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Abstract

Due to the state explosion problem, analysis of large concur-

rent programs will undoubtedly require compositional tech-

niques. Existing compositional techniques are based on the

idea of replacing complex subsystems with simpler processes

with the same interfaces to their environments, and using

the simpler processes to analyze the full system. Most algo-

rithms for proving equivalence between two processes, how-

ever, require enumerating the states of both processes. When

part of a concurrent system consists of many highly coupled

processes, it may not be possible to decompose the system

into components that are both small enough to enumerate

and have simple interfaces with their environments. In such

cases, analysis of the systems by standard methods will be in-

feasible.

In this paper, we describe a technique for proving trace

equivalence of deterministic and divergence-free systems

without enumerating their states. (For deterministic systems,

essentially all the standard notions of process equivalence

collapse to trace equivalence, so this technique also estab-

lishes failures equivalence, observational equivalence, etc.)

Our approach is to generate necessary conditions for the ex-

istence of a trace of one system that is not a trace of the

other; if the necessary conditions cannot be satisfied the sys-

tems are equivalent. We have implemented the technique and

used it to establish the equivalence of some systems with state

spaces too large for enumeration to be practical.

1 Introduction

Concurrent software is notoriously difficult to design and de-

bug. Since such software is increasingly a part of safety crit-

ical systems, methods and tools for assuring its reliability are
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badly needed [16]. One of the most error-prone aspects of a

concurrent system is the design of the communication proto-

col used by its cooperating agents. Fortunately, formal meth-

ods exist for aiding developers with the design and verifica-

tion of communication protocols. Process algebras and la-

beled transition systems provide a foundation for represent-

ing and reasoning about concurrency. Analysis techniques

based on these models, such as reachability analysis, are eas-

ily automated and can provide rigorous guarantees of a sys-

tem’s conformance to certain requirements. A reachability-

based tool could, for example, prove a safety critical Ada

tasking program free from communication deadlocks or other

anomalies. In practice, however, the applicability of this

kind of analysis is limited by the state explosion problem:

the number of states that must be examined usually grows

very quickly with the size of the program. Analysis of very

large programs will undoubtedly require compositional tech-

niques, which exploit the modularity of the program to re-

duce the complexity of the analysis.

Several techniques for compositional reachability analy-

sis have already been proposed (e.g., [5, 6, 19]). The basic

strategy of these techniques is to divide a large system into

smaller subsystems, verify each subsystem, and then com-

bine the results of these analyses to verify the full system.

For concurrent processes, this is typically accomplished by

decomposing the system into subsystems with simple inter-

faces, proving each subsystem is behaviorally equivalent to

a simple process specifying the same interface with its en-

vironment, and then verifying the full system using the sim-

pler interface processes. For example, a system may contain

a group of processes that implement a network protocol. Al-

though these processes may have complex interactions with

each other (e.g., because of sequence numbers, acknowledge-

ments, etc.), their interface to the rest of the system (i.e., send

packet, receive packet) is equivalent to a simple buffer.

The basis for a compositional analysis technique of this

sort is a notion of equivalence between processes that allows

a complex process, representing a subsystem, to be replaced

by a simple process, representing the subsystem’s interface
with its environment. This equivalence is proven by either

constructing a relation between the states of the subsystem
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process and the states of the interface process, or by hiding

internal actions of the subsystem process and minimizing un-
til it becomes the interface process. In any case, most exist-

ing algorithms for testing equivalences [7, 13] must enumer-

ate the states of both processes. Existing enumeration-based

tools are limited to systems having about 106 states.

In thk paper, we consider the eventual application of com-

positional techniques to very large and complex programs. It

seems likely that such programs will contain parts that cannot

be further divided to yield a tractable analysis. Specifically,

suppose the implementation 1 of a particular module of a pro-

gram has n tasks: 1 = II II -.. II In. Further suppose that

I contains far too many states to enumerate and that there is

no subset of the Ii’s that, when composed, has a simple inter-

face with its environment (i.e., the tasks are highly coupled).

The specification S of the module’s interface with its envi-

ronment is another process S = S1 II .-. II Sm that may or

may not be small enough to enumerate, but can be expressed

as a composition of small processes. To use a compositional

analysis, we must prove that S is equivalent to I, but we can-

not use standard techniques since I (and perhaps S) has too

many states to enumerate.

