
User Guidance for Creating Precise and Accessible
Property Specifications∗

Rachel L. Cobleigh
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
rcobleig@cs.umass.edu

George S. Avrunin
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
avrunin@cs.umass.edu

Lori A. Clarke
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
clarke@cs.umass.edu

ABSTRACT
Property specifications concisely describe aspects of what a
system is supposed to do. No matter what notation is used
to describe them, however, it is difficult to represent these
properties correctly, since there are often subtle, but impor-
tant, details that need to be considered. Propel aims to
guide users through the process of creating properties that
are both accessible and mathematically precise, by providing
templates for commonly-occurring property patterns. These
templates explicitly represent these subtle details as options.
In this paper, we present a new representation of these tem-
plates, a Question Tree that asks users a hierarchical se-
quence of questions about their intended properties. The
Question Tree representation is particularly useful for help-
ing users select the appropriate template, but it also com-
plements the finite-state automaton and disciplined natural
language representations provided by Propel. We also re-
port on some case studies and on an experimental evaluation
of the understandability of the disciplined natural language
representation.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements / Specifica-
tions—elicitation methods, tools

General Terms
Design, Verification

∗This material is based upon work supported by the Na-
tional Science Foundation under Award No. CCF-0427071,
the U. S. Army Research Office under Award No. DAAD19-
01-1-0564, and the U. S. Department of Defense/Army Re-
search Office under Award No. DAAD19-03-1-0133. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this publication are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation, the U. S. Army Research Office or the U. S.
Department of Defense/Army Research Office.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’06/FSE-14, November 5–11, 2006, Portland, Oregon, USA.
Copyright 2006 ACM 1-59593-468-5/06/0011 ...$5.00.

Keywords
Property specifications

1. INTRODUCTION
Property specifications are often used in requirements en-

gineering to describe important aspects of a system’s behav-
ior. These specifications can then be used as the basis for
software development and validation. Ideally, property spec-
ifications should be precise enough to support automated
validation techniques and accessible enough to be readily
understood by system developers. Automated validation
tools typically accept property specifications represented in
mathematical formalisms, such as temporal logic. Such for-
malisms have not been widely adopted by developers, in
part because their use requires significant expertise [21]. In
practice, developers tend to write requirements and design
specification documents in natural language [16]. While nat-
ural language may offer accessibility, properties written with
such informality are often ambiguous and thus are of lim-
ited value when doing rigorous analysis of the system. Ad-
ditionally, accurately representing a property, even one that
focuses on a very limited subset of the system’s behavior,
can be surprisingly difficult because of all the subtle details
that should be considered. Overlooking these details often
leads to inaccuracies that are not revealed until verification
or testing, or perhaps even deployment. System developers
may invest considerable effort trying to make sure that the
system conforms to a property, only to later determine that
the property has been specified incorrectly.

In previous work, we proposed a property-specification
approach [20] that aims to guide users through the process
of creating property specifications that are both accessible
and mathematically precise. Propel, for “PROPerty ELu-
cidator,” is a tool that supports this approach by provid-
ing users with a set of property templates that explicitly
indicate the variations that must be considered, thereby en-
suring that important subtle details are not overlooked by
users. Each template can be represented as a set of natural
language phrases or as an extended finite-state automaton
(FSA). Users can select the appropriate variation using ei-
ther or both representations. Users do not need to have
expertise in a particular specification formalism to use the
natural language representation. The associated FSA spec-
ification, however, can be used as the basis for verifying
system behaviors and other types of analyses.

Our previous work did not attempt to address the issue of
how to guide users in selecting the appropriate template. A

208

lack of guidance in this area was a weakness, since users often
did not know how to choose among the templates and thus
had difficulty getting started with the elaboration of their
intended properties. In this paper, we describe the Question
Tree (QT) representation, which is designed to provide this
additional user guidance. The QT representation is basically
a decision tree, a representation that has often been used in
requirements engineering. The content of the QT is based
on natural language and its hierarchical format guides users
through the elaboration of intended properties by asking
questions and, for each question, providing a set of alterna-
tive answers for users to select from. The QT breaks up the
problem of deciding which template is most appropriate by
asking users to consider only one differentiating attribute at
a time. The hierarchical structure of the QT supports this
isolation of concerns, only presenting questions to the users
that are relevant in the context of their previous answers.

The next section of this paper reviews our property-
specification approach and explains the concerns that moti-
vated the introduction of the Question Tree representation.
Section 3 discusses the Question Tree representation and
gives an example of its use. Section 4 describes some pre-
liminary evaluations of this approach. Section 5 describes
related work, and Section 6 discusses the current status of
Propel and future research directions.

2. THE PROPEL APPROACH
Our property specification approach is built upon the

property patterns developed by Dwyer, Avrunin, and Cor-
bett [7, 8]. The property patterns work recognized that
there are certain commonly-occurring types of properties
that users of finite-state verification (FSV) tools, such as
SPIN [13], SMV [15], INCA [4], and FLAVERS [9], want to
check. Dwyer et al. observed that nearly all the properties
found in the FSV literature could be classified into a small
number of what they described as “high-level, formalism-
independent, specification abstractions.” Each of the spec-
ification abstractions, or property patterns, is composed of
two parts: a behavior (or “intent,” as it is called in the prop-
erty patterns work) and a scope. A behavior describes the
restrictions on occurrences of states or events, and a scope
describes the parts of the state- or event-sequences within
which those restrictions apply. For example, the Response
behavior is a cause-and-effect relationship between a pair
of states or events in which the occurrence of the “cause”
leads to an occurrence of the “effect,” and the Before scope
requires the behavior to hold from the start of the state- or
event-sequence until the first occurrence of a given state or
event. The property pattern work identifies eight behaviors
and five scopes that can be combined to create forty differ-
ent properties. Dwyer et al. recognized, however, that other
variations of the behaviors and scopes might be required,
and their website [7] includes notes on how to modify the
formal specifications associated with the property patterns
to obtain some of these variations. This approach assumes
that a developer with expertise in a particular specification
formalism can identify the ways in which a desired property
might differ from the forms given in the property patterns
and, perhaps with some assistance from those notes, do any
necessary tailoring.

