
Applying Static Analysis to Software Architectures

Gleb Naumovich, George S. Avrunin, Lori A. Clarke and Leon J. Osterweil

email: {naumoviclavrunin[clarkelljo } @cs.umass.edu
Laboratory for Advanced Software Engineering Research

Computer Science Department
University of Massachusetts

Amherst, Massachusetts 01003

Abstract. In this paper we demonstrate how static concurrency analysis tech-
niques can be used to verify application-specific properties of an architecture
description. Specifically, we use two concurrency analysis tools, INCA, a flow
equation based tool, and FLAVERS, a data flow analysis based tool, to detect er-
rors or prove properties of a WRIGHT architecture description of the gas station
problem. Although both these tools are research prototypes, they illustrate the
potential of static analysis for verifying that architecture descriptions adhere to
important properties, for detecting problems early in the lifecycle, and for helping
developers understand the changes that need to be made to satisfy the properties
being analyzed.

1 I n t r o d u c t i o n

With the advent of improved network technology, distributed systems are becoming in-
creasingly common. Such systems are more difficult to reason about than sequential
systems because of their inherent nondeterminism. In recognition of this, software ar-
chitecture research is attempting to define architecture description languages to help
developers describe distributed system designs. These high-level descriptions allow de-
velopers to focus on structural, high-level design issues before lower level details are
addressed, thereby helping to discover areas of high risk and to address these risks as
early in the lifecycle as possible. To be truly beneficial, developers should be given
tools to help them reason about their architecture descriptions, to help them discover
problems as early as possible, and to help them verify that desired properties would
indeed be maintained by these designs as well as by any systems correctly derived
from these designs. It has been demonstrated that detecting errors early in the lifecycle
[3] greatly reduces the cost of fixing those errors. Architecture description languages
combined with appropriate analysis tools could therefore be an important means for
reducing costs and improving reliability.

A number of architecture description languages have been developed, such as
WRIGHT [2], Rapide [13], Darwin [t4, 15], and UniCon [20]. There has also been some
work on validating aspects of architecture designs. Using architectures specified in Uni-
Con, for instance, developers can estimate local timing information and use those es-
timates to check time-dependent properties with the RMA real-time analysis toot [t 2].
Another approach is to use model-theoretic proof techniques to verify conformance of

78

elaborated architecture descriptions to higher-level architecture designs [14, 18]. De-
velopers using the Rapide architecture description language can simulate executions of
the system and verify that the traces of those executions conform to high-level specifi-
cations of the desired behavior [13]. Although one would expect the number of traces
through an architecture description to be much less than the number of possible exe-
cutions in the corresponding software system, for most interesting systems there are
still far too many such traces to explore them all. Thus, this is basically a sampling
technique, and while it increases confidence in the architecture, it does not verify that
all executions conform to the specifications. Another validation approach that has been
explored is the use of static analysis techniques to verify general properties of archi-
tecture descriptions. When successful, this type of analysis does verify that all possible
executions conform to the specification. Allen and Garlan [1] use the static analysis tool
FDR [7] to prove freedom from deadlock as well as compatibility between the compo-
nents and connectors in an architecture description. These are general properties that
are desirable for all architecture descriptions.

The primary goal of this work is to investigate the applicability of existing static
analysis techniques for verifying application-specific properties of architectures. We
investigate one example architecture, a WRIGHT description of the gas station problem,
and illustrate the kinds of properties that can be verified and the kinds of errors that can
be found early in the lifecycle. Two versions of a WRIGHT architecture specification of
the gas station example were graciously provided to us by David Garlan. We applied
two static analysis tools: INCA, which is based on flow equations, and FLAVERS,
which is based on data flow" analysis. Both of these tools are research prototypes that
illustrate the potential for static analysis to verify that architecture descriptions adhere
to important properties, to detect problems early in the lifecycle, and to help developers
understand the changes that need to be made to satisfy the properties being analyzed.

The next section gives a high-level overview of the two static analysis tools used in
this case study. Section 3 gives a brief description of the gas station problem and the
WRIGHT specification of the problem. Section 4 introduces the properties we selected
to prove about this architecture and describes the analysis process and the results of
that process. Section 5 summarizes the overall results, describes the benefits of this
approach, and points out some interesting directions for future research.

2 Too l s U s e d

A number of automated static concurrency analysis techniques have been proposed.
They span such approaches as reachability analysis (e.g. [I 1,21,8]), symbolic model
checking [4, 17], flow equations [5], and data flow analysis [6, 16]. The goal of this
work is to demonstrate the applicability of static analysis techniques to architecture
descriptions but not, at least at this point in time, to determine which approach might
be best. Thus, we selected two different static analysis tools, based on fundamentally
different approaches, with which we have considerable expertise. One tool, INCA [5],
is based on flow equations, and the other, FLAVERS [6], is based on data flow analysis.
Both these tools can be used to check whether all executions of a concurrent system
satisfy a property, such as the mutually exclusive use of some resource. Although these

79

tools use different approaches, they both are conservative in that if they determine that
a property holds, it is guaranteed to hold for all executions. When the tools fail to prove
that a property holds, however, this may be because the system does indeed violate
the property or it may be because the analysis, in order to assure conservativeness and
improve efficiency, has over-approximated the executable behavior of the system. Thus,
when a property fails to hold, the results are inconclusive and usually require further
investigation. A brief description of each of these tools is given here.