Here, we show that such an equivalence can be proven for

a restricted class of systems. Specifically, we describe a tech-

nique for proving the trace equivalence of a specification pro-

cess S = S1 1{ --- II S’m and an implementation process

1=1~ IJ . . II In without enumerating the states of ei-

ther S or 1. The technique works from the component pro-

cesses Sl, . . .. Small,... , ~~ and involves the generation
of necessary conditions for the existence of a trace showing

that the equivalence does not hold. If these conditions can-

not be satisfied, we may conclude that the equivalence holds.

The necessary conditions are similar to those used in the con-

strained expression method for concurrent systems analysis

[1, 2]. The use of necessary conditions results in a conserva-

tive analysis: the technique will never report that inequiva-

Ient processes are equivalent, but it may sometimes be unable

to verify an equivalence that does hold.

Our technique is currently restricted to processes that are

deterministic and divergence-free. Informally, a determinis-

tic process has the property that the set of actions in which a

process can engage is completely determined by the actions

in which it has engaged previously. For example, a process

representing a reliable network protocol should be determin-

istic: the packets it will deliver to the receiver should be com-

pletely determined by the packets it was given by the sender.

A divergence-free process is one that cannot engage in an un-

bounded number of internal actions and thus ignore requests

for interaction with its environment indefinitely. Any sys-

tem that is expected to respond to external events (a reactive

system) must be divergence-free. For nondeterministic pro-

cesses, there is a hierarchy of many different kinds of equiv-

alence (e.g., failure equivalence, observational equivalence),

but for deterministic processes, this hierarchy collapses and

all forms of equivalence are the same as trace equivalence.

We have implemented our technique and used it to estab-

lish the trace equivalence of some systems with state spaces

too large for enumeration to be practical. The only other non-

enumerative equivalence techniques we know of use Ordered
Binary Decision Diagrams (OBDDS) to represent the states.

Examples of tkds work are [4] and [12]. The successful appli-

cation of OBDD-based methods depends heavily on finding a

good ordering for the state variables, While some heuristics

exist, especially for models of certain digital circuits, the suc-

cessful application of these methods to concurrent software

systems with highly coupled tasks remains extremely prob-

lematic.

This paper is organized as follows. Section 2 presents

basic definitions used throughout. Section 3 describes the

method and Section 4 presents the results of some experi-

ments with the method. Finally, Section 5 concludes and dis-

cusses future directions for this work.

2 Definitions

Formally, we regard a process as a finite-state automaton in

a standard fashion. States of a process can be regarded as tu-

ples giving the values of all relevant local variables, includ-

ing the program counter, and a transition between states cor-

responds to an event changing one or more of these variables.

Definition 1 A process P is a quadruple (S, X, A, sp)

where S is a set of states, X is an alphabet, A ~ S x Z x S

is a transition relation, and SP c S is the start state.

A concurrent system is usually thought of as a collection

of tasks or threads of control, each of which might be mod-

eled by an individual process. We use the term “process” in

the sense of process algebra, so our processes might repre-

sent single tasks/threads or groups of tasks/threads execut-

ing concurrently. We define a parallel composition opera-

tor that constructs a single process, representing a concurrent

system, from the processes representing the tasks that com-

prise it. When processes are composed in parallel, the result-

ing process may accept a symbol if and only if every com-

ponent whose alphabet contains that symbol can accept the

symbol.

Definition 2 Given a collection of processes PI, . . . , Pn

with Pi = (Si, Xi, Ai, SP,), the parallel composition PI II

..0 II Pn is defined as another process P = (S, Z, A, Sp),

where S= Six... xsn, z=uixz, sp=(sP1 ,. ... Sp. ),
and((sl, . . . ,sn), a,(s~> . . . , s~)) < A if and only if, for all

i=l, . . ..n.

We assume processes communicate in pairs (as in Ada and

CSP). Given a subsystem represented as a parallel composi-

tion P= Pill... II Pn, this divides the symbols in E into

three disjoint sets:
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Internal Actions (Xint) A symbol representing an internal

action of a single Pi is in the alphabet of only that pro-

cess.

Communication Actions (XCOJ A symbol representing

communication between two Pi is in the alphabets of ex-

actly those two processes, one of which is designated the

caller, and the other the acceptor.

Viiible Actions (Xvi.) A symbol representing a communi-

cation with the environment is in the alphabet of exactly

one Pi. Although they represent communications, we

do not include visible actions in ZCO~.