Although the property patterns are extremely useful, it is
still very difficult to accurately formulate a property speci-
fication based on them. In contrast, our approach extends

these property patterns with templates that explicitly indi-
cate the alternative options associated with each property
pattern. These property pattern templates are each com-
posed of a scope template, which contains options related
to the selected scope, and a behavior template, which con-
tains options related to the selected behavior. By making
decisions about these options, users can create 32 possible
scopes and 139 possible behaviors, which can be composed
into over 4,400 different possible properties. As with the
property patterns work, however, the space of properties
available is not intended to cover all possibilities, just varia-
tions on the most commonly-occurring properties. Since the
majority of the properties that Dwyer et al. found in their
survey [8] are covered by only four of the eight behaviors
that they identified, Propel currently supports variations
on just those four.1 In addition, although the Dwyer et al.
work includes both state- and event-based forms of the prop-
erty patterns, our work currently concentrates only on the
event-based forms.

Using Propel, a user instantiates a property by making
decisions about, or resolving, each of the available options
in a selected property pattern template. To resolve an op-
tion, the user selects one of the option’s possible settings.
For a property to be fully instantiated, not only must all
the options be resolved, but the user must also define the
set of events, or the alphabet, that is considered relevant
to the meaning of the property. Like the property pat-
terns, the property pattern templates have up to four pre-
defined placeholders, or parameters, that can be associated
with user-defined event names: at most two for the prop-
erty’s behavior and at most two for the property’s scope. A
parameter’s default name is displayed in the property pat-
tern templates until the user associates a user-defined event
with the parameter. We refer to events that are associ-
ated with these parameters as primary events, or “events of
primary interest.” Although the available property pattern
templates have at most four parameters, users can define
additional events, referred to as secondary events, or “other
events in the alphabet of the property.” Secondary events
can be used when a property must constrain more than just
the occurrences of primary events. For example, it may be
important that certain other events do not occur in between
an occurrence of a “cause” and a subsequent occurrence of
its “effect,” where the “cause” and the “effect” are the prop-
erty’s primary events. In such a situation, users can include
those other events in the alphabet of the property and define
the property so that it explicitly prohibits all occurrences of
those secondary events between the “cause” and its “effect.”

With the addition of the QT representation, Propel pro-
vides three different representations of the property pattern
templates and together these are meant to bridge the gap
between precision and accessibility in property specification.
Users can work with any one of these representations, or
they may choose to use any combination of them. One rep-
resentation is a graphical, extended FSA template that re-
solves to an FSA. The FSA template representation helps
developers see the options that need to be considered by
representing those choices with optional versions of FSA

1We do not yet support the two chain property pat-
terns, which involve ordered sequences of states/events; the
bounded existence pattern, which limits the number of oc-
currences of a state/event; or the universality pattern, which
requires that a proposition hold in all states.

209

states, transitions, and transition labels. In addition, since
the fully-instantiated form of this representation is an FSA,
which is mathematically well-defined, this representation of-
fers the precision necessary for many types of analysis, in-
cluding FSV. In our experience, the graphical FSA nota-
tion seems to be more accessible than most other formal
notations. A second representation is a disciplined natu-
ral language (DNL) template that is intended to appeal to
those users who prefer a natural language description. The
DNL template representation provides a short list of alter-
native phrases that highlight the available options, as well
as a few synonyms to support customization. The QT is a
third representation. As mentioned, this representation was
originally designed to help users select which property pat-
tern template to use when elaborating their properties. We
soon discovered, however, that this representation was useful
not only for helping users to select the appropriate property
pattern template, but also for helping them to resolve the
options associated with that selected template. After users
select a template in the QT representation, the changes they
make using any one of the representations are reflected in
the other two representations wherever possible.2

3. QUESTION TREES
The QT is an interactive format where the user is pre-

sented with a question and a choice of possible answers.
A user can select only one answer for each question, and,
based on which answer is selected, new questions and their
associated answers may then be presented for further con-
sideration. In keeping with the hierarchical nature of the
QT, we refer to each new question that can be revealed af-
ter answering a given question as a child question of that
previous answer, and we refer to the previous question as
the parent question of that child question. When an answer
to a question is selected and this selection reveals a new set
of child questions, then, for as long as that answer remains
selected, all those child questions and their associated an-
swers remain visible and can be revisited if necessary. By
selecting a different answer to a parent question, the user
will explore a different set of child questions that are rele-
vant to the new answer and will arrive at a different property
altogether. The QT hides all questions that are not relevant
to the currently selected answers, allowing the user to focus
on one set of concerns at a time. The root question of the
QT and its associated answers are always visible. In content,
the QT text is similar to the corresponding DNL template
text.

In Propel, we break the QT representation into two sep-
arate parts, one for the scope templates and another for
the behavior templates. The QT representation is struc-
tured such that the questions that lead to the choice of a
scope or behavior template must be answered first, and in
a predefined order, before questions that resolve the options
associated with that template. With one exception, which is
discussed in Section 3.2, the questions about the options in
each of the scope and behavior templates are conceptually

2Since the QT and DNL representations sometimes require
users to resolve a group of options together while the FSA
template representation allows users to resolve each of those
options individually, the QT and DNL representations do
not reflect changes made in the FSA template until all the
options in the group have been resolved.

orthogonal to each other and are thus represented as sibling
questions that can be answered in any order.