Inequality Necessary Conditions Analysis (INCA) derives a set of necessary con-
ditions for the existence of an execution violating the property. In INCA, the sequential
processes making up the concurrent system are translated into finite state automata
(FSAs) from which necessary conditions, expressed as linear inequalities on the occur-
rences of transitions in those automata, are derived. These inequalities reflect certain
kinds of compatibility conditions among the executions of the individual processes that
must be satisfied in an execution of the full program. The violation of the property is
also expressed as inequalities in terms of occurrences of the FSA transitions. The con-
sistency of the resulting system of linear inequalities is checked using standard integer
linear programming (ILP) techniques. This approach is inherently compositional, in the
sense that the inequalities are generated from the automata corresponding to the indi-
vidual processes, rather than from a single automaton representing the full concurrent
system. Thus, INCA avoids considering the state space of the full system. The size of
the system of inequalities is essentially linear in the number of processes in the system.
Furthermore, the use of properly chosen cost functions in solving the ILP problems can
guide the search for a solution. ILP is itself an NP-hard problem in general, and the stan-
dard techniques for solving ILP problems (branch-and-bound methods) are potentially
exponential. In practice, however, the ILP problems generated from concurrent systems
have large, totally unimodular subproblems and seem particularly easy to solve. Experi-
ence suggests that the time to solve these problems grows approximately quadratically
with the size of the system of inequalities (and thus with the number of processes in the
system).

The FLow Analysis for VERifying Software (FLAVERS) static analysis tool em-
ploys data flow analysis to verify that a model of the system must always be consistent
with a property. In FLAVERS, the control flow graph representation of each sequential
process, annotated with events of interest, is composed into a trace flow graph, which
explicitly represents the communications among the distributed processes as well as the
interteavings of events among those processes. The node size of the trace flow graph
is at worst quadratic, and for all practical examples we considered it is sub-linear, in
the number of program instructions. The properties to be checked are translated into a
finite state automaton, where the transitions are annotated with the appropriate events
of interest. Using a data flow analysis algorithm that is O(N2S), where N is the node
size of the trace flow graph and S is the state size of the automaton, FLAVERS deter-
mines whether the sequences of events that can be observed on system executions are
accepted by the language of the automaton. If at the terminal node of the flow graph all
event sequences are in the language of the property, we know that the property holds
on all executions of the system. When some event sequences are in the language of the
property and some are not, the results of the analysis are inconclusive, since it has to

80

be determined whether the event sequences that violate the property happen on any real
executions of the system. FLAVERS offers a means to deal with inconclusive results by
allowing the analyst to add additional constraints, in the form of finite state automata,
which limit the behaviors represented by the task flow graph. For example, a constraint
can model the behavior of a single variable in the system. This additional information
about the system restricts the data propagation through the flow graph during the anal-
ysis, thereby improving the accuracy of the analysis.

INCA and FLAVERS are based on very different analysis techniques, although both
avoid enumerating the total state space of a distributed system. In addition, both tech-
niques have been used to prove a wide range of properties of distributed systems. Be-
cause of this and our expertise with these tools, we chose them for our initial exploration
of analyzing application-specific properties of architectures.

3 Architecture Specification of the Gas Station Example

The Gas Station system [9] models a self-serve gas station. This example has been
widely studied by the static analysis research community. It has also been used in the
software architecture community, and was the example provided to us by Garlan. In the
general case, this system consists of n customers who come to a gas station to obtain
gas for their vehicles, ra cashiers who sell the gas, and p pumps that discharge the gas.
The customers pay the cashiers (and get change in some versions), who order the pumps
to discharge gas. We consider a specific instance of this system, with two customers,
one cashier, and one pump. Garlan gave us WRIGHT specifications for two versions of
this system.

WRIGHT formally describes architectures as collections of components, which rep-
resent computation units in the system, and connectors, which represent the means of
information exchange among the components. Each component and connector is aug-
mented with specifications that permit one to characterize the behavior of the compo-
nents and their interactions. For a component the specification consists of a number of
ports, and a computation. Each port represents a number of interactions in which the
component may participate. In other words, a port partially describes the interface of the
component, taking the point of view of the connector or connectors that communicate
with this component through this port. The computation describes the internal func-
tionality of the component. A connector is represented by a set of roles specifying the
interface of this connector and the glue that specifies how the interactions actually take
place. A system specification is composed of a set of component and connector type
definitions, as described above, a set of instantiations of specific objects of these types,
and attachments. Attachments specify which components are linked to which connec-
tors. WRIGHT uses CSP [10] to describe the behavior of roles, ports, computations, and
glues.