When processes are composed, some of their actions cease

to be interesting from an external point of view. In most

process algebras, such actions are hidden by a special op-

erator that renames them to a special “invisible” action I-.

Here, we take the approach of Valmari [18] and specify a

set xvi, ~ Z of visible actions (unmatched communica-

tions). Only the visible actions of a process are considered

when proving equivalence. With most techniques for prov-

ing equivalence, a process P = PI [[ . . . II Pn is consid-

ered a single composed entity, thus the actions in XCOm and

Ximt are not distinguished since they all represent actions in-

ternal to P. In our technique, we do not construct P but work

from its components Pl,. . . . Pn, and therefore need to dis-

tinguish between X.,-m and Xint. The following definitions

are adapted from [18].

Definition 3 LetP = (S, X, A, SP) be a process and Zui. ~

Z be a set of visible actions.

●

●

●

●

●

●

●

●

●

Form 6 Z“, vis(cr) is theprojectionof o onto 2.,. (i.e.,

all invisible actions are removed).

s~s’, where o = al . . . an G Z*, if and only if

%-cl,... ,sm 6 S such that so = s, s~ = s’, and

(s~._l, ai, si)EAfori=l,... ,m.

s%, whereu = al . . . E ZW, ifandonlyif3s0, . . . E S
)EAfori= l,...such that so = s and (si–l, ai, St

A process P is divergence-free if and only if --do G

X*, p ~ (X – ZVi,)W such that SP-%S, s~ for some

SES.

Fors E S, next(s) = {a G 2[3s’ E S : s~s’}.

s~s’ if and only if W c X“ such that S<S’ and rs =

Vis(a’).

A process P is deterministic if and only if, for all s E

S and o E E*, S%S’ and S%S” implies next(s’) =

next(s”).

Traces(P) = {u G X~i~13s E S : SP3S}.

Processes P and P’ are trace equivalent if and only if

Traces(P) = Traces(P’).

3 Method

Most techniques for proving the equivalence of two pro-

cesses involve refining a partition of their state sets until all

the states in each part are equivalent. Our approach is to gen-

erate necessary conditions for the existence of a counterex-

arnple showing that the equivalence does not hold. To prove

that two processes are not trace equivalent, we generate nec-

essary conditions for the existence of a trace of one that is not

a trace of the other. If these conditions cannot be satisfied, we

may conclude that the equivalence holds. If the conditions

can be satisfied, however, the two processes may still be trace

equivalent, since the conditions are necessary but not suffi-

cient. To be useful, the conditions must be strong enough so

that they are usually not satisfiable if the equivalence holds.

Furthermore, generating the conditions and checking their

satisfiability must be tractable.

If two processes are not trace equivalent, there must be a

trace of one that is not a trace of the other. Given such a trace

p of length at least 1, let a be the longest prefix of p that is a

trace of both processes. Then p = aal az . . . ak, with k >0,

and aal is a trace of one system but not of the other. This

motivates the following definition.

Definition 4 Letu E X:i,and a c Ui.. We say that the

pair (o, a) is bad for processes S and 1 if o E Traces(S) n

Traces(l) and

(i) ma@ Traces(I) and au 6 Traces(S), or

(ii) aa @ Traces(S) and au c Traces(l).

Processes S and I are not trace equivalent if and only if there

exists a pair (o, a) that is bad for S and 1.

We now describe the generation of necessary conditions

for the existence of a bad pair for processes S and I. If these

conditions are inconsistent, we know that no bad pair can ex-

ist and therefore that Sand 1 are trace equivalent. Generating

these necessary conditions does not require the construction

of S= Slll...ll Smorl=ll llll~,b utworksfiomfiom

the component processes S1, . . . . Sn and II, . . ., In. Any

mention of states and transitions in the following description

refers to the states and transitions of the component processes

Sl,..., S~and Il,l~., I~.

3.1 Basic Inequality Necessary Condition Approach

To generate the necessary conditions, we adapt the basic in-

teger programming technique described in [1,2]. Given a set

of communicating processes, that technique uses necessary

conditions, in the form of linear inequalities, to either help

find a trace with certain properties or prove that no such trace

could exist. A trace can be viewed as a path in each compo-
nent process beginning at the start state such that the inter-

actions between the processes represented by the paths are

consistent. The technique finds a flow in each process such
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that the flows satisfy a weaker consistency criterion. Specif-

ically, we require that, for each communication symbol, the
processes whose alphabets contain that symbol agree on the

number of times that they accepted the symbol. We briefly

describe that technique here.