It is only after a user has selected scope and behavior
templates by answering the initial questions in the QT that
the user can switch to working with the FSA or DNL repre-
sentations to resolve the options in the selected templates.
Thereafter, the user can work with any or all of the three
representations of the selected property pattern template to
resolve the options. The user can use the QT to select a
different property pattern template at any point in the elu-
cidation of the intended property and the FSA and DNL
representations will automatically update to match the new
selection.

3.1 Behavior Question Tree
The Behavior QT (BQT) organizes the set of available be-

haviors into four behavior templates. The BQT’s guidance
for choosing among the four behavior templates is struc-
tured along two major questions. First, how many events of
primary interest are there, one or two? Second, if there are
two events of primary interest, what is the relationship be-
tween them? Answering these questions selects a behavior
template, and then the user can continue to make decisions
about the selected behavior template’s options, if any exist,
using any of the three representations.

3.1.1 Instantiating a Property’s Behavior
Figure 1 shows the BQT representation of an instantiated

behavior. In this figure, each tree node is either a question
or an answer. Answers to a question are indented under
the question and child questions are indented under the an-
swers to their parent questions. The highlighted nodes in
the BQT are answers that the user has selected in response
to the questions. Unselected answers are not highlighted.
Child questions are only visible when the user selects the
appropriate answer to their parent question.

To see how the BQT in Figure 1 was derived, consider
the following property specification, which is part of a case
study we are performing:

If the nurse discovers that the patient’s type and screen
(T&S) are not available in the lab, the nurse must
obtain a blood specimen from the patient.

Let us assume that the Propel user identifies two events
that are in the intended property’s alphabet, no-T&S and
obtain-specimen, and that the user makes no-T&S the
first primary event and obtain-specimen the second primary
event.3 The first question the BQT asks the user about
the intended property is “How many events of primary in-
terest are there?” For this example, the user would select
the answer with two events. The BQT then reveals the sec-
ond question, which is about the nature of the relationship
between the two events. The BQT offers two choices: “no-
T&S causes obtain-specimen to occur” or “obtain-specimen
cannot occur until after no-T&S has occurred.” If the lab
does not have a T&S for the patient, the nurse must obtain
a blood specimen from the patient so that the lab can get
a T&S. Thus, the user selects the first choice about how
the two events are related, which is the Response behavior

3This assignment of event names to the parameters would
be done via a dialog box that is not shown here. After this
assignment, the QT substitutes the assigned names for the
parameters, as shown in Figure 1.

210

How many events of primary interest are there?
One: event no-T&S

How do no-T&S and obtain-specimen interact?

obtain-specimen cannot occur until after no-T&S has occurred

Can obtain-specimen occur before the first no-T&S occurs?

No, obtain-specimen cannot occur before the first no-T&S occurs
Is no-T&S required to occur at least once?

Yes, no-T&S is required to occur at least once

After no-T&S occurs, can no-T&S occur again before the first
subsequent obtain-specimen occurs?

No, no-T&S cannot occur again before the first subsequent
obtain-specimen occurs

After no-T&S occurs, can events in the alphabet of this property, other
than no-T&S or obtain-specimen, occur before the first subsequent
obtain-specimen occurs?

Yes, other events in the alphabet of this property can occur before
the first subsequent obtain-specimen occurs

After the first subsequent obtain-specimen occurs:
obtain-specimen can occur any number of times. no-T&S can occur
and if it does, then the situation is the same as when the first no-T&S
occurred, meaning that all restrictions described on the events will
again apply

obtain-specimen cannot occur again until after another no-T&S occurs.
no-T&S can occur and if it does, then the situation is the same as when
the first no-T&S occurred, meaning that all restrictions described on the
events will again apply

no-T&S can occur any number of times, but obtain-specimen cannot
occur again. Further occurrences of no-T&S do not impose additional
restrictions on the occurrences of any future events
obtain-specimen can occur any number of times, but no-T&S cannot
occur again. Further occurrences of obtain-specimen do not impose
additional restrictions on the occurrences of any future events
neither no-T&S nor obtain-specimen can occur again

Two: events no-T&S and obtain-specimen

no-T&S causes obtain-specimen to occur

Yes, obtain-specimen can occur before the first no-T&S occurs

No, no-T&S is not required to occur at least once

Yes, no-T&S can occur multiple times before the first
subsequent obtain-specimen occurs

No, other events in the alphabet of this property cannot occur before
the first subsequent obtain-specimen occurs

both no-T&S and obtain-specimen can occur any number of times and
do not impose any restrictions on the occurrences of any future events

Figure 1: An Example Response Behavior in the
Behavior Question Tree

template. The BQT then reveals the five child questions
that concern the Response behavior template’s various op-
tions. In this section, we continue to elucidate this behavior
by using the BQT, but since a behavior template has been
selected, the user could now use any or all of the three al-
ternative representations to continue elucidating the details
of the property’s behavior.

Since the Response behavior template’s child questions
are orthogonal to each other, they can be answered in any
order. In this discussion, we answer them in the order that
they are shown in the BQT. The first child question asks
whether obtain-specimen is allowed to occur before the first
occurrence of no-T&S. Since there are many reasons to ob-
tain a blood specimen besides just discovering that no T&S
is available, the user selects the “Yes” answer. To give a
brief illustration of how the QT, the FSA template, and the
DNL template representations are related, the same option
setting that is selected to answer that question in the BQT
is selected in the FSA and DNL template representations in
Figure 2, which shows the FSA and DNL template represen-
tations of the Response behavior template at this point. In
the FSA template, the figure shows the ¬no-T&S label be-
ing selected for the self-loop on the start state, and this label
represents that option setting. Note that the “¬” shorthand
notation in this representation is a set-complement opera-

Figure 2: Example Partially-Instantiated FSA and
DNL Templates

tor for all (i.e., both primary and secondary) events in the
alphabet. In the DNL template, the figure shows the word
“including” being selected in the second combo box, and this
word represents that same option setting. Throughout the
elucidation of this property, changes can be made to any of
the three representations and those changes will be reflected
in all of the representations simultaneously.