Figure t shows the WRIGHT specification for the first version of the Gas Sta-
tion. This architecture describes three types of components and three types of con-
nectors for communications between the customers and the cashier, the cashier and the
pump, and the customers and the pump. The concrete instantiation of this architec-
ture contmns four components, C u s t o m e r l , C u s t o m e r 2 , C a s h i e r , and Pump and

81

Component Customer
Port Pay = pay!x --~ Pay
Port Gas = take --+ pump?x ~ Gas
Computation = Pay.pay!x --+ Gas.take --+ Gas.pump?x --+ Computation

Component Cashier
Port Customerl = pay?x --~ Customerl
Port Customer2 = pay?x --+ Customer2
Port Topump = pump!x -+ Topump
Computation = Customerl.pay?x --+ Topump.pump!x --+ Computation

Customer2.pay?x --,, Topump.pump!x --+ Computation
Component Pump

Port Oill = take --+ pump!x -+ Oill
Port 0i12 = take --+ pump!x ~ Oi12
Port Fromcashier = pump?x --+ Fromcashier
Computation = Fromcashier.pump?x --+

(Oill.take --+ Oitt.pump!x --~ Computation)
0 (Oil2.take --+ Oil2.pump[x --+ Computation)

Connector Customer_Cashier
Role Givemoney = pay!x -+ Givemoney
Role Getmoney = pay?x --+ Getmoney
Glue = Givemoney.pay?x --4. Getmoney.pay!x --+ Glue

Connector Customer.Pump
Role Getoil = take --+ pump?x --+ Getoil
Role Giveoil = take --~ pump!x --+ Giveoil
Glue = Getoil.take --+ Giveoil.take ~ Giveoil.pump?x --+ Getoil.pump!x -+ Glue

Connector Cashier_Pump
Role Tell = pump!x -+ Tell
Role Know = pump?x -+ Know
Glue = Tell.pump?x --+ Know.pump!x ~ Glue

Instances
Customerl: Customer
Customer2: Customer
cashier: Cashier
pump: Pump
CustomerI_cashier: Customer_Cashier
Customer2_cashier: Customer_Cashier
Customerl _pump: Customer_Pump
Customer2_pump: Customer_Pump
cashier_pump: Cashier_Pump

Attachments
Customert ~Pay as Customerl_cashier.Givemoney
Customerl.Gas as Customerl_pump.Getoil
Customer2.Pay as Customer2_cashier.Givemoney
Customer2.Gas as Customer2_pump.Getoil
cashier.Customerl as Customerl_cashier.Getmoney
cashier.Customer2 as Customer2_cashier.Getmoney
cashier.Topump as cashier_pump.Tell
pump.Fromcashier as cashier_pump.Know
pump.Oill as Customerl_pump.Giveoil
pump.Oil2 as Customer2_pump.Giveoil

Fig. 1. The WRIGHT Specification of the First Version of the Gas Station

82

Fig. 2. Gas Station system, version 1

five connectors, Customerl_cashier, Customer2_cashier, Cashier_pump,
Customerl_pump, and Customer2 _pump. As shown in Figure I, each Customer
component has two ports, where Pay specifies the behavior of the Customer as viewed
by the C u s t o m e r _ c a s h i e r connector, and Gas specifies the behavior as viewed by
the C u s t o m e r _ p u m p connector. The behavior of the Gas port consists of repeatedly
taking the hose (t a k e event) and pumping gas (pump ?x event). The computation part
of C u s t o m e r specifies that a Cus t o m e r does the following sequence of actions re-
peatedly: pay for gas, take the hose, obtain gas from the pump.

Figure 2 presents an informal diagram of this architecture, with shaded boxes rep-
resenting WRIGHT components and clear boxes representing WRIGHT connectors. The
components' ports and the connectors' roles are shown as trapezoids, and named in-
teractions between the ports and the roles are shown as labeled directed edges. Note
that this diagram does not describe the order in which the interactions occur locally
to connectors and components, the way the formal WRIGHT specification in Figure 1
does.

In this architecture, the customers repeatedly pay the cashier, then take the hose,
and then wait for gas. The cashier, upon receiving a payment, turns the pump on. After
a customer takes the hose and the pump receives authorization from the cashier, the
pump then discharges the amount of gas, specified by the cashier, to the customer.

This version of the Gas Station is known to have a critical race. Specifically, it
is possible for C u s t o m e r l to pay before C u s t o m e r 2 pays but for C u s t o m e r 2
to take the hose before C u s t o m e r l , thus getting the amount of gas purchased by
Customerl.

