
A Conservative Data Flow Algorithm for Detecting All Pairs
of Statements that May Happen in Parallel*

Gleb Naumovich and George S. Avrunin
Laboratory for Advanced Software Engineering Research

Department of Computer Science
University of Massachusetts at Amherst

Amherst, MA 01003-6410
{naumovic, avrunin}@cs.umass.edu

A B S T R A C T

Information about which pairs of statements in a con-
current program can execute in parallel is important
for optimizing and debugging programs, for detecting
anomalies, and for improving the accuracy of data flow
analysis. In this paper, we describe a new data flow
algorithm that finds a conservative approximation of
the set of all such pairs. We have carried out an initial
comparison of the precision of our algorithm and that
of the most precise of the earlier approaches, Masti-
cola and Ryder's non-concurrency analysis [8], using a
sample of 159 concurrent Ada programs that includes
the collection assembled by Masticola and Ryder. For
these examples, our algorithm was almost always more
precise than non-concurrency analysis, in the sense
that the set of pairs identified by our algorithm as
possibly happening in parallel is a proper subset of
the set identified by non-concurrency analysis. In 132
cases, we were able to use reachability analysis to de-
termine exactly the set of pairs of statements that may
happen in parallel. For these cases, there were a to-
tal of only 10 pairs identified by our algorithm that
cannot actually happen in parallel.

*This research was partially supported by the Defense
Advanced Research Projects Agency and the Air Force Re-
search Labora to ry / IFTD under agreements F30602-94-C-0137
and F30602-97-2-0032, and by the National Science Founda-
t ion under Grants CCR-9407182 and CCR-9708184. The views,
findings, and conclusions presented here are those of the authors
and should not be interpreted as necessarily representing the of-
ficial policies or endorsements, either expressed or implied, of
the Defense Advanced Research Projects Agency, the Air Force
Research Labora to ry / IFTD, the National Science Foundation,
or the U.S. Government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGSOFT '98 11/98 Florida, USA
© 1998 ACM 1-58113-108-9/9810010.-$5,00

1. I N T R O D U C T I O N

As the number and significance of parallel and concur-
rent programs continue to increase, so does the need
for methods to provide developers with information
about the possible behavior of those programs. In this
paper, we address the problem of determining which
pairs of statements in a concurrent program can possi-
bly execute in parallel. Information about this aspect
of the behavior of a concurrent program has applica-
tions in debugging, optimization (both manual and au-
tomatic), detection of synchronization anomalies such
as data races, and improving the accuracy of data flow
analysis [8].

The problem of precisely determining the pairs of
statements that can execute in parallel is known to
be NP-complete [12]. Most work in the area has
therefore focused on finding methods for computing
a conservative approximation to the set of pairs that
can execute in parallel, that is, computing a set of
pairs of statements that contains all the pairs that
can actually execute in parallel but may also contain
additional pairs. The goal is to find a useful tradeoff
between precision and cost.

Several approaches have been proposed. Callahan and
Subhlok [1] proposed a data flow algorithm that com-
putes for each statement in a concurrent program the
set of statements that must be executed before this
statement can be executed (B4 analysis). Duester-
wald and Sofia [2] applied this approach to the Ada
rendezvous model and extended B4 analysis to be in-
terprocedural. Masticola and Ryder proposed an it-
erative approach they called non-concurrency analy-
sis [8] that computes a conservative estimate of the set
of pairs of communication statements that can never
happen in parallel in a concurrent Ada program. (The
complement of this set is a conservative approximation
of the set of pairs that may occur in parallel.) In that
work, it is assumed initially that any statement from
a given process can happen in parallel with any state-
ment in any other process. This pessimistic estimate

24

is then improved by a series of refinements that are
applied iteratively until a fixed point is reached. Mas-
ticola and Ryder show that their algorithm yields more
precise information than the approaches of Callahan
and Subhlok and of Duesterwald and Sofia.

In this paper, we propose a new data flow algorithm
for computing a conservative approximation of the set
of pairs of statements that can execute in parallel
in a concurrent Ada program. We have conducted
a preliminary empirical comparison of our algorithm
and non-concurrency analysis, using a set of 159 Ada
programs that includes the programs used by Mas-
ticola and Ryder to evaluate non-concurrency anal-
ysis. For the purposes of this comparison, we took
the complement of the set of pairs of statements iden-
tified by our algorithm as possibly occurring in par-
allel to get a conservative approximation of the set
of pairs of statements that cannot occur together, as
computed by non-concurrency analysis. On these pro-
grams, our algorithm finds all of the pairs identified
by non-concurrency analysis in 150 cases; in 118 cases,
our algorithm finds pairs that are not found by non-
concurrency analysis. In 9 cases, non-concurrency
analysis identifies pairs that are not found by our
algorithm but, in all of these cases, our algorithm
finds many more pairs that are not identified by non-
concurrency analysis. For .132 cases, we were able to
run a reachability analysis to determine exactly the
pairs of statements tha t cannot occur in parallel. (In
the remaining cases, the reachability analysis ran out
of memory.) For these 132 programs, there were 5
cases in which our algorithm failed to find all the pairs
of statements tha t cannot happen together, missing a
total of 10 pairs.