The next child question in the BQT representation of the
Response behavior template asks whether no-T&S is re-
quired to occur at all. Since the lab may have a T&S for the
patient available when the nurse inquires, the user selects
the “No” answer. The next child question asks whether, af-
ter the first no-T&S has occurred, can no-T&S occur again
before the first subsequent obtain-specimen occurs. Since
the nurse can repeatedly check with the lab to find out if
the patient’s T&S is available before obtaining a blood spec-
imen, the user selects the “Yes” answer.

The next child question asks whether, after the first no-
T&S occurs, events other than either no-T&S or obtain-
specimen can occur, before the first subsequent obtain-
specimen occurs. Here is an example where the user could
put secondary events into the alphabet of the property and
constrain those secondary events by deciding whether they
are allowed to occur or are prohibited from occurring be-
tween a no-T&S and the first subsequent obtain-specimen.
There is an event that should never occur after no-T&S
and before the first subsequent obtain-specimen: the nurse
can never label the specimen vial (label-vial) before putting
a blood specimen in the vial. Thus, the user could indi-
cate that label-vial is a secondary event and then select the
answer, “No, other events in the alphabet of the property
cannot occur before the first subsequent obtain-specimen oc-
curs.”4

4A separate property would be needed to prevent label-vial
from occurring before obtain-specimen occurs in other situ-
ations, since our approach limits each property to specifying
a very focused subset of system behavior.

211

The final child question in the BQT representation of the
Response behavior template asks what can happen after
the first obtain-specimen occurs: whether further obtain-
specimen events can occur, whether new no-T&S events can
occur, and if new no-T&S events can occur, whether they
again require subsequent obtain-specimen events to follow
them. The BQT presents the user with six answers to this
question, each of which represents one possible combination
of decisions about the above issues. After the nurse obtains
a blood specimen and sends it to the lab, the nurse can check
repeatedly with the lab to find out if the patient’s T&S is
available yet. The nurse would normally check with the lab
until the T&S is available, and seeing that it is not available
in the interim would not mean that the nurse has to go ob-
tain more blood specimens from the patient. The nurse may
also be asked to obtain blood specimens for purposes other
than a T&S, so after obtaining the initial blood specimen
for the T&S, the nurse could obtain other blood specimens.
Thus, the user selects the third of the six possible answers,
as indicated in Figure 1.

3.2 Scope Question Tree
The Scope QT (SQT) provides guidance for expressing

an intended property’s scope. The SQT organizes the set
of available scopes by using four scope templates, based on
the scopes proposed by Dwyer et al. in [8]. Their property
patterns include five scopes and, as was true with the behav-
iors, they expect users to have considerable expertise with
the specification formalisms in order to tailor those scopes
as needed. Our scope templates extend the property pat-
tern scopes in a way similar to how the behavior templates
extend the Dwyer et al. behaviors. Specifically, we explic-
itly provide a number of possible variations in the scopes
and present these alternative options to the user via scope
templates. These four scope templates, with their options,
can be used to create the five Dwyer et al. scopes and many
more.

3.2.1 The Scope Templates
A property’s behavior must hold in every scope interval

in any event sequence, where a scope interval is a portion of
the event sequence that is defined in terms of a starting de-
limiter, an ending delimiter, or both. For example, a scope
interval might begin with the first occurrence of the start-
ing delimiter and end with the first subsequent occurrence of
the ending delimiter. The scope templates use parameters
named start and end for the starting and ending delim-
iters, respectively, that can be replaced with user-defined
event names. In scope templates that do not have the start
parameter, the beginning of the event sequence is the de-
fault starting delimiter. Likewise, in scope templates that
do not have the end parameter, the end of the event se-
quence is the default ending delimiter. Our approach puts
two restrictions on the starting and ending delimiters. The
first is that the starting and ending delimiters cannot be
in the alphabet of the behavior. We make this restriction
because some undesirable interactions could occur; for ex-
ample, a user could create a property with a Response be-
havior whose stimulus event is the same as the scope ending
delimiter, and thus no event sequence could ever satisfy this
property. The second restriction is that the starting and
ending delimiters must be different events. This restriction
also avoids some complications, but it does not allow some

Global

Before end

end end

After start
start start

Between start
and end

start end start end

Figure 3: Examples of Scopes Based on the Four
Scope Templates

forms of two-event alternation. Relaxing these restrictions
requires careful consideration and is something we intend to
explore in the future.

The four scope templates available in Propel are: Global,
After start, Before end, and Between start and end. The
Global scope template has no alternative options for the user
to consider and does not use either delimiter; the behavior
is required to hold from the start of the event sequence until
the end of the event sequence. The Global scope template
is the default for a new property. The After start scope
template requires that in any event sequence, the behavior
must hold after an occurrence of the start event until the
end of that event sequence. The Before end scope template
requires that the behavior must hold from the start of any
event sequence until the first occurrence of the end event in
that sequence. The Between start and end scope template
requires that the behavior must hold after an occurrence of
the start event until the first subsequent occurrence of the
end event. Only this scope template can define multiple
scope intervals in a single event sequence. Figure 3 shows
example scopes that could be instantiated based on the four
scope templates. In this figure, the four horizontal lines
labeled by the scope template names are the timelines on
which the events occur in sequence. The vertical dashed
lines that are labeled with either “start” or “end” denote
points in the event sequences at which those events occur.
The shaded regions on a given line show where the scope
intervals exist in the event sequence.