83

Component Customer
Port Pay = pay!x -+ Pay
Port Gas = pump?x -+ Gas
Computation = Pay.pay!x -+ Gas.pump?x --+ Computation

Component Pump
Port Oill = pump!x -+ Oill
Port Oi12 : pump!x -+ Oi12
Port Fromcashier = pump?x --+ Fromcashier
Computation = Fromcashier.pumpl ?x -+

Oill.pump!x -+ Computation)
I] Fromcashier.pump2?x -+ Oil2.pump !x -+ Computation)

Component Cashier
Port Customerl -- pay?x --+ Customerl
Port Customer2 = pay?x --+ Customer2
Port Topump = pumpl !x --+ Topump n pump2!x -+ Topump
Computation = Customerl.pay?x -~ Topump.pumpl !x -+ Computation

Customer2.pay?x --+ Topump.pump2!x --+ Computation

Fig. 3. WRIGHT Components of the Second Version of the Architecture

The second version of the Gas Station removes this race by combining taking the
hose and pumping the gas into a single action and by having the cashier tell the pump
which customer should get gas. This means that, instead of paying and actively re-
questing gas by taking the hose, the customers now must pay and wait until the pump
contacts them by sending gas. Figure 3 shows the second version of the specification for
Customer, Pump, and Cashier components only, since changes to the connectors
are trivial. Figure 4 contains the corresponding illustration. Note that the only differ-
ence between the diagrams in Figures 2 and 4 is in communications between the ports
of the components and the roles of the connectors.

4 Checking Properties of the Gas Station Architecture

The existing versions of INCA and FLAVERS do not accept WRIGHT specifications as
input. While it should be relatively straightforward to build front-ends for both tools that
would construct the appropriate internal representations directly from WRIGHT, this
seemed inappropriate for the initial exploration we had in mind. Both tools accept Ada
code as input, so we manually translated the WRIGHT specifications into Ada in order
to apply the tools. The close relationship between the concurrency constructs in CSP
and Ada made this translation fairly easy. Each component and connector instantiation
of the architecture is represented by an Ada task. The "?" and "!" operations of CSP
naturally correspond to Ada rendezvous. The non-deterministic and deterministic CSP
choice operators are modeled with the Ada s e l e c t statement.

84

Fig. 4. Gas Station system, version 2

Figure 5 gives the Ada code for the Customerl component for the first WRIGHT
specification. The assignment statement sets the variable c a s h to the value of a func-
tion whose body is not specified; the analysis tools treat this as a nondeterministic as-
signment. After choosing an amount of gas with this assignment, the Cus t o m e r l task
calls the g e t m o n e y _ p a y entry of the C u s t o m e r l _ e a s h i e r task with the parame-
ter c a s h . This rendezvous corresponds to the pay!x event. The Cus t o m e r ! task then
calls the g e t o i t _ t a k e entry of the C u s t o m e r l _ p u m p task, and then accepts a call
at its own gas_pump entry. Note that a separate Ada entry exists for each interaction
type between a role and a port, the name of the entry being the name of the receiving
port or role, to which the name of the interaction is appended via the underscore symbol.
For example, the interaction pump between the Gas port of C u s t o m e r l component
and C u s t o m e r _ c a s h i e r connector corresponds in the Ada version of C u s t o m e r l
to the entry named gas_pump. The complete Ada code for all versions of the example
can be found in [t9].

Our goal was to investigate whether existing static concurrency analysis tools could
be usefully applied to check application-specific properties of architecture descriptions.
Since the gas station is relatively simple, however, we focused on properties that reflect
high-level requirements for a self-service gas station. Since we do not have any "offi-
cial" requirements documents for the gas station, we chose a small number ofproperties
that seemed to us to reflect reasonable requirements. Our goal was simply to explore the
applicability of the static analysis tools to architectures; we make no claim that these
are the most important or significant requirements.

85

task body Customerl is
cash : AMOUNT;

begin
loop

cash := Some_Amount;
Customerhcashier.getmoney_pay (cash);
Customerl_pump.getoihtake;
accept gas_pump (gas_amount : in AMOUNT);

end loop;
end Customerl;

Fig. 5. Ada Translation of the Customer Specification

In the remainder of this section, we show how INCA and FLAVERS were used to
check several properties of the gas station architectures, identifying certain faults and
verifying that modifications to the architectures corrected these faults.

4.1 The Critical Race to the Pump

As mentioned above, the first WRIGHT specification has a critical race, in which one
customer pays for gas and the second customer then pays and takes the pump before the
first customer gets gas. In this case, the second customer gets the gas paid for by the first
customer. The first requirement we considered was that customers get gas in the order
in which they pay. We wanted to know whether INCA and FLAVERS could detect the
violation of this property in the first WRIGHT version, and whether they could show
that the property holds in the second version.

We begin with the first version. The property we want to check is stated in terms
of customers paying and getting gas. For the analysis, we must identify locations in
the code that correspond to these events. We identified a customer paying with the
corresponding rendezvous between the connector task fi'om that customer to the cashier
and the cashier task, and the customer getting gas with the rendezvous between the
pump task and the connector task from the pump to the customer.

The INCA approach is to produce necessary conditions for an execution of the sys-
tem that violates the property. We express a violation of the property as an INCA query.
By symmetry, it is enough to ask for an execution in which Customer2 pays and gets
gas while Cus t o m e r l has paid but not yet gotten gas. So we wrote a query describing
an execution in which a rendezvous between C u s t o m e r l _ c a s h i e r and C a s h i e r
occurs, followed by a rendezvous between C u s t o m e r 2 _ c a s h i e r and C a s h i e r and
a rendezvous between Pump and Pump_Customer2 be~bre the next rendezvous be-
tween pump and pump_Cus tomer l .