The next section introduces the program model that
we use and describes our algorithm. Section 3 briefly
describes non-concurrency analysis and the relation
between its program model and the model used for our
algorithm. Section 4 presents the results of the com-
parison of our algorithm and non-concurrency analy-
sis, and Section 5 discusses some conclusions and de-
scribes future work.

2 . T H E M H P A L G O R I T H M

2 . 1 . P r o g r a m r e p r e s e n t a t i o n

The program representation used in this work is the
trace flow graph (TFG) introduced by Dwyer and
Clarke [3,4]. This representation is conservative in the
sense that it models a superset of all feasible program
executions. Informally, TFGs are forests of control
flow graphs (CFGs), one for each concurrent process,
or task, in the program, with nodes and edges added
to represent intertask communications. (If the code
region represented by node n in one task contains a
synchronization statement tha t can correspond to one

represented by node m in another task, a new node is
added with incoming edges from n and m and outgoing
edges to all successors of n and m. This is illustrated
in the figures.)

The TFG model deliberately does not specify exactly
what kind of region in the task each CFG node rep-
resents, imposing only the weak restrictions that a re-
gion cannot contain more than one synchronization
statement and that , if a region contains a synchroniza-
tion statement, it must be the last s tatement in this
region. This underspecification provides for greater
flexibility of the model. For example, a CFG node can
represent a single machine level instruction, a basic
block, or even a set of paths from one synchronization
point to another. We also add a unique initial node
that has no incoming edges and has outgoing edges to
the start nodes of all CFGs and a unique final node
that has no outgoing edges and has incoming edges
f rom the end nodes of all CFGs.

Formally, a TF G is a labeled directed graph
(N, E, niniti~l, n/~nal, #), where N is the set of nodes,
E C N x N is the set of edges, niniti~l,nl~nal E N are
unique initial and final nodes, and # is a mapping from
nodes to regions of code within tasks. The set of all
nodes from the CFGs for all tasks forms the set of local
TF G nodes, LOCAL. The elements of the set of non-
local nodes, COM = N \ (LOCAL U {n~n,ti~l, n/~n~t}),
are communication nodes, which represent task ren-
dezvous. In building a TF G from a collection of CFGs,
the communication nodes are obtained by syntactic
matching of synchronization statements. As a result,
some nodes in COM may be unreachable, but our al-
gorithm is capable of detecting some of these. For
each node n, we let Pred(n) and Succ(n) be the sets of
(immediate) predecessors and successors of n, respec-
tively.

Figure l(a) shows a program that consists of two com-
municating Ada tasks, Figure l(b) shows the corre-
sponding CFGs with nodes labeled with the corre-
sponding Ada program statements, and Figure l(c)
gives the corresponding TFG. The local nodes in this
TFG have the same labels as the corresponding nodes
in the CFGs. Nodes 1 and 2 are communication
nodes; node 1 represents the communication between
the tasks at entry call T2.E1, and node 2 represents
the communication at entry call T2. E2.

The TFG model offers a compact representation of
the program's behavior. The number of local nodes
in the TFG is linear in the number of program state-
ments. A communication node is created for every
syntactically matching pair of call and accept state-
ments, so, for example, the local node corresponding
to a single c a l l (T 2 . E) statement in task T1 would
share a separate communication node successor with
each a c c e p t E statement in task T2. In the worst case,

25

task body T1 is
begin

if B then
x:= 2;
T2.EI;

end if;
T2.E2;

end T2

task body T2 is
begin

accept El;
accept E2;

end T2;

(a) Code

T1

(b) CFGs

T2

~f

(c) TFG

Figure 1: A T F G example

this results in the number of communication nodes be-
ing quadratic in the number of program statements.
However, this blow-up in the number of communica-
tion nodes does not seem common in practice. Our
experimental results support this hypothesis.

Given a pair (m, n) of nodes in a TFG, we are in-
terested in determining whether, on some computer
system, the program represented by the TFG has an
execution in which code corresponding to a statement
in the task region represented by m executes at the
same time as code corresponding to a s tatement in the
task region represented by n. (For the sake of brevity,
in the rest of the paper we will use the phrase "node
n executes" to mean "an instruction from the task re-
gion represented by node n executes" .) If there is such
an execution, we say that m and n may happen in par-
allel, and define MHPverl(m,n) to be true. This def-
inition of the MHPp~rl relation identifies the "ideal"
set of pairs of statements tha t may execute in paral-
lel. The algorithm presented in this paper computes
a conservative approximation MHP to MHPperl.