There are a number of options associated with each scope
template. The Between start and end scope template con-
tains all the options that are associated with the After start
and Before end scope templates, plus one more option that
neither of those templates contains, so we only describe the
Between start and end scope template in detail here.

The Between start and end scope template has five op-
tions. One option determines whether start must occur at
least once in a given event sequence. Another option deter-
mines what happens if start occurs more than once before
the end of the given scope interval. There are two alternative
settings associated with this option. One setting is that the
first occurrence of start begins this scope interval and later
occurrences of start are ignored. This is the setting used in
the example After start scope in Figure 3. The other possi-
ble setting is that only the last occurrence of start (before a
subsequent occurrence of end that ends this scope interval)

212

start end
(a)

(c)

(b)

start

Figure 4: Three Ways To Interpret a Missing End
Delimiter

begins this scope interval; that is, each occurrence of start
resets the beginning of this scope interval.

Another option in the Between start and end scope tem-
plate determines whether multiple scope intervals can ex-
ist in a single event sequence. There are two possibilities
of what can happen after end occurs to end a scope inter-
val. One possibility is that multiple scope intervals can exist
(consecutively) in the event sequence, because a subsequent
occurrence of start potentially begins a new scope inter-
val. The second possibility is that there can be only one
scope interval in the event sequence, because a subsequent
occurrence of start does not begin a new scope interval.

Figure 4 illustrates the two remaining options in the Be-
tween start and end scope template, using the same no-
tation as is used in Figure 3. All the other options can be
resolved in any order, but for these two options, the first
must be resolved before the second. The first option deter-
mines whether end is required to subsequently occur after
an occurrence of start. Figure 4(a) corresponds to the set-
ting where end is required to subsequently occur after an
occurrence of start. If end does not occur, the event se-
quence cannot satisfy the property, which is denoted by this
timeline being marked with an ×. The other possible set-
ting is that end is not required to occur after an occurrence
of start. In this case, the second option must be resolved.
This option determines what should happen if, after an oc-
currence of start begins a scope interval, end never occurs
to end this scope interval. Figure 4(b) shows the setting
where this scope interval exists until the end of the event
sequence, even though the second occurrence of start has
no subsequent occurrence of end to end the scope interval.
Figure 4(c) shows the other possible setting where this po-
tential scope interval does not exist without a subsequent
occurrence of end to terminate it.5

3.2.2 Instantiating a Property’s Scope
In Figure 5, we use the SQT to instantiate a scope for the

example property given in Section 3.1.1. Suppose that the
full property specification is the following:

5The two possible settings for this option distinguish two of
the scopes in the Dwyer et al. work: their “After start Until
end” scope corresponds to the first setting (Figure 4(b))
and their “Between start and end” scope corresponds to
the second setting (Figure 4(c)).

Is there a limited scope?

No

After receive-order
Before prepare-docs

Is receive-order required?
Yes

Start enforcing the behavior:

after the last receive-order in this scope interval
Is prepare-docs required?

Yes

If prepare-docs does not occur, is this a scope interval?
Yes

Can there be multiple scope intervals?

No
Yes

No

No

Yes

Between receive-order and prepare-docs

No

after the first receive-order in this scope interval

Figure 5: An Example Between Scope in the Scope
Question Tree

After the nurse receives a physician’s order to trans-
fuse blood into a patient, if the nurse discovers that
the patient’s type and screen (T&S) are not available
in the lab, the nurse must obtain a blood specimen from
the patient before the nurse can prepare documentation
for picking up the necessary unit(s) of blood product
from the blood bank.

The new phrases in the example property imply a begin-
ning and an end to when it is required that the nurse check
the lab for the T&S and subsequently obtain a blood spec-
imen if necessary. Let us assume that the user identifies
two new events in the property that correspond to the nurse
receiving a physician’s order (receive-order) and the nurse
preparing documentation for blood pick-up (prepare-docs),
and let those two events be associated with the start and
end parameters, respectively. (Again, we do not show the
dialog box where event names are assigned to the scope pa-
rameters, although the results of this assignment are shown
in Figure 5.) Given these events, the user decides that the
intended property’s behavior is only required to hold within
certain limits and selects the “Yes” answer to the first ques-
tion in the SQT. The SQT then reveals the three delim-
ited scope template choices. Since “Between receive-order
and prepare-docs” is the only choice that refers to both the
starting and ending delimiters, the user selects this answer
and the SQT reveals four child questions that the user must
answer about the alternative options in the selected scope
template. In this section, we continue to elucidate this scope
by using the SQT, but since a scope template has been se-
lected, the user can now use any or all of the three alter-
native representations to continue elucidating the details of
the property’s scope.

Since the Between start and end scope template’s child
questions are orthogonal to each other, they can be answered
in any order. In this discussion, we answer them in the or-
der that they are shown in the SQT. The first child question
asks whether receive-order is required to occur at least once.
Since it is possible for a patient to be admitted to a hospital
and to never require a blood transfusion, the user selects

213

SCOPE:
The behavior must hold between the first occurrence of receive-order and the first subsequent occurrence of prepare-docs, if there is such an
occurrence of prepare-docs. Further occurrences of receive-order after that first occurrence of receive-order and before the first subsequent
occurrence of prepare-docs, if there is such an occurrence of prepare-docs, do not have an effect.
receive-order is not required to occur and if receive-order does not occur, then the behavior is not required to hold. Even if receive-order does occur,
prepare-docs is not required to subsequently occur, and if an occurrence of receive-order is not followed by an occurrence of prepare-docs, then the
behavior is not required to hold after this occurrence of receive-order.
If an occurrence of receive-order is followed by an occurrence of prepare-docs and if there is another occurrence of receive-order after that
occurrence of prepare-docs, then the behavior must again hold between this new occurrence of receive-order and the first subsequent occurrence of
prepare-docs (which is again not required to occur and if prepare-docs does not occur, then the behavior is again not required to hold after this new
occurrence of receive-order), and so on, for each appropriate receive-order and prepare-docs pair that occurs.

