memory. For each of  the three versions of  the architecture, it took less than 
20 seconds for each of  the tools to create the appropriate internal representation used by 
the analyses. INCA took less than two seconds to check each of the properties (less than 
one second for most properties). FLAVERS, a less mature prototype, took less than 7 
minutes to check each of  the properties (less than 2 minutes for most properties). A ma- 
jor direction of our ongoing research is investigating these differences in performance. 

In addition to the application-specific properties, the tools are also capable of  check- 
ing general properties. For example, we used INCA to prove the absence of  deadlock in 



91 

Fig. 9. Gas Station system, version 3 

all three versions of the architecture. (The current implementation of FLAVERS cannot 
check for deadlock.) 

5 C o n c l u s i o n s  

In this paper, we have shown how existing static analysis tools can be used to check 
application-specific properties of architecture specifications. The tools were able to de- 
tect faults in the specifications, to provide example executions displaying the faults, and 
to verify that modifications to the specifications correctly removed the faults. Such tools 
can provide critical early feedback to system architects, helping to reduce the cost and 
improve the reliability of distributed systems. 

While our initial exploration used WRIGHT as the architecture description language 
and INCA and FLAVERS as the static analysis tools, we see nothing that limits this 
approach to a particular language or tools. Although the close relation between CSP 
and Ada made it easy to manually translate the WRIGHT specification into Ada for 
use with our tools, we expect that the internal representations that static concurrency 
analysis tools use could be created from most architecture description languages with 
sufficiently well-defined semantics. Similarly, other static analysis tools capable of for- 
mulating and checking application-specific properties, such as SPIN [11] or SMV [17] 
could be used with architecture specifications. 

The static analysis tools automate the checking of properties, but it is still up to the 
system architect to formulate those properties. As always, this is not straightforward 
and has to be done carefully. The fact that the tools can provide "counterexamples" 
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when they cannot verify a property can, however, provide important assistance to the 
architect in understanding complex features of the system. 

The preliminary investigation reported here suggests a number of interesting di- 
rections for future work. First, analyzing software architectures specified in other ar- 
chitecture description languages may indicate particular language constructs that affect 
different kinds of static analysis and may suggest extensions to the existing analysis 
tools or modifications to the architecture description languages in order to achieve im- 
proved analysis support. For example, the dynamic features of Darwin [14] might cause 
difficulties for many static analysis techniques. Another research direction involves the 
analysis of architectural styles, families of architectures with common structure. Prop- 
erties proved for an architectural style should hold for instantiations of that style and 
could be used as constraints to improve the accuracy of analysis of an instantiation of 
that style. Static analysis tools can also be used to show that an instantiation correctly 
conforms to a style. Finally, we note that the static analysis tools can be used to show 
that a refinement or implementation of an architecture has the properties assumed in the 
architecture description. For instance, the tools could show that the implementation of 
a connector in a pipe-and-filter architecture actually behaves as it should. 

The gas station is a small, but relatively rich, example. The race condition in which 
one customer takes the pump before another customer has been studied from various 
standpoints in the static concurrency analysis literature, and the two WRIGHT specifica- 
tions supplied to us by Garlan were intended to illustrate it. The second race condition, 
arising from the asynchronous communication between components provided by the 
connectors in the first two versions of the architecture, does not arise in the Ada imple- 
mentations of the gas station used in earlier concurrency analysis. The static analysis 
identified a genuine architectural issue that we, at least, had not expected to encounter. 
We make no claim, of course, that our third version of the gas station specification is 
the optimal way to avoid this race, but we believe that the way that the tools detected 
this unexpected problem and verified that a modification did indeed correct it illustrates 
the importance of applying static concurrency analysis techniques to architecture de- 
scriptions. While analyzing larger and more complex architectures will of course be 
somewhat harder, the much greater difficulty in understanding those larger and more 
complex systems makes static analysis even more important. 