2 . 2 . T h e M H P a l g o r i t h m

In this section we give the detailed description of the
MHP algorithm and state the major results about
its termination, conservativeness, and worst-case time
bound. Rather than using the lat t ice/function space

view of data flow problems [5], we give da ta flow equa-
tions for TF G nodes. This is done for two reasons.
First, it makes explanations and especially proving
properties of this algorithm more intuitive. Second,
one aspect of the algorithm precludes its representa-
tion as a purely forward- or backward-flow data flow
problem or even as a bidirectional [10] da ta flow prob-
lem. We conclude the description of the algorithm by
giving pseudo-code for its worklist version.

Our algorithm associates three sets with each node
n of the TFG: GEN(n), IN(n), and M(n). The set
M(n) is the current approximation to the set of nodes
that may happen in parallel with n, while GEN(n)
represents the nodes we can place in the approxima-
tion based on information local to n and IN(n) rep-
resents the nodes we can place in the approximation
using information propagated from the predecessors
of n. Initially, all three sets for all nodes are empty.
These sets are repeatedly recomputed until the algo-
r i thm reaches a fixed point and the sets do not change.
At this point set M(n) represents a conservative over-
estimate of nodes with which node n may execute in
parallel.

In addition to these three sets, we assign a Reach bit
to each communication node. This bit is initially set
to f a l s e . Its value is set to t r u e if, on some itera-
tion, each of its two local predecessors belongs to the

26

(a) (b) (c)

Figure 2: Illustrations for the MHP equations

M set of the other. Intuitively, a task rendezvous rep-
resented by a communication node can take place only
if both tasks are ready to participate in it. Until the
Reach bit of a communication node is set to t r u e , the
algorithm assumes that the task synchronization rep-
resented by this node is not possible. If the Reach
bit of a communication node is still f a l s e after the
algorithm reaches a fixed point, this means that the
task communication represented by it is not possible
on any execution of the program.

The sets GEN and IN are computed on each it-
eration of the algorithm as follows. If n is a local
node, let P be the set consisting of ni,itiat, if n is
a successor of ninitial, and all communication nodes
C that have n as a successor and have Reach(C) set

t rue. Then aF, N(,) = \ { m I to

m is in the same task as n }. Informally, GEN(n) is
the set of local nodes m such that m and n are both
successors of a reachable communication node, or of
the initial node. The idea is that , if a local node
is a successor of a reachable communication node, it
may happen in parallel with other successors of this
communication node since both tasks participating
in the communication can execute immediately after
the communication. For example, in Figure 2(a), af-
ter rendezvous C1 is executed, nodes ml and n may
happen in parallel. If n is a communication node,
GEN(n) = 0.

For a local node n, we put IN(n) = UpePred(n) M(p),
while if n is a communication node, we put

I N (n) = { ~ pEPred(n) M(p) otherwise.ifReach(n)

Here the idea is that , since tasks can execute at vary-
ing rates, a local node that may execute in parallel

with another node may also execute in parallel with
all local successors of tha t node. A communication
node, however, can execute only when both of its pre-
decessors have executed, and so may not execute in
parallel with a node that cannot execute in parallel
with both of its predecessors. Figure 2(b) provides an
illustration. Suppose that nodes n and p may happen
in parallel (i.e., that node C is reachable), and nodes
m and p may not happen in parallel. Since node L
can happen only after both rn and n happened, it may
not happen in parallel with node p. Note that by con-
struction a communication node can never have nodes
in its IN set from the two tasks whose rendezvous it
represents.

On each iteration, we set M(n) = IN(n) U GEN(n).
Up to this point the algorithm is a s tandard forward-
flow data flow algorithm [5]. However, after com-
puting GEN, IN, and M sets for each node, we
have to take an additional step to ensure the sym-
metry nl E M(n2) ¢* n2 E M(nl) by adding n2 to
M (n l) if nl E M(n2). Figure 2(c) illustrates this
necessity: without this additional step the M sets
of nodes nl and ml are {n2} (GEN(ml) = {n2}
and IN(m2) = {n2}), but the M set of n2 is {nl}
(GEN(n2) = {nl}). Thus, n2 e M(ml) holds but
ml E M(n2) does not and so the symmetry step in
necessary to put ml in M(n2).

In Figure 3, we give a worklist version of the MHP al-
gorithm. Although steps (12)-(14) do not allow cast-
ing the algorithm in the general da ta flow algorithm
form and using the standard complexity results [7] di-
rectly, we can show that the algorithm has polynomial
worst case bound, as stated below in Theorem 4.