BEHAVIOR:
After no-T&S occurs, obtain-specimen is required to occur. no-T&S is not required to occur, however.
Before the first no-T&S occurs, the events in the alphabet of this property, including obtain-specimen, can occur any number of times.
After no-T&S occurs and before the first subsequent obtain-specimen occurs, the events in the alphabet of this property, including no-T&S but not
obtain-specimen, can occur any number of times.
After the first subsequent obtain-specimen occurs:

• the events in the alphabet of this property, including no-T&S and obtain-specimen, could occur any number of times;
• further occurrences of no-T&S or obtain-specimen do not impose any restrictions on the occurrences of any future events.

event alphabet: {receive-order, no-T&S, label-vial, obtain-specimen, prepare-docs}

no-T&S

no-T&S,
receive-order,
label-vialreceive-order, no-T&S,

label-vial,
obtain-specimen,
prepare-docs

obtain-specimen

prepare-docs

receive-order,
label-vial,
obtain-specimen

receive-order,
no-T&S,

label-vial,
obtain-specimenprepare-docs

prepare-docs

receive-order

receive-order

no-T&S,
label-vial,
obtain-specimen,
prepare-docsno-T&S,

label-vial,
obtain-specimen,
prepare-docs

Figure 6: Example FSA and DNL Property Representations

the “No” answer to this question. The next child ques-
tion is concerned with what should happen if more than
one receive-order occurs before the first subsequent prepare-
docs occurs: should the given scope interval be started after
the first occurrence of receive-order or the last occurrence
of receive-order? For simplicity, let us assume that the in-
tended property is meant to be in the context of a single
patient. In this situation, the most common reason that the
nurse would receive multiple physician orders for the pa-
tient’s blood transfusion is that one or more physicians, not
realizing that a transfusion had already been ordered, would
place additional, unnecessary, orders. In this case, the nurse
would contact the physicians who have sent the redundant
orders and would ask them to retract those orders. Given
this knowledge, the user decides to start enforcing the be-
havior “after the first receive-order in this scope interval”
and thus selects that answer.

The next child question is concerned with whether or not
prepare-docs is required to occur at least once to end the
given scope interval. It is possible that a physician may or-
der a blood transfusion for a patient but that for some reason
(e.g., the physician retracts the order or the patient’s sta-

tus changes), the blood transfusion never actually occurs.
In such a situation, the nurse may never have to pick up
the units of blood product from the blood bank, and thus
the nurse may never have to prepare the documentation for
doing so. Knowing this, the user selects the choice where
prepare-docs is not required to occur to end the given scope
interval. The SQT then reveals the child question under this
answer, which asks whether the behavior still must hold if
prepare-docs never occurs to end this scope interval. Since
events might occur that would negate the need to check for
a T&S or obtain a blood specimen (e.g., the physician could
cancel the order before the nurse gets to prepare documen-
tation), the user selects the “No” answer to the question:
“If prepare-docs does not occur, is this a scope interval?”

The final child question is about what happens after an
occurrence of prepare-docs ends a scope interval. Does a
subsequent occurrence of receive-order begin a new scope
interval in which the nurse discovers that there is no T&S
available, thereby requiring that a new blood specimen be
obtained? It is certainly possible that after the nurse has
prepared documentation for blood pick-up (and probably af-
ter the nurse also completes the administration of the blood

214

Case Study
Total # of PROPEL Percent
Properties Expresses Covered

Blood Transfusion 23 16 70%
Chemotherapy 33 31 94%
Emergency Dept. 19 18 95%
Blood Bank 9 5 56%

TOTAL 84 70 83%

Table 1: Case Study Summary

transfusion), the nurse may receive another physician or-
der for a blood transfusion for the same patient. Given this
knowledge, the user selects the “Yes” answer to the question:
“Can there be multiple scope intervals?” With this final an-
swer, the user has instantiated a scope. Given the example
sequence of starting and ending delimiters in Figure 4, this
scope would match Figure 4(c).

Now that the user has answered all the questions in both
the BQT and the SQT and has associated events with the
selected behavior and scope templates’ parameters, the ex-
ample blood transfusion property is fully instantiated. As
described earlier, there is now also an FSA and a DNL para-
graph that describe this property (see Figure 6).

4. EVALUATION
We are currently evaluating this approach by using

Propel to specify properties in four case studies. We have
also completed an experimental evaluation of the accessibil-
ity of the DNL property representation.