The basic technique produces a system of inequalities rep-

resenting conditions that must be satisfied by any trace. First,

we assign a transition variable, X2, to each transition i that

represents the number of times transition i is taken in the

trace. We also assign a connection variable, cj, toeach state

j that will be one if the process is in that state at the end of the

trace, and zero otherwise. We then generate a flow equation

for each state, equating the flow into the state with the flow

out of the state (i.e., the number of times the state is entered

equals the number of times it is exited). There is an implicit

flow in of one at the start state and the connect variables are

counted as flow out. Finally, we generate a communication

equation for each communication symbol, equating the num-

ber of times the tasks containing the symbol accepted it. It is

easy to show that the resulting inequality system has an inte-

gral solution for every trace. Additional inequalities can be

generated to prevent two processes from both waiting for the

same communication event or to require certain patterns of

events to occur in the trace.

This basic technique is illustrated in Figure 1. Every trace

of the system corresponds to a solution to the inequalities

shown, so the system of inequalities represents a set of nec-

essary conditions for the existence of a trace. Although this

example is too small to illustrate any interesting analysis, we

can give a little of the flavor of the analysis methods based on

the inequality necessary condition approach. Consider, for

example, the equation xl + Z4 = 1. When we add this to

the system of inequalities shown in Figure 1, we obtain a set

of necessary conditions for the existence of a trace in which

exactly one of a or c occurs. It is easy to see that this system

of inequalities has no integral solutions, establishing that no

such trace exists.

More detailed descriptions of this technique can be found

in [1,2], along with the results of some experiments applying

it to analyze various concurrent systems. The technique has

been extended to verify general safety and liveness proper-

ties [8, 10] and timing properties [3, 9].

3.2 Necessary Conditions for the Existence of a Bad Pair

Using this basic technique, we generate the necessary condi-

tions for the existence of a bad pair as follows (see Figure 2

for a more formal presentation). We generate separate sys-

tems of inequalities representing necessary conditions for (i)

and {ii) of Definition 4; since these are essentially the same

except for exchanging S and I, we describe here only the

method for (i). To generate necessary conditions for the exis-

tence of ~ E zj,~, a E US such that ma E Traces(s) and
au ~ Traces(l), we generate the following inequalities:

●

●

●

●

●

v

(2
1

1 2

a b

o
2

v

(?)
3

3 4

b c

Q4

F1ow: (state)

1=X1+X2 (1)

Z1+Z2=C2 (2)

1= Z3 +X4 (3)

X3+ X4=C4 (4)

Communication: (symbol)

X2 = x3 (b)

Figure 1: Example of basic inequality technique

30 E Traces(S) and 3u’ E Traces(I). We use the

basic technique to generateflow equations and commu-

nication inequalities representing necessary conditions

for the existence of traces of S and I.

o = u’. We generate a prefix consistency equah”on for

each a c XVi~ equating the number of occurrences of a

in a with the number of occurrences of a in u’. Like the

communication equations, this enforces a weak consis-

tency between Q and u’ and represents a necessary con-

dition for ~ = u’.

3a E E.,,. To select the extension a c XV,,, we create

an extension variable, e., for each a E Xvi,, that will be

one if a is the extension. We then generate an extension

selection equation summing the extension variables to

one.

~a 6 Traces(S). We generate an extension enabled

inequality for each a ~ Z.,, that allows an extension

symbol to be selected after o only if some component

of S is in a state with a transition on that symbol.

da # Traces(I). We generate an extension excluded

inequali~ for each state in a component of I that allows
the component to be in that state after a’ only if there are

no transitions on a. However, we must exclude the pos-

sibility of stopping in a state with no a transitions when

a state having a transitions can be reached through a se-

quence of invisible actions. To achieve this, we generate

pre~x progress inequalities to prevent the components

of I from stopping in a state where some invisible ac-

tion is enabled. For each state j of a component of I

with an internal action a E Xznt possible, we set Cj = O,
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thereby preventing the flow from stopping in state j. For

each communication action b E XCO~, we generate an

inequality that prevents the caller and acceptor of b from

both stopping in states where b is possible.

The algorithm for generating the necessary conditions for

the existence of a bad pair is shown in Figure 2. Figure 3

gives a small example of a two-slot buffer implemented as the

parallel composition of two one-slot buffers and the inequal-

ities generated by the algorithm in Figure 2. For this exam-

ple, Xvis = {a, b} where a represents data being put into the

buffer, b represents data being removed, and c e ~.o~ repre-

sents the data being passed between the two one-slot buffers.