To conclude the discussion of the MHP algorithm, we
state some results about its termination, conservative-

27

I n p u t : A TFG (N, E , ni~it~t, n/in~,/z)
O u t p u t : Vn E N : a set MHP(n) of TF G nodes
such that Vm ~ MHP(n), m may not happen in
parallel with n.
Initialization: The M sets for all nodes are ini-
tially empty, and the worklist W initially contains
start nodes for all tasks in the program.
For each n E N, set M(n) = 0.

k Set W = (nl,...,nk), where Ui=lni = {n [
(niniti~l, n) E E }
Main Loop: We evaluate the following statements
repeatedly until W = 0

(1) n := the first element from W
(2) W := W \ {n}
(3) Mold :---- M(n)
(4) if n E COM then
(5) {Pl,P2} :---- Pred(n)

(6) Reach(n) : - (Pl E M(p2))
(7) if Reach(n) then
(8) M(n) := M(pl) fq M(P2)

end if;
else

(9) Compute GEN(n)
(10) M(n) := (JpePred(n) M(p) U GEN(n)

end if;
(11) if Mold ~ M(n) then
(12) For each m E (M(n) \ Mold)
(13) i (m) := i (m) tA {n}
(14) W := W U Succ(m)
(15) W := W U Succ(n)

end if;
Finalization:

For each n E N
(16) MHP(n) := i (n)

Figure 3: MHP algorithm

ness, and polynomial-time boundedness.

T h e o r e m 1 (T e r m i n a t i o n) . Given a TFG for a
concurrent program, the worklist version of the MHP
algorithm will eventually terminate.

Termination follows easily from the finiteness of the
information tha t can appear in the M sets of all nodes
in the TF G and from the fact that the M sets of all
nodes increase monotonically.

T h e o r e m 2 (C o r r e c t n e s s) . After the MHP
algorithm terminates, M(n) = GEN(n) U
Uq~Pred(n) M(q) for every reachable local node
n, i.e., the algorithm finds a fixed point of the data
flow equations.

The fact tha t the algorithm computes a fixed point
follows from the observation that , whenever an M(n)
is changed, all nodes directly affected by the change
are placed on the worklist.

T h e o r e m 3 (C o n s e r v a t i v e n e s s) . For all nl ,n2 E
N, MHPperl(nl, n2) ~ nl E MHP(n2).

The proof of this result is based on a case-by-case ex-
amination of all configurations of nodes nl and n2 in
the TFG.

Theorem 4 (Polynomial-Time Boundedness).
The worst-case time bound for computing MHP sets
for all nodes in the TFG is O(IN13).

To prove this, we construct an optimized version of the
worklist algorithm which limits the amount of infor-
mation passed among the nodes in the T F G by sending

each node from the M set of a given node to each of its
successors only once. Then we prove that this efficient
algorithm computes exactly the same information as
the MHP algorithm in Figure 3 and show that the
complexity of the efficient algorithm is (.9(INI3).

The idea of the efficient algorithm is that , if node m
is one of control predecessors of node n, each node in
M(m) should only be inserted in M(n) once. This is
achieved by defining an additional set OUT for each
node. A node is placed in OUT(m) if and only if it is in
M(m) and has never been placed in OUT(m) before.
The IN set for a local node is set equal to the union
of the O UT sets of all its predecessors. Since each lo-
cal node has O(INI) predecessors, and the number of
nodes that can be put in the OUT set of each of the
predecessors in the course of the algorithm is O(INI),
the number of times a node is added to the IN set
of each local node is (.9(]NI2). Combined over all lo-
cal nodes, there are at most O(INI ~) insertions in IN
(and thus M) :sets. Because each of the communica-
tion nodes in the graph has exactly two predecessors,
computation of IN sets for communication nodes can
be based on the M sets of their predecessors, exactly
as in the algorithm in Figure 3, and thus takes O(IN[)
operations. Each node in the graph may be placed on
the worklist at most O([N[2) times, and so the overall
complexity of computing M sets for communication
nodes is O([N[3).

The GEN sets for all nodes in the graph can be
largely precomputed and only modified in the course of
the algorithm as communication predecessors of local
nodes become reachable. This precomputat ion takes
O([N[3) and the modification is O(IN[) for each local

28

node for the course of the algorithm.

Combining the complexities for the parts of the al-
gorithm, we obtain the cumulative complexity of
VdNP) .

We note that, in the worst case IN[is itself quadratic
in the number of statements in the program (due to
the introduction of communication nodes). In prac-
tice, however, INI is usually a small multiple of the
number of program statements. In Section 4, we re-
port on the relation between the number of TFG nodes
and the size of the program for our sample of 159 pro-
grams.

3. COMPARING NON-CONCUR-
R E N C Y ANALYSIS WITH THE
M H P ALGORITHM

This section introduces the most precise of the pre-
vious approaches for computing the MHP informa-
tion, Masticola and Ryder's non-concurrency analy-
sis. Since the program model used by this approach is
different from TFG, we describe the technique for cre-
ating TFGs automatically from the non-concurrency
graphs. Finally, since the MHP algorithm computes
pairs of nodes that may happen in parallel and non-
concurrency analysis computes pairs of nodes that
cannot happen in parallel, we present a mapping be-
tween these two sorts of data. This mapping allows
us to compare the information computed by the two
approaches.