4.1 Case Studies
We have used Propel to represent the properties encoun-

tered in four case studies we are undertaking in the medical
domain. For each case study, Table 1 shows the name of the
medical process, the number of properties, and how many of
those properties can be expressed in Propel. We have en-
countered a total of 84 properties thus far and were able to
use Propel to express 83% (70 of 84) of them. In the first
three case studies, we are eliciting the properties from sev-
eral medical professionals by interviewing them, capturing
the properties first in natural language, and then together
using Propel to elaborate the precise details of those prop-
erties. Not surprisingly, the nurse involved with the first case
study has only been comfortable with the QT and DNL rep-
resentations of the properties and does not refer to the FSA
representation at all. She has observed that misinterpret-
ing the subtle details that the options expose is a common
source of errors in medical processes and that guidelines that
precisely specified those details would contribute greatly to-
wards improving education and practice in medicine. The
fourth case study is the only study that did not involve med-
ical professionals directly; instead these properties were ini-
tially obtained from a blood bank laboratory manual and
then an industrial software engineer from a medical software
company worked with us to specify three of the properties
using Propel. In contrast to the medical professional de-
scribed above, this user preferred to work solely with the
QT and FSA representations. She specified the properties
by using the QT representation to resolve all the options in
the selected scope and behavior templates, and then used
the FSA representation to check the properties’ correctness.

Most of the case study properties were concerned with
checks that must be done before administering a particular
treatment or with how to handle negative reactions that a
patient may have to treatment. We found that 63% of the
behaviors are some form of Precedence, where one event can-
not occur until after another event occurs (e.g., the checks
that must be done before a treatment), and 21% of the be-
haviors are some form of Response (e.g., the necessary re-
sponse to a patient’s negative reaction to a treatment). It
is interesting to note that the relative prevalence of these
two behaviors differs from what was reported in [8]; there,
5% were some form of Precedence and 44% were some form
of Response, the most prevalent of the behaviors surveyed
in that work. It is likely that this difference is due to the
fact that these two collections of properties are drawn from
different domains; the earlier work was primarily a survey of
the FSV literature. With respect to the properties’ scopes
in our case studies, 86% are Global and 8% are some form
of Between. This distribution of the scopes is close to the
distribution reported in [8]; there, 79% were Global and 7%
were some form of Between.

Since Propel uses an event-based model without real-
time support, we model the twelve properties that refer to
state information or timing constraints with events that are
checks of deadlines or data values, respectively. Other spec-
ification approaches that address these concepts more di-
rectly might be preferable in the long term. Of the 14 prop-
erties that cannot be handled in Propel, we expect that all
but two can be handled by fairly straightforward extensions
that we plan to make, such as adding support for chain prop-
erty patterns, for a pattern where one event blocks another
event from occurring, and for disjunction.6 In addition, we
expect that conjunction can be supported by using one of
the extensions to the property patterns that is given in [17].
These extensions present new options beyond those in the
four original behaviors and thus require careful considera-
tion before they can be incorporated into Propel. With
these extensions, we believe that Propel would be able to
express 98% of the properties we have seen so far in these
case studies. As these case studies continue to evolve, it will
be interesting to see if Propel continues to be as effective.

4.2 DNL Experimental Evaluation
Since first describing Propel, we have repeatedly tried

to improve the natural language phrases used in the DNL.
For the current version of Propel, we conducted an exper-
iment in which we tried to evaluate how well users under-
stand the DNL representations of properties. For this study,
we asked 14 human subjects with a background in computer
science (graduate students and technical staff from our de-
partment) to translate properties represented in DNL into
equivalent FSA representations. We then measured how well
the subjects understood the DNL by comparing their FSAs
to the Propel FSAs that the DNL was intended to describe.
Given the limited number of subjects who participated, we
selected a representative sample of the Propel properties.
Each of the 14 subjects was given four properties represented
in DNL. One of those four was a very simple property with
a Global scope and a 1-event behavior that we used only to
make sure that subjects understood the task. The results

6While we can create a more abstract event that is a dis-
junction of the two events, the domain experts wanted to
model them as two distinct events.

215

for these simple properties are not counted in the results
described below. The remaining three properties varied in
the complexity of their scopes. Each property was given to
only one subject. The overall set of properties included in
the study covered all of the option settings, although ob-
viously not all possible combinations of those settings were
included.

The experimental results indicated that 40% (17 of 42)
of the subjects’ FSAs were an exact match for the Propel
FSAs and 64% (27 of 42) were “close” to the Propel FSAs.
We say that a subject’s FSA is “close” to the Propel FSA
if the subject’s FSA can be transformed into the Propel
FSA by changing no more than one transition7 (i.e., adding
it to the FSA if it is missing, changing its label, or changing
its destination state) or changing the accepting status of
one state. Although we could determine the difference in
the languages accepted by the FSAs , it is not clear how
we would measure the size of that difference; instead we use
this cruder transformation measure.

Although these percentages are low, the inherent diffi-
culties of accurately translating from natural language to
FSAs, even for simple properties, would likely bias the re-
sults. The more complicated properties, specifically those
with a Between scope, had particularly low percentages.
The completed property in Figure 6 has a Between scope and
illustrates the complexity of our properties. Although the
DNL representation of the Between scopes could probably
be improved, it is likely that the subtleties of this complex
scope make translating any description of it very difficult.
For example, five of the subjects’ ten Between scope FSAs
that were deemed not “close” omitted a state that even we
initially missed when we developed the Propel FSAs.

It is because of these inherent difficulties that Propel
provides multiple property representations that are linked
together. It is important to remember that users are not
expected to manually translate the DNL representation into
an equivalent FSA representation when developing a prop-
erty in Propel. The tool automatically keeps the DNL,
FSA, and QT representations consistent with each other and
is thus designed to help users resolve misunderstandings by
making it possible to compare the representations. Given
all the potential pitfalls to accurate translation and the sup-
portive context in which the DNL representation is meant
to be used, we believe the percentage of “close” FSAs indi-
cates that the DNL representation is a promising approach
for supporting precise and accessible property specifications.

5. RELATED WORK
Many property specification approaches aim to provide ei-

ther accessibility or precision; few approaches try to provide
both. For example, structured natural language recommen-
dations (e.g., the NL templates in [5]) provide accessibility
but not precision, and formal specification languages (e.g.,
the temporal logics in [3]) provide the opposite.