The INCA query we used is shown in Figure 6. This specifies a segment of an exe-
cution divided into two intervals. The first interval runs from the beginning of the exe-
cution (specified by the : i n i t i a l keyword) and ends with some rendezvous between
Customerl_cashier and Cashier at the customerl_pay entry (specified by
the : e n d s - w i t h keyword and the r e n d function). This interval is followed immedi-

86

(defquery "race nofair"

(omega-star-less

(sequence
(interval :initial t :open t

:ends-with '(

(rend "customerl_cashier;cashier.customerl~ay")
(interval
:ends-with '((rend "p,~mp;customer2~ump.getoil"))

:require ' (

(rend "customer2_cashier;cashier.customer2~ay"))
:forbid '((rend "pump;customerl~ump.getoil"))))))

Fig. 6. INCA Query: Customers Get Gas in the Order They Pay.

ately by a second one ending with a rendezvous between Pump and Cus tomer2 _pump
at the ge toi i entry of Cus tomer2 _pump. The second interval contains a rendezvous

between Customer2_cashier and Cashier at the customer2_pay entry (spec-
ified by the : require keyword) and does not contain any rendezvous between Pump
and Customerl_pump at the getoil entry (specified by the : forbid keyword).

From the Ada code corresponding to the first WRIGHT specification and this query,
INCA generated a system of inequalities. In this case, the sys temof inequalities had
an integer solution, and INCA gave us the behavior of each task corresponding to that
solution. From these task behaviors, it is straightforward to construct an execution in
which the desired property is violated. To check this property for the second WRIGHT
specification, it was necessary to use two queries. (This is due to a technical reason in-
volving certain cycles in the FSAs.) The first query checked that the cashier notifies the
pump in the same order as customers pay, and the second query checked that the pump
gives gas to the customers in the same order as it is notified by the cashier. The corre-
sponding systems of inequalities were inconsistent, verifying that customers always get
gas in the order that they pay with this second architecture.

The FLAVERS analysis is similar. For a FLAVERS analysis, the events of interest
are indicated by annotating the Ada code. In this case, we used automatically generated
annotations on the accept statements. For example, the " a c c e p t gas_pump" state-
ment in the C u s t o m e r l task was annotated with the event c u s t o m e r l _ g a s _ p u m p .
We then gave FLAVERS a property specification, in the form of a quantified regular
expression (QRE), asking whether any execution could generate the sequence of events
corresponding to a violation of the property. The QRE we used is shown in Figure 7. It
consists of the alphabet, quantifier, and regular expression. The alphabet of the QRE ap-
pears in braces and lists all events used for the specification of the property. The alphabet
is followed by the "none" quantifier instructing FLAVERS to attempt to verify the prop-
erty that no execution leads to a sequence of events in the alphabet that lies in the lan-
guage of the regular expression that follows. In the regular expression, the period stands
for the disjunction ofatl symbols, the asterisk is the transitive closure operator, the nota-
tion [- e] stands for the disjunction of all symbols in the alphabet other than e, and the
semicolon is the concatenation operator. The language of the regular expression thus

87

{cashier_customerl_pay,
customerl@ump_getoil,

none

*;

cashier_customerl@ay;
[-customerl@urap_getoil]*;
cashier_customer2@ay;
[-customerl@ump_getoil]*;
customer2@ump_getoil;
W

cashier_customer2~ay,
customer2~ump_getoil}

Fig. 7. FLAVERS QRE: Customers Get Gas in the Order They Pay.

consists of all strings over the alphabet in which a cashier_customerl_pay oc-
curs, followed by a cashier_customer2_pay and a customer2_pump_getoil
before a cue tomerl_pump_getoi i occurs.

For the first WRIGHT specification, FLAVERS produces an execution in which the
property is violated. For the second specification, FLAVERS verifies that this property
holds for all executions.

Thus, both tools were able to detect the fault in the first version of the architecture,
show how it occurs, and verify that a modification to the architecture corrects the fault
The remaining properties were checked on this modified version.

4.2 No Free Gas

We next checked the requirement that no customer receives gas without paying for it.
This amounts to checking that, in every execution and for each customer, the events
of paying for gas and receiving gas strictly alternate, with paying for gas coming first.
By symmetry again, it is sufficient to check this for C u s t o m e r t . We used the same
rendezvous corresponding to the events of the customer paying and getting gas as in the
previous section.

Using INCA, the standard way to show two events alternate is to use two queries. In
this case, the first query describes a prefix of an execution in which the number of times
the customer has paid for gas exceeds the number of times it has received gas by at least
two. The second query describes a prefix of an execution in which the number of times
the customer has received gas is greater than the number of times the customer has paid
for gas. (For the complete set of INCA queries and FLAVERS QREs, refer to [19].)
INCA reported that the necessary conditions for the existence of such executions were
inconsistent. This means that, in every prefix of an execution, the number of times the
customer has paid for gas is either equal to the number of times it has received gas or
is one greater than the number of times the customer has received gas, showing that the
events of paying for gas and receiving it strictly alternate, with paying for gas occurring
first.