3.1. Non-concurrency Analysis
Non-concurrency analysis computes can't happen to-
gether (CHT) information, which is the opposite of
what the MHP algorithm computes. The model of the
program used in this approach is the sync graph, where
each node represents a number of control paths in a
task that end in a single synchronization point. Possi-
ble rendezvous are represented as hyperedges, connect-
ing the synchronizing paths. Initially it is assumed
that a given node can happen together with any of
the nodes in the other tasks. Four CHT refinements
are then applied, in arbitrary order, until a fixed point
is reached. The four refinements are pinning analysis,
B~ analysis, RPC analysis, and critical section anal-
ysis. The complexity of each of the four refinements
is O(INsuncl3), and the complexity of the overall ap-
proach is O(INsy~cl5), where N, unc is the set of sync
graph nodes [9]. The number of sync graph nodes is
proportional to the number of statements in the pro-
gram.

3.2. Deriving TFGs from Sync Graphs
In order to compare information computed on sync
graphs and TFGs, we construct a special restricted

trace flow graph (RTFG) from a sync graph. Here we
give only a sketch of this construction. We create a
single local RTFG node for each sync graph node, ex-
cept for those nodes in the sync graph that represent
entry calls to accept statements with bodies, for which
two local RTFG nodes are constructed. One RTFG
node represents the execution of the caller task before
the callee task accepts the call. The second RTFG
node represents the state of the calling task while the
accept body executes. Similarly, a single communica-
tion RTFG node is created for each hyperedge that
models an entry call to an accept statement without
a body and two communication nodes are created for
each hyperedge that models an entry call to an accept
statement with a body.

Figure 4 gives an example. The sync graph in Fig-
ure 4(b) models the communication structure of the
simple program in Figure 4(a). The hyperedge repre-
senting the call to entry E, made by task Tl, is shown
as a dashed line, and the wavy line represents the sub-
graph corresponding to the body of the accept state-
ment in T2. The RTFG derived from this sync graph
is shown in Figure 4(c). The matching sync graph and
RTFG nodes are labeled with the same numbers. The
node labeled 1 ~ in the RTFG represents the second
local node created for the sync graph node 1.

3.3. Mappings between the information
computed by the two approaches

The algorithm for constructing RTFGs from sync
graphs provides us with a mapping ~u : Nsync --~ 2 N,
where N~ync is the set of nodes in the sync graph and
N is the set of nodes in the corresponding RTFG.
We define a function #-1 : 2 ~ _~ 2N,~c by setting
/,-1(S) = {~ I #('~) n S # 0}.

Using these mappings, we can "translate" the MHP
information from the RTFG to the corresponding sync
graph by mapping the MHP set computed for a node
n in the RTFG to the corresponding node in the
sync graph. In cases where a sync graph node ~ has
two corresponding RTFG nodes nl and n2, MHP(~)
is defined as the union of the two translated sets
MHP(nl) and MHP(n2). In general, MHP(~z) =
U,~,(~) #-1 (MHP(n)).

The result is that each node in the sync graph has
a CHT set and an MHP set associated with it. To
compare these sets, we must take the facts that,
for each node ~ in the sync graph, ~ ~ MHP(~)
and fi ~ CHT(~) into account. For any function
A: N~ync ~ 2 N'y~c, let A+(fi) -- A(fi) U {~}. Then
CHT(fi) computed by non-concurrency analysis cor-
responds to MHP+(~) computed by the MHP algo-
rithm, where the bar indicates the complement. Thus,
to compare the precision of the two techniques, we
compare the sets CHT(~z) and MHP+(~). One tech-

29

task body T1 is
begin

T2.E;
end TI;

task body T2 is
begin

accept E do

and'E;
end T2;

3

4

j

14

21

(a) Code (b) Sync graph (c) RTFG

Figure 4: Example of RTFG construction

nique is more precise than the other if, for each node
fi, the set computed by the former contains the set
computed by the latter.

seems to indicate that the gain in precision may not
warrant this added complexity. We plan to investigate
these trade-offs in our future work.

3.4. Theoret ical comparison
We compared the theoretical precision of informa-
tion computed by the MHP algorithm and non-
concurrency analysis. Specifically, we compared the
MHP algorithm to each of the four refinements used
by non-concurrency analysis, a t tempting to prove or
disprove that our algorithm is more precise than this
refinement. We say that the MHP algorithm subsumes
a refinement if, given that the MHP information was
at least as precise as the CHT information before the
refinement (i.e., tha t CHT(~) C_ MHP+(~) for all ~),
tha t is still the case after the refinement. Due to space
limitations, we briefly state the results of this compar-
ison without proof.

We were able to prove that the MHP algorithm sub-
sumes the pinning and B4 refinements of the non-
concurrency approach. On the other hand, we found
counterexamples showing that the MHP algorithm
does not subsume the critical section and RPC refine-
ments. The MHP algorithm can be improved to take
advantage of critical section regions 1. However, the
resulting algorithm is more complicated than the one
presented in this paper and its worst-case complexity
is O(IN[5). Our initial evaluation of the performance
of the MHP algorithm, discussed in the next section,

lIn the TFG model the subgraph corresponding to the RPC
structure is just a special case of the critical section structure.
Therefore, this extension of the MHP algorithm also takes ad-
vantage of the information about remote procedure calls.