Acknowledgments 

This work was supported in part by the Air Force Materiel Command, Rome Labora- 
tory, and the Advanced Research Projects Agency under Contract F30602-94-C-0137 
and in part by the National Science Foundation grant CCR-9407t82. 

The authors gratefully acknowledge the help of David Garlan in providing WRIGHT 
specifications for the gas station example. 

References 

1. R. Allen and D. Garlan. Formalizing architectural connection. In Proceedings of  the 
14 th International Conference on Software Engineering, pages 71-80, May 1994. 



93 

2. R. Allen and D. Garlan. The WRIGHT architectural specification language. Technical Report 
CMU-CS-96-TBD, Carnegie Mellon University, School of Computer Science, 1996. 

3. B. W. Boehm. Software and Its Impact: A Qualitative Assessment. Datamation, pages 48- 
59, May 1973. 

4. J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic model checking: 10 z° 
states and beyond. In Proceedings of the Fifth Annual IEEE Symposium on Logic in Com- 
puter Science, pages 428-439, 1990. 

5. J. C. Corbett and G. S. Avrunin. Using integer programming to verify general safety and 
liveness properties. Fopmaf Methods in System Design, 6:9%123, January 1995. 

6. M. Dwyer and L. Clarke. Data flow analysis for verifying properties of concurrent pro- 
grams. In Proceedings of the Second ACM Sigsoft Symposium on Foundations of Software 
Engineering, volume 19, pages 62-75, December 1994. 

7. Formal Systems (Europe) Ltd., Oxford, England. Failures Divergence Refinement: User 
Manual and Tutorial. 1.2fl, 1992. 

8. R Godefroid and R Wolper. Using partial orders for the efficient verification of deadlock 
freedom and safety properties. In Proceedings of the Third Workshop on Computer Aided 
Verification, pages 417-428, July 1991. 

9. D. Hetmbold and D. Luckham. Debugging Ada tasking programs. IEEESoftware, 2(2):47- 
57, March 1985. 

10. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985. 
11. G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall Software 

Series, 1991. 
12. M.H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. Harobnr. A Practitioner's Handbook for 

Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems. New York: 
Kluwer-Academic, 1993. 

13. D.C. Luckham, L. M. Augustin, J. J. Kenney, J. Veera, D. Bryan, and W. Mann. Specification 
analysis of system architecture using Rapide. IEEE Transactions on Software Engineering, 
21(4):336-355, April 1995. 

t4. J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software architec- 
tures. In Proceedings of 5th European Software Engineering Conference, pages 137-153, 
September 1995. 

15. J. Magee and J. Kramer. Dynamic structure in software architectures. In Proceedings of the 
4th ACM SIGSOFT Symposium on the Foundations of Software Engineering, pages 3-13, 
October 1996. 

16. S. Masticola and B. Ryder. A model of Ada programs for static deadlock detection in poly- 
nomial time. In Proceedings of the Workshop on Parallel and Distributed Debugging, pages 
97-107. ACM, May 1991. 

17. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Boston, 1993. 
18. M. Moriconi, X. Qian, and R. A. Riemenschneider. Correct architecture refinement. IEEE 

Transactions on Software Engineering, 21 (4):356-372, April 1995. 
19. G. Naumovich, G. S. Avrunin, L. A. Clarke, and L. J. Osterweil. Applying static anal- 

ysis to software architectures. Technical Report UM-CS-1997-008, University of Mas- 
sachusetts/Amherst, 1997. (http:l/laser.cs.umass.edu/abstracts/architecture.html). 

20. M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik. Abstractions for 
software architecture and tools to support them. IEEE Transactions on Software Engineering, 
21(4):314-335, April 1995. 

21. A. Valmari. A stubborn attack on state explosion. In E. M. Clarke and R. Kurshan, editors, 
Computer-Aided Verification 90, pages 25--41. American Mathematical Society, Providence 
RI, 1991. Number 3 in DIMACS Series in Discrete Mathematics and Theoretical Computer 
Science. 