The inequalities have no integral solution, proving that no

bad pair satisfying condition (i) exists for this example.

The prefix progress inequalities require some further com-

ment. We are generating necessary conditions for o’a to not

be a trace of 1, while a’ is a trace of 1. Our conditions re-

quire flows through the components of 1 that are compatible

with a’, in the sense of having each action occur the right

number of times, and that reach a state where it is not pos-

sible for an a action to occur. Even if an a action cannot oc-

cur in the state reached after a’, it may be possible to exe-

cute a after a sequence of invisible actions. Since we want to

prohibit a from being the next visible action, we use the pre-

fix progress inequalities to eliminate any flows leading to a

state of I in which some invisible action is possible. If an in-

finite sequence of invisible actions is possible after u’, these

inequalities may eliminate all possible flows compatible with

o’ even if (a’, a) is a bad pair. Thus if 1 is not divergence-

free, our inequalities are not necessary conditions for the ex-

istence of a bad pair. Our method only applies, then, in the

case in which both S and I are divergence-free (note that the

component processes II, . . . , In and SI, . . . , Sm need not be

divergence-free). The techniques of [8] can be used to prove

that S and I are divergence free without enumerating their

states.

Theorem ~S and I are divergence-free and the inequality

system generated by the algorithm in Figure 2 has no integral

solutions, no badpair exists for S and I. Itfollows that S and

I are trace equivalent.

Proof If there exists a bad pair (a, a), then we may construct

an integral solution to the inequality system as follows. We

set ea to one and all other extension variables to zero. Since

a E Z’races(S) n Traces(I), there exists a sequence of

transitions in each component of S and I that defines a path

through that component. We set each xk to the number of

times transition k is taken in these paths, and set cj to the one

if the process in in state j at the end of its path, otherwise we

set it to zero. It is easy to check that this assignment will sat-

isfy all the inequalities generated. El

Although our inequalities represent necessary conditions
for the existence of a bad pair, they are not sufficient con-

ditions for several reasons. First, the communication equa-

tions do not guarantee that there is a consistent ordering of

the communication symbols within the parallel compositions

of S and I (e.g., one process could accept a then b, while

the other accepted b then a). Similarly, the prefix consistency

equations do not guarantee that there is a consistent ordering

of the visible actions between the trace found for S and the

trace found for I. Third, the presence of cycles in the pro-

cesses can allow cyclic flows that are not connected to the

path found witbin the process (e.g., if we added transition 9

from state 3 to itself in the S process of Figure 3, then the

flow equation for state 3, X9 + X2 = xs + xg + cs, allows

Zg = 1 even if state 3 is never visited).

Solutions to our inequalities may also arise due to nonde-

terminacy of S or I even when no bad pair exists. This can

occur because, in a nondeterministic system, it may be pos-

sible to reach two states after a sequence of actions a’, with

a possible in one state and not possible in the other. Thus

there would exist a solution to our inequalities correspond-

ing to flows leading to a state in which a is not possible af-

ter cr’ even though da is a trace. Although this problem will

not lead to incorrect reports of equivalence, it means that our

analysis is unlikely to be useful with nondeterministic pro-

cesses.

For these reasons, a solution to the inequality system may

not correspond to a bad pair. If such a solution is found, the

analysis is inconclusive since the presence of that solution

implies nothing about the existence of another solution that

does correspond to a bad pair. In our experience with these

conditions, we have found that they are strong enough to

verify equivalences of interesting systems, although a much

more extensive empirical investigation would be necessary

to characterize their applicability in general. In addition,

we note that the technique of [8] can be used to eliminate

some spurious solutions. That technique involves splitting

the trace into segments, using the basic technique to generate

an inequality system for each segment, and then connecting

the inequality systems together to form necessary conditions

for the entire trace. By placing restrictions on the segments,

we may prevent cectain spurious matchings of communica-

tion actions or disconnected cyclic flows at the price of larger

inequality systems. For example, the method presented here

was unable to prove the equivalence of the stop and wait pro-

tocol to a simple buffer. A spurious solution resulted from

the loss of information on the order of certain events. By

splitting the trace into two segments, however, we were able

to strengthen the conditions and prove the equivalence. We

are currently exploring the range of applicability of this tech-

nique.