4. E X P E R I M E N T A L RESULTS
We measure the precision of the information computed
by a technique in terms of the set of pairs of nodes in
the sync graph that this technique determined cannot
happen in parallel. We write PNCA for the set of CHT
pairs found by non-concurrency analysis and PMHP for
the set of CHT pairs found by the MHP algorithm.

Stephen Masticola graciously provided us with his im-
plementation of non-concurrency analysis, writ ten in
C. We used this for our experiments, together with our
own implementation of the MHP algorithm, writ ten in
Java. In addition, we wrote a reachability tool to find
all reachable program states of the RTFG model, also
in Java. Although the reachability tool runs out of
memory for some of our test programs, in the cases
where it ran successfully, it determined the "ideal" set
of pairs of nodes that can happen in parallel. Assum-
ing that no data sharing and no unreachable code ex-
ists in the program, this set is equal MHPrerf. Given
this set, we computed CHTperf, the "ideal" set of pairs
of nodes that cannot happen together. We ran the
non-concurrency tool on a Sun Sparc 10 with 32 MB
of memory, and the MHP tool and the reachability
tool on an AlphaStation 200 with 128 MB of memory.
(The non-concurrency tool would not compile on the
AlphaStation, which is our primary platform.)

We used a sample of 159 Ada programs, including
the suite of 138 programs Masticola and P~yder used

30

~ I CHTpe~!
I CHTper] I \PIvcAI

699 72373 98103 25990 260
55 334 361 362 28 1
88 1039 1155 1157 118 2

194 668 815 177 30
232 800 1025 261 36

97 953 1282 337 8
44 345 355 356 11 1

268 15395 17310 17312 1917 2
56 373 423 427 54 4

I CHTp~rf NCA MHP reach.
\PMHPl I t ime ~ t i m e I t i m e I

28 1
118 2

11 1

1917 2
54

277.54 1860.41
2.81 0.32 3.14

10.67 1.04 140.90
57.62 26.30
90.15 48.04
35.16 1.37

0.89 0.30 0.35
26.58 45.14 19.54

2.12 0.45 1.72

Table 1: Data for the 9 cases where non-concurrency analysis found some pairs that the MHP algorithm did not

in their experiments with non-concurrency analysis.
Most of the remaining programs are examples drawn
from the concurrency literature, such as the dining
philosophers and the gas station. Of the 159 pro-
grams, 25 did not have loops. The sizes of the pro-
grams range from only a few lines of code to several
thousand lines. This program sample contains sev-
eral groups of programs representing different sizes
and variations of the same basic example and actu-
ally contains approximately 90 significantly different
examples. It is, of course, unlikely that this sample of
relatively small programs is representative of concur-
rent Ada programs in general, but our results provide
some initial data indicating that the MHP algorithm
is very often more precise than non-concurrency anal-
ysis.

In the following discussion of the results, we sepa-
rate the program sample into three subsets, which
we discuss separately. First, we consider the 25 pro-
grams without loops. For all of these programs, which
come from the Masticola-Ryder collection, the MHP
algorithm found all the CHT pairs found by non-
concurrency analysis. Second, we describe our results
for the 9 programs in which non-concurrency analy-
sis detected some CHT pairs not found by our MHP
algorithm. Finally, we describe the results for the
remaining 125 programs, those with loops for which
the MHP algorithm found all the CHT pairs found
by non-concurrency analysis. The focus of our dis-
cussion is on the detection of CHT pairs by the two
approaches. We do comment briefly on the execu-
tion times for non-concurrency analysis and our MHP
approach, but these times do not have much signifi-
cance. Neither we nor Masticola and Ryder aimed to
maximize the speed of the implementations. In ad-
dition, non-concurrency analysis was implemented in
C, a compiled language, and the MHP algorithm was
implemented in Java, an interpreted language. Fi-
nally, as mentioned above, the tools were run on differ-
ent machines with different operating systems, clock
speeds, and memory sizes. Thus, we view the com-
parison of the precision of the two approaches as the
primary goal of this experiment.

31

4.1. Programs without loops
We realize that the programs without loops are not
likely to be realistic examples, and so we consider
them separately from other programs. The reachabil-
ity analysis was completed successfully for all but one
of the 25 programs without loops, and in all such cases
the MHP algorithm found all pairs found by reacha-
bility (so PMHP -~ CHTperf for all RTFG nodes). In
8 cases, the MHP algorithm found a small number
of pairs that non-concurrency analysis did not, with
the average ratio IPMHPI/IPNcAIOf 1.01. The average
timing ratio (NCA time)/(MHP time) was 1.82, with
most running times for both tools well under a second.