For FLAVERS, we used a QRE with the same alphabet as the one in Figure 7
and a regular expression requiring the two events to alternate appropriately. Here the

88

regular expression, as opposed to the previous property, specifies what behavior must be
observed on all executions. FLAVERS verified that the property holds on all executions.

4.3 Customers Get the Right Amount of Gas

We also checked whether a customer receives the amount of gas that he or she paid
for. To facilitate the analysis, we allowed only two amounts (the type AMOUNT in our
Ada programs had two values, 1 and 2). We then checked whether it was possible
for a customer to pay for one amount of gas and then receive the other amount. By
symmetry, it is sufficient to check only for one of the customers paying for one unit of
gas and receiving two units.

Our INCA query asked for a prefix of an execution in which the first interval ends
with a rendezvous with parameter 1 between C u s t o m e r l _ c a s h i e r and C a s h i e r
at the c u s t o m e r l _ p a y entry (the event where the customer pays for one unit of gas)
and the second interval ends with a rendezvous with parameter 2 between pump and
C u s t o m e r l _ p u m p at the g e t o i l entry (the event where the customer receives two
units of gas). The second interval was forbidden to contain a rendezvous with parameter
1 between Pump and Customerl_pump at the getoil entry (the event where the
customer receives the single unit of gas that was paid for). INCA reported that the
system of inequalities it generated was inconsistent, so no such execution could exist.
This showed that customers never get the wrong amount of gas.

FLAVERS required additional event annotations to capture the numeric values of
parameters that specify amounts of money and gas. Currently these annotations are
manually added to the source code of the system under analysis in the form of com-
ments. The QRE for this property specified that on no execution should it be possible
that the event of C a s h i e r receiving 1 at its c u s t o m e r l _ p a y entry is followed by
the event of Pump giving 2 to the g e t o i l entry of the C u s t o m e r l _ p u m p connector
before Pump gives 1 to Cus tomer l_pump . FLAVERS verified the property.

4.4 Another Race Condition

In checking the first two properties described earlier, we identified the event of a cus-
tomer paying for gas with the pay?x action on the cashier's customer port (or, in the
Ada code, with the corresponding rendezvous between the connector between the cus-
tomer and cashier and the cashier task). Similarly, we identified the event of a cus-
tomer receiving gas with the pump!x action on the pump's oil port (or with the cor-
responding rendezvous between the pump and the connector between the pump and
customer). Viewing events as actions taken by components, we have here taken the
viewpoint of the cashier and pump components about when a customer pays or re-
ceives gas. But we could just as well take the viewpoint of the customer component.
In that case, we would identify the customer paying with the pay!x action on the cus-
tomer's pay port and receiving gas with the pump?x action on the customer's gas port.
The Ada rendezvous corresponding to the first action involves the customer and the
C u s t o m e r _ c a s h i e r connector; the rendezvous corresponding to the second action
involves the Cus tomer_pump connector. In essence, we checked whether the pump
"believes" customers get gas in the same order as the cashier "believes" they paid for

89

it. We could also check whether customers believe they get gas in the same order as
they believe they paid for it. (Similarly, we could also check whether the pump believes
customers get gas in the same order as the customers believe they paid for it, etc.)

To check this property for the second version, we modified the INCA query and
FLAVERS QRE described in Section 4.1 to use the rendezvous in the customer task.
INCA found a solution to the inequalities and produced the corresponding behavior
of each task. These behaviors yield an execution of the system in which the first cus-
tomer completes the rendezvous with the connector between it and the cashier, followed
by the corresponding rendezvous between the second customer and its connector, but
the second customer's connector delivers the money to the cashier before the first cus-
tomer's connector. (A similar race occurs with the connector between the pump and
the customers even if the money arrives at the cashier in the correct order.) FLAVERS
produced the same execution.

The problem here is that, while communication between a component and a con-
nector is synchronous, the communication between two components mediated by that
connector is not. We can think of it as the customer "mailing" the money to the cashier,
and the pump similarly "mailing" the gas to the customer--the customer passes the
money into the connector, but has no way of knowing when the connector delivers it to
the cashier. This is in contrast to the original Ada versions of the gas station presented
by Hetmbold and Luckham[9], where the communication between customers and the
cashier was via direct Ada rendezvous between the two tasks.

In a certain sense, of course, this is not a critical requirement for the gas station,
since customers do get the gas they pay for. In a real gas station, though, it would
certainly make customers unhappy. We therefore decided to modify the architecture to
ensure that customers receive gas in the order they pay, as viewed by the customers
themselves. There are a number of ways in which such a modification might be car-
ried out. One would be to use a single connector tying both customers to the cashier,
and a single connector from the pump to the two customers. Another would be to add
additional connectors from the cashier to the customers and from the customers to the
pumps, allowing the components to signal when they had received money or gas. In-
stead, we chose to keep the basic "boxes and arrows" structure, but to modify the com-
ponents and connectors so that the connectors signal the component that sends infor-
mation when that information has been delivered. We did this by adding "callback" and
"go_ahead" actions to the communication between the customers and cashier, and be-
tween the pump and the customers. The new versions of the customer and cashier tasks
and the customer-cashier connectors are shown in Figure 8; the other modifications are
similar. Figure 9 illustrates this architecture.