The worst case complexity of our algorithm is no better

than that of those methods employing state enumeration. The

complexity of checking trace equivalence for deterministic

processes is polynomial in the number of states in the pro-

cesses. Unfortunately, the number of states in a process P =

PI [[ ..- II Pm is often proportional to the product of the

sizes of the components, and is thus exponential in n. Our
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Notation: Let ace(a) be the process that is acceptor for communication symbol a,
call(a) be the process that is caller for communication symbol a,

next(j) be the set of event symbols labeling transitions out of state j,

enab(a, P) be the set of states of process P having a transition labeled a,
in(j) be the set of transitions into state j,

lab(a, P) be the set of transitions of process P labeled with event a,

out(j) be the set of transitions out of state j,

start(j) be 1 if state j is a start state of a process, else O.

Input: Processes S1, . . . , Sm comprising S

Processes 11, . . . , In comprising 1

EVi~ = visible actions of S and I

~~~~ = communication actions between S1, . . . , Sm or II, . . . , In

~$n~ = internal actions of S~, . . . . S’m, II, . . . . In

Output: A set of inequalities representing necesxuy conditions for the existence

of a pair (o, a) with au $! Traces(I) and oa c Traces(S)

For each transition k of a process:

Create &anSitiOn variable xk

For each state j of a process:

Create connection variable Cj

For each symbol a e ,XVt$:

Create extension variable e.

For each state j of a process:

Generate flow equation: start(j) -t- ~ xk = ~ xk + Cj

k~in(j) keout(j)

For each symbol a E N,Om:

Generate communication equation: E
Xk =

x ‘k
k~lab(a, Cdt(~)) k~hb(a, ace(a))

Generate prefix progress inequality: x Cj +
E

Cj<l

jcenab(cz, calf(a)) jEenab(a, ace(a))

Generate extension selection equation: ~ e. = 1
aEEw,,

For each symbol a G Z.,,:

Generate prefix consistency equation: E E’k
xk =

kElab(a, S) kckzb(r+ 1)

Generate extension enabled inequality: e. < E
CJ

jcemb(a, s)

For each state j of a process of I:

If ga ~ next(j) (1 Xint then

Generate prefix progress equation: Cj = O
Else

Generate extension exclusion inequality: cj + ~ ea <1

a Enext( j )

Figure 2: Algorithm for generating inequalities
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3

s

Flow:

v

(1
4

5

a

6
5

v

o
6

Q

7

b

8
7

I

(state)

Communication:

X6 = X7

Prefix Progress:

c5+c,5<1

Extension Selection:

ea+eb=l

Prefix Consistency:

Z1+XZ=Z5

~s+~l=~a

Extension Enabled:

e.<cl+cQ

eb<cz+cs

Extension Exclusion:

cl+e. <1

C5<1

ce<l

c7+eb<l

1+ X4= Z1+C1 (1)

xl+~3=~2+~l+CQ (2)

~z=~s+cs (3)

l+X(j=~s+cA (4)

Z5=Zf3+c5 (5)

1+ Q,= Z7+C6 (6)

x7=x8+c7 (7)

Figure 3: Two Slot Buffer Example

technique produces an inequality system whose size is pro-

portional to the sum of the sizes of the components. In par-

ticular, the number of variableslinequalities is proportional to

the number of transitions/states in the components. We then,

however, apply integer linear programming @LP), which is

an NP-hard problem for which we use an exponential-time

decision procedure. Despite the complexity of ILP, our ex-

perience with these kinds of inequality systems [2] suggests

that they are easier to solve than the general case, probably

because a large part of the systems are network flow equa-

tions (pure network flow systems can be solved in polynomial

time).

We conclude this section by noting that, when the equiv-

alence does not hold, the solution to the inequality system is

usually helpful in showing why. For all of the non-equivalent

processes to which we have applied the method, the solution

obtained provided an example of a bad pair.

4 Experiments

We have demonstrated the feasibility of our method by im-

plementing it and applying it to several examples. Here,

we describe experiments on two scalable examples. To con-

duct these experiments, we modified the Inequality Neces-

sary Condition Analyzer (INCA), an analysis tool for con-
current and real-time systems that is descended from the con-

strained expression toolset [2]. INCA takes as input a set of

(symbol)

(c)

(symbol)

(c)

(symbol)

(a)

(b)

(symbol)

(a)

(b)

(state)

(4)

(5)

(6)

(7)

specification and implementation tasks specified in an Ada-

like design language. The tool translates the tasks into FSAS

and then produces an inequality system using the algorithm

in Figure 2. The inequality system is solved using an integer

linear programming tool based on the MINOS optimization

package [15] and INCA then interprets the solution, if any.

All times we report are in CPU seconds on a SPARCstation

10 Model 41 with 64MB of memory and include both user

and system time.

The first example is a scaled version of the compositional

buffer example shown in Figure 3. Table 1 shows the re-