4 .2 . ' P r o g r a m s w h e r e n o n - c o n c u r r e n c y
a n a l y s i s f o u n d p a i r s t h a t t h e M H P
a l g o r i t h m d i d n o t

Non-concurrency analysis found some CHT pairs not
found by the MHP algorithm in 9 of the 159 cases we
ran. The complete data for these cases are presented
in Table 1. The first column of this table shows the
program size in terms of the number of nodes in the
sync graph. The next three columns give the num-
ber of pairs of nodes that cannot happen together, as
found by the three different methods. The fifth col-
umn gives the number of pairs found by the MHP
algorithm that were not found by non-concurrency
analysis, while the sixth column gives the number of
pairs found by non-concurrency analysis but not by
the MHP algorithm. The seventh and eighth columns
give, for the 5 cases that our reachability tool could
handle, the number of nodes in CHTperl that were
not found by non-concurrency analysis and by the
MHP algorithm, respectively. Finally, the last three
columns show the time used by each of the analysis
methods; times are in seconds and include both user
and system time. An interesting observation is that,
for the 5 cases in which our reachability tool could
determine CHTp~rl, although neither the MHP algo-
rithm nor non-concurrency analysis found all possible
pairs, the combination of the two approaches was as
precise as reachability.

Figure 5: Precision comparison for the 9 cases where non-concurrency analysis found some pairs tha t the MHP
algorithm did not

Figure 5 compares the precision of the two approaches
by comparing the total number of CHT pairs found
by each of them to the number of CHT pairs in the
union PNCA t2 PMHP. As just noted, this union is
equal to CHTperI in the 5 cases tha t our teachability
tool could handle. Note that in all cases the MHP
algorithm outperformed non-concurrency analysis in
terms of the total number of CHT pairs found.

4.3. T h e o t h e r 125 p r o g r a m s

The remaining 125 programs are those that have loops
and where the MHP algorithm found all CHT pairs
tha t non-concurrency analysis did. Of these, the
reachability tool ran in 102 cases. For all of these 102
cases in which we were able to determine CHTp~rf, the
MHP algorithm found all the pairs in CHTperf. Non-
concurrency analysis found all the pairs in CHTp~r I
in only 22 cases.

Of these 125 programs, there were 101 cases in
which the MHP algorithm found some pairs tha t
were not found by non-concurrency analysis (in the
remaining 24 cases, the MHP algorithm and non-
concurrency analysis found exactly the same pairs).
Figure 6 plots the ratio IPMHP]/IPNcAI against the
program size, measured as the number of nodes
in the sync graph. The average precision ratio
IPMHPI/IPNcAI W a s 1.41 and the average timing ra-
tio (NCA time)/(MHP time) was 2.94. The running
times of both tools were under 4 minutes for all pro-
grams.

4.4. T h e n u m b e r of R T F G n o d e s

In addition to comparing the performance of the two
approaches, we examined the question of potential
quadratic blow-up in the number of RTFG nodes. We
plot the number of sync graph nodes against the num-
ber of RTFG nodes in Figure 7. The figure also shows
the least-squares regression line, which has a slope of
1.84. The correlation coefficient is .984. This sam-
ple of programs thus offers strong support for the hy-
pothesis that , in practice, the number of RTFG nodes
depends linearly on the number of sync graph nodes.
Since the size of the sync graph is linear in the number
of program statements, the same appears to be true
for RTFGs.

5. C O N C L U S I O N

• Information about which pairs of s tatements may ex-
ecute in parallel has important applications in opti-
mization, detection of anomalies such as race condi-
tions, and improving the accuracy of da ta flow anal-
ysis. Efficient and precise algorithms for computing
this information are therefore of considerable value.
In this paper, we have described a da ta flow method
for computing a conservative approximation of the set
of pairs of statements in a concurrent program that
may execute in parallel. Theoretically, neither non-
concurrency analysis nor our MHP algorithm has a
clear advantage in precision. However, based on our
experimental data, the MHP algorithm often is able to
determine the pairs of statements tha t may execute in
parallel more precisely than non-concurrency analysis.

32

13

12

11

10

9

8

7

6

5

4

3
• o • • •

;2 g w,'s. 4 : " ¢ , • . 8 .

50 100 150 200 250 300 350 400

Nodes in Sync Graph

Figure 6: The precision ratio [PMHPI/IPNcAI for the 125 programs with loops where the MHP algorithm found
all CHT pairs found by non-concurrency analysis

400-

O00-

8OO

400-

200.

0
100 200 300 4O0 500 60O 700 800

Sync Graph Nodes

Figure 7: Least-squares fit of the number of RTFG
nodes to the number of sync graph nodes

As a part of our experiments, we compared the pre-
cision of the MHP algorithm with the precision of a
technique based on the exhaustive exploration of the
program state space. While this reachability tech-
nique, being exponential in the program size, is not
practical in general, with its help we were able to com-
pute "perfectly" precise information for many exam-
ples. For these examples, the information computed
by the MHP algorithm was remarkably close to that
of the reachability technique.

At present, the MHP algorithm is being used as part
of the FLAVERS tool [3, 11] for data flow analysis of
concurrent programs.