We then analyzed this modified architecture, translating it into Aria in the same
way as the first two versions (i.e., with one task for each component and connector,
etc.). Now, however, we identified the event of a customer paying for gas with the
rendezvous representing the callback from the connector signaling that the money had
been delivered to the cashier. As for the previous case, we identified the event of the
customer getting gas with the rendezvous between the customer and the customer-pump
connector at the customer's Gas_pump entry.

90

Component Customer
Port Pay = pay!x --+ callback --+ Pay
Port Gas = pump?x --+ go_ahead -+ Gas
Computation = Pay.pay!x --+ Pay.callback --+ Gas.pump?x --~ Gas.go_ahead

--+ Computation

Component Cashier
Port Customerl = pay?x -+ go_ahead --+ Customerl
Port Customer2 = pay?x --+ go_ahead -+ Customer2
Port Topump = pumpl !x -+ Topump M pump2!x -+ Topump
Computation = Customerl.pay?x -+ Customerl.go_ahead -+ Topump.pumpl !x

-+ Computation U Customer2.pay?x --+ Customer2.go_ahead
--+ Topump.pump2!x --+ Computation

Connector Customer_Cashier
Role Givemoney = pay!x --+ callback --+ Givemoney
Role Getmoney = pay?x --+ go_ahead ~ Getmoney
Glue = Givemoney.pay?x -~ Getmeney.pay!x --+ Givemoney.callback

-+ Getmoney.go_ahead --+ Glue

Fig. 8. Modified Customer, Cashier, and Customer_cashier with Callback and Go_ahead

For INCA, it was necessary for technical reasons (again involving cycles in the
FSAs) to decompose the property into two queries. We first wrote a query to check
whether the cashier tells the pump to give gas to the customers in the same order as
the customers pay for gas (in terms of the callback rendezvous). INCA verified this
property. We then used a query that checked whether customers get gas in the same
order as the cashier tells the pump to give it to them. INCA also verified this. Together,
these show that customers get gas in the same order as they pay. Using QREs for the
same two subproperties, FLAVERS also verified the property.

We also verified the other properties for this version of the architecture, using both
INCA and FLAVERS.

4.5 Performance

INCA and FLAVERS are research prototypes, and so the absolute time that analyses of
the properties took are indicative of neither the real potential of the tools nor their scal-
ability. However, we briefly discuss these times here to illustrate the current state of the
tools. We ran all experiments on a DEC Alpha Station 200 4/233 with 128 megabytes
of physical memory. For each of the three versions of the architecture, it took less than
20 seconds for each of the tools to create the appropriate internal representation used by
the analyses. INCA took less than two seconds to check each of the properties (less than
one second for most properties). FLAVERS, a less mature prototype, took less than 7
minutes to check each of the properties (less than 2 minutes for most properties). A ma-
jor direction of our ongoing research is investigating these differences in performance.

In addition to the application-specific properties, the tools are also capable of check-
ing general properties. For example, we used INCA to prove the absence of deadlock in

91

Fig. 9. Gas Station system, version 3

all three versions of the architecture. (The current implementation of FLAVERS cannot
check for deadlock.)

5 C o n c l u s i o n s

In this paper, we have shown how existing static analysis tools can be used to check
application-specific properties of architecture specifications. The tools were able to de-
tect faults in the specifications, to provide example executions displaying the faults, and
to verify that modifications to the specifications correctly removed the faults. Such tools
can provide critical early feedback to system architects, helping to reduce the cost and
improve the reliability of distributed systems.

While our initial exploration used WRIGHT as the architecture description language
and INCA and FLAVERS as the static analysis tools, we see nothing that limits this
approach to a particular language or tools. Although the close relation between CSP
and Ada made it easy to manually translate the WRIGHT specification into Ada for
use with our tools, we expect that the internal representations that static concurrency
analysis tools use could be created from most architecture description languages with
sufficiently well-defined semantics. Similarly, other static analysis tools capable of for-
mulating and checking application-specific properties, such as SPIN [11] or SMV [17]
could be used with architecture specifications.

The static analysis tools automate the checking of properties, but it is still up to the
system architect to formulate those properties. As always, this is not straightforward
and has to be done carefully. The fact that the tools can provide "counterexamples"

92

when they cannot verify a property can, however, provide important assistance to the
architect in understanding complex features of the system.

The preliminary investigation reported here suggests a number of interesting di-
rections for future work. First, analyzing software architectures specified in other ar-
chitecture description languages may indicate particular language constructs that affect
different kinds of static analysis and may suggest extensions to the existing analysis
tools or modifications to the architecture description languages in order to achieve im-
proved analysis support. For example, the dynamic features of Darwin [14] might cause
difficulties for many static analysis techniques. Another research direction involves the
analysis of architectural styles, families of architectures with common structure. Prop-
erties proved for an architectural style should hold for instantiations of that style and
could be used as constraints to improve the accuracy of analysis of an instantiation of
that style. Static analysis tools can also be used to show that an instantiation correctly
conforms to a style. Finally, we note that the static analysis tools can be used to show
that a refinement or implementation of an architecture has the properties assumed in the
architecture description. For instance, the tools could show that the implementation of
a connector in a pipe-and-filter architecture actually behaves as it should.