sults of proving that n one-slot buffers composed end-to-end

in parallel are trace equivalent to a single n-slot buffer. The

columns of the table show the problem size (n), the number

of inequalities and variables generated, the time to generate

the inequality system, the time to solve the system, and the

total time. The two rows for each size represent the analyses

for conditions (i) and (ii) of Definition 4, respectively.

The second example is adapted from a real world prob-

lem reported in [14] and recently studied in the concurrency

and distribution track of the Sixth International Workshop

on Software Specification and Design. This router problem

models a communication network with ill input ports, each

connected to a sender, and N output ports, each connected to

a receiver. Each sender repeatedly picks some receiver and
sends a message to that receiver through the network. The

network is implemented as an M by N grid of switching el-
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Sender

Receivers

Switches

Size Time
Size Ineqs I Vars Gen I Solve I Total

~{
6 409 354 140 12

409 354 142 13 307
8 721 632 525 36

721 632 529 37 1127
10 1121 990 1599 84

1121 990 1621 81 3385

Table 2: Performance on Router

Figure 4: Router Implementation

Size Time
Size Ineqs Vars Gen I Solve I Total

100 407 411 34 I 3
407 411 I 34 [ 3 74

200 807 811 \ 86 I 61
807 I 811 87 7 186

300 1207 1211 166 I 9/

2007 2011 417 29 877

Table 1: Performance on Compositional Buffer

ements as shown in Figure 4. Messages travel across the row

of their sender and then down the column of their receiver.

In the original problem, messages were divided into multi-

ple packets and no flow control was specified. For our exper-

iments, we used only single-packet messages and assumed

that a sender would wait for an acknowledgement (which re-

traced the path of the message through the network) before

sending another message. Only the latter simplification was

essential. Whhout it, the network could buffer up to J4 x N

messages and would not have a simple specification.

The router problem is interesting in that the external be-

havior of the system is very simple but it is difficult to de-

compose the system into subsystems with a simple visible

behavior. We may specify the externally visible behavior
of the router as the parallel composition of M processes,

S1,.. . , SM, each representing one of the senders. Each of
these specification processes accepts a visible action from the

environment requesting delivery of a message to a specific

output port, then accepts a visible action representing the de-

livery of the message by the intended receiver. Although the

number of states in the specification process S is NM, the

size of each Sz is O(N).

The results of applying our method to prove a specifica-

tion of the router problem trace equivalent to an implemen-

tation are shown in Table 2, We used a square grid so n =

ill = N. The number of states in the specification of the

size n version of the problem is at least nn, and the num-

ber of states in the implementation is much greater. The

size of the inequality system is growing quadratically in n

(linearly in the number of components) and analysis times

seem to be growing somewhat faster, but much slower than

nn. The larger sizes we ran are well out of the range of

state enumeration-based techniques for proving equivalence,

which typically can handle at most about 106 states. We do

not know whether a symbolic OBDD-based technique would

be capable of proving the equivalence; however, we believe

that the two-dimensional nature of the problem would make

it difficult to find a good variable ordering for the OBDDS.

5 Conclusion

We have taken a step towards applying compositional anal-

ysis to very large systems by providing a method for prov-

ing the equivalence of processes without enumerating their

states. The strength of the method lies in its potential applica-

bility to very large processes for which existing enumeration-

based approaches would be intractable. The weakness of the

method is that it is not always applicable; currently, it works

only for deterministic divergence-free processes and the nec-

essary conditions it employs may be too weak to prove the

equivalence even if it holds. Nevertheless, we have success-

fully applied the method to examples that are far too large for

existing enumeration-based approaches.

We are currently exploring ways to strengthen the condi-

tions and extend their applicability. As noted in Section 3, we

are investigating the applicability of a technique for strength-

ening the conditions by splitting the trace into multiple seg-

ments. We are also exploring ways to extend the method to

nondeterministic processes and stronger kinds of equivalence

(e.g., failure equivalence) by using different flow equations

that explore all possible paths.
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