In the future, we plan to extend the MHP algorithm
to apply to programs containing procedure and func-
tion calls without using inlining. Even in its current
form, the MHP algorithm can be easily used to sup-
port a limited form of interprocedural MHP analysis,
with the restriction that procedures may not contain
task entry calls. Under this restriction, the MHP sets
computed for procedure call nodes are sufficient to de-
termine the MHP sets for all nodes in this procedure.
Thus, if n is a call node for procedure P, then any node
in the body of P may happen in parallel with any node
in MHP(n), computed the MHP algorithm. Special
care must be taken when there is a possibility that
a procedure may be called by more than one task, in
which case executions of multiple instances of this pro-
cedure may overlap in time. In this case, unlike task
nodes, the MHP sets of nodes from the procedure will
contain other nodes from the same procedure. To de-

33

termine whether this might happen, we have to check
whether any of the call nodes to P is in the MHP set
of any of the other call nodes to this procedure (this
has to be done recursively for nested procedure calls),
in which case the MHP sets of all nodes in P must
contain all nodes in P.

In the case of procedures containing entry calls, we
plan to use a context-sensitive approach, extending
the TFG model to include procedure call and return
edges, similar to the approach of [6], and modifying
the MHP algorithm accordingly.

In addition, we plan to implement an algorithm that
improves the precision of the MHP algorithm by tak-
ing advantage of information about regions in the pro-
gram that can only execute in a mutually exclusive
fashion, in a way similar to the critical section analysis
refinement of non-concurrency analysis. Then we plan
to carry out a careful comparison of the performance
of this improved algorithm with that of the algorithm
presented in this paper and of the non-concurrency
approach. The initial hypothesis, which seems to be
supported by this work, is that in practice the im-
proved algorithm will be only marginally more precise
than the current algorithm. We hope to perform these
experiments for a larger program sample with more re-
alistic programs and to evaluate the trade-ofis of pre-
cision and cost added by the improved algorithm.

Finally, we are working on an MHP algorithm for con-
current Java programs. The differences in the way
communications between threads of control are real-
ized in Ada and Java imply different program models.
While we are able to use the same general principle
for Java as the one we introduce in this paper for Ada,
there are a number of significant changes in the data
flow equations used by the algorithm for Java. It will
be interesting to see if the practical precision of the
MHP algorithm depends on the differences in commu-
nication mechanisms of the different concurrent lan-
guages.

Acknowledgments
We thank Stephen Masticola and Barbara Ryder for
graciously providing us with their non-concurrency
analysis tool and a set of sample Ada programs that
we used in our experiments. We are also grateful to
Lori Clarke for helpful suggestions on this work.

R e f e r e n c e s

[1] D. Callahan and J. Subhlok. Static analysis of
low-level synchronization. In Proceedings of the
SIGPLAN/SIGOPS Workshop on Parallel and
Distributed Debugging, pages 100-111, 1988.

[2] E. Duesterwald and M. L. Sofia. Concurrency
analysis in the presence of procedures using a

data flow framework. In Proceedings of the ACM
SIGSOFT Fourth Workshop on Software Testing,
Analysis, and Verification, pages 36-48, Victoria,
B.C., October 1991.

[3] M. Dwyer. Data Flow Analysis for Verifying Cor-
rectness Properties of Concurrent Programs. PhD
thesis, University of Massachussetts, Amherst,
1995.

[4] M. Dwyer and L. Clarke. Data flow analysis for
verifying properties of concurrent programs. In
ACM SIGSOFT'94 Software Engineering Notes,
Proceedings of the Second ACM SIGSOFT Sym-
posium on Foundations of Software Engineering,
pages 62-75, December 1994.

[5] M. Hecht. Flow Analysis of Computer Programs.
North-Holland, New York~ 1977.

[6] S. Horwitz, T. Reps, and M. Sagiv. Demand in-
terprocedural dataflow analysis. In Proceedings
of the Third ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pages 104-
115, Oct. 1995.

[7] T. J. Marlowe and B. G. Ryder. Properties
of data flow frameworks. Acta Informatica,
28(2):121-163, 1990.

[8] S. Masticola and B. Ryder. Non-concurrency
analysis. In Proceedings of the Twelfth of Sympo-
sium on Principles and Practices of Parallel Pro-
gramming, San Diego, CA, May 1993.

[9] S. P. Masticola. Static detection of deadlocks in
polynomial time. PhD thesis, Rutgers University,
1993.

[10] S. P. Masticola, T. J. Marlowe, and B. G. Ryder.
Lattice frameworks for multisource and bidirec-
tional data flow problems. ACM Transactions on
Programming Languages and Systems, 17(5):777-
803, September 1995.

[11] G. N. Naumovich, L. A. Clarke, L. J. Osterweil,
and M. B. Dwyer. Verification of concurrent soft-
ware with FLAVERS. In Proceedings of the 19th
International Conference on Software Engineer-
ing, pages 594-595, May 1997.

[12] R. N. Taylor. Complexity of analyzing the syn-
chronization structure of concurrent programs.
Acta Informatica, 19:57-84, 1983.

34