The gas station is a small, but relatively rich, example. The race condition in which
one customer takes the pump before another customer has been studied from various
standpoints in the static concurrency analysis literature, and the two WRIGHT specifica-
tions supplied to us by Garlan were intended to illustrate it. The second race condition,
arising from the asynchronous communication between components provided by the
connectors in the first two versions of the architecture, does not arise in the Ada imple-
mentations of the gas station used in earlier concurrency analysis. The static analysis
identified a genuine architectural issue that we, at least, had not expected to encounter.
We make no claim, of course, that our third version of the gas station specification is
the optimal way to avoid this race, but we believe that the way that the tools detected
this unexpected problem and verified that a modification did indeed correct it illustrates
the importance of applying static concurrency analysis techniques to architecture de-
scriptions. While analyzing larger and more complex architectures will of course be
somewhat harder, the much greater difficulty in understanding those larger and more
complex systems makes static analysis even more important.

Acknowledgments

This work was supported in part by the Air Force Materiel Command, Rome Labora-
tory, and the Advanced Research Projects Agency under Contract F30602-94-C-0137
and in part by the National Science Foundation grant CCR-9407t82.

The authors gratefully acknowledge the help of David Garlan in providing WRIGHT
specifications for the gas station example.

References

1. R. Allen and D. Garlan. Formalizing architectural connection. In Proceedings of the
14 th International Conference on Software Engineering, pages 71-80, May 1994.

93

2. R. Allen and D. Garlan. The WRIGHT architectural specification language. Technical Report
CMU-CS-96-TBD, Carnegie Mellon University, School of Computer Science, 1996.

3. B. W. Boehm. Software and Its Impact: A Qualitative Assessment. Datamation, pages 48-
59, May 1973.

4. J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic model checking: 10 z°
states and beyond. In Proceedings of the Fifth Annual IEEE Symposium on Logic in Com-
puter Science, pages 428-439, 1990.

5. J. C. Corbett and G. S. Avrunin. Using integer programming to verify general safety and
liveness properties. Fopmaf Methods in System Design, 6:9%123, January 1995.

6. M. Dwyer and L. Clarke. Data flow analysis for verifying properties of concurrent pro-
grams. In Proceedings of the Second ACM Sigsoft Symposium on Foundations of Software
Engineering, volume 19, pages 62-75, December 1994.

7. Formal Systems (Europe) Ltd., Oxford, England. Failures Divergence Refinement: User
Manual and Tutorial. 1.2fl, 1992.

8. R Godefroid and R Wolper. Using partial orders for the efficient verification of deadlock
freedom and safety properties. In Proceedings of the Third Workshop on Computer Aided
Verification, pages 417-428, July 1991.

9. D. Hetmbold and D. Luckham. Debugging Ada tasking programs. IEEESoftware, 2(2):47-
57, March 1985.

10. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
11. G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall Software

Series, 1991.
12. M.H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. Harobnr. A Practitioner's Handbook for

Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems. New York:
Kluwer-Academic, 1993.

13. D.C. Luckham, L. M. Augustin, J. J. Kenney, J. Veera, D. Bryan, and W. Mann. Specification
analysis of system architecture using Rapide. IEEE Transactions on Software Engineering,
21(4):336-355, April 1995.

t4. J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software architec-
tures. In Proceedings of 5th European Software Engineering Conference, pages 137-153,
September 1995.

15. J. Magee and J. Kramer. Dynamic structure in software architectures. In Proceedings of the
4th ACM SIGSOFT Symposium on the Foundations of Software Engineering, pages 3-13,
October 1996.

16. S. Masticola and B. Ryder. A model of Ada programs for static deadlock detection in poly-
nomial time. In Proceedings of the Workshop on Parallel and Distributed Debugging, pages
97-107. ACM, May 1991.

17. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Boston, 1993.
18. M. Moriconi, X. Qian, and R. A. Riemenschneider. Correct architecture refinement. IEEE

Transactions on Software Engineering, 21 (4):356-372, April 1995.
19. G. Naumovich, G. S. Avrunin, L. A. Clarke, and L. J. Osterweil. Applying static anal-

ysis to software architectures. Technical Report UM-CS-1997-008, University of Mas-
sachusetts/Amherst, 1997. (http:l/laser.cs.umass.edu/abstracts/architecture.html).

20. M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik. Abstractions for
software architecture and tools to support them. IEEE Transactions on Software Engineering,
21(4):314-335, April 1995.

21. A. Valmari. A stubborn attack on state explosion. In E. M. Clarke and R. Kurshan, editors,
Computer-Aided Verification 90, pages 25--41. American Mathematical Society, Providence
RI, 1991. Number 3 in DIMACS Series in Discrete Mathematics and Theoretical Computer
Science.