Of the approaches that do try to provide both accessibil-
ity and precision, there are two main variations in how these
qualities are addressed. One variation is to use graphical or
tabular approaches, such as is done in [19] or [12], respec-
tively. These approaches provide some level of accessibility
while still supporting a formal model, but they only incor-

7Multiple transitions from one state to another are treated
as one transition with multiple labels.

Property Complexity Category
Total # of Exact 1 %
Properties Match Error Close

After/Before scope, 1-event behavior 6 5 1 100%
Between scope, 1-event behavior 8 1 2 38%
Global scope, 2-event behavior 14 9 3 86%
After/Before scope, 2-event behavior 8 2 3 63%
Between scope, 2-event behavior 6 0 1 17%

TOTAL 42 17 10 64%

Table 2: DNL Experimental Results

porate NL when naming the events or states used in the
model. The other variation is to combine an NL description
of a property with a formal model. In the approaches that
use this variation, there are three directions that have been
pursued: one is to use NL-processing (NLP) techniques to
extract formal models from property specifications that are
written in a restricted subset of NL, another direction is to
simply annotate formal models with NL descriptions, and a
third direction, which Propel takes, is to enable users to
develop both the formal model and the NL description in
parallel.We discuss these three directions in more detail in
the following paragraphs.

NLP-based approaches that aim to support both precision
and accessibility in property specifications extract various
formal models from properties expressed in several different
restricted subsets of NL. There have been a number of ap-
proaches that translate these restricted subsets of NL into
different logics, such as the work in [1]. The Attempto Con-
trolled English (ACE) project [10] uses NLP to translate NL
property specifications into first-order logic and also pro-
vides annotated NL templates for non-expert users. Similar
to the work done for ACE, but with a much less restricted
subset of NL, Ambriola and Gervasi [2] have developed the
CARL and CICO/CIRCE tools to translate NL property
specifications into propositional logic and back again. Based
on the restricted subsets of NL that these two tools use, they
can also provide suggested NL phrases for common relation-
ships between propositions. Gervasi and Zowghi [11] noted
a limitation in this approach, however; in their experience,
“propositional logic was found to be adequate to express
high-level requirements, but not the details of how the sys-
tem should behave.” Another limitation of these NLP-based
approaches is that they must make assumptions about how
to interpret the NL property specifications that they are
given, because those specifications are often ambiguous. It
is possible that presenting users of NLP tools with interpre-
tation alternatives, like the options given in Propel, might
help in improving the accuracy of the resulting formal prop-
erty representations. In any case, the use of natural lan-
guage in Propel is much less ambitious than that of these
NLP-based approaches. Propel provides two property rep-
resentations that are based on natural language (the QT and
the DNL) and one formal property representation (FSA),
but our work does not attempt to understand NL, even in
restricted domains.

Gervasi and Zowghi [11] recently conducted an experi-
ment, similar to our DNL experiment described here, to eval-
uate their NLP tool, CARL. To discover whether humans
would interpret a set of NL property specifications the same
way that CARL did, the researchers asked 15 subjects to
translate the NL property specifications into propositional
logic and then answer a multiple-choice questionnaire about
valid inferences that could be made from the set of logi-

216

cal expressions. CARL’s translations matched the subjects’
translations in 72% of the cases, and the authors say that
this percentage was probably due to human misinterpreta-
tion of the NL statements. Although the properties handled
by CARL are simple propositional invariants, the percentage
of correct translations in their experiments was only slightly
higher than in our DNL experiments, which were based on
more complicated properties. These results support our as-
sertion that translation from natural language into a formal
model can be difficult, even for very simple properties.

Another approach to combining an NL description of a
property with a formal model is to simply annotate the for-
mal model with NL comments that are not in themselves in-
tended to function as property specifications, but instead are
just a means of conveying the basic gist of what the property
is meant to express. Several approaches take this route, in-
cluding the Dwyer et al. property patterns work [7,8], which
Propel extends with templates that capture variations in
the subtle details of those patterns. Unlike the property
patterns work, however, Propel provides a DNL represen-
tation that is intended to function as an accessible prop-
erty specification. A number of approaches, such as Drusin-
sky’s (N)TLCharts [6] and the work done by Mondragon,
et al. [17,18], extend the property patterns and, like Dwyer
et al., also include NL annotations that are not intended
to be used as property specifications. The (N)TLCharts
provide some very brief NL descriptions of simple temporal
logic properties (based on the Dwyer et al. NL descriptions)
to annotate Statecharts. In their Prospec tool, Mondragon
et al. extend the property patterns via Composite Proposi-
tions (CPs), which are logical formulae that compose mul-
tiple proposition primitives in a predefined way (e.g., con-
junction). Prospec offers NL and formal-logic descriptions
of these CPs and binary decision trees to guide users to a
choice of one of the five property pattern scopes and one of
the CPs. These decision trees impose a pre-defined order on
the decisions, but some of the decisions could actually be
made in a different order. The Propel QT, by contrast, is
not required to be binary (thus affording slightly more flex-
ibility in the order that questions can be answered) and it
focuses on clearly expressing a number of variations in the
subtle details in the scope and behavior templates. While
the NL descriptions in Prospec map to the underlying for-
mal logics that the tool supports, the NL descriptions are
not intended to be used as property specifications; they are
mainly just expansions on the Dwyer et al. NL descriptions.

In contrast, the fully-instantiated forms of the Propel
QTs and the FSA and DNL templates are all designed to
be used as property specifications. Konrad and Cheng [14]
have also built on the property patterns in a way similar
to Propel. They provide an NL-based representation of
their real-time property patterns that is modeled after our
DNL, as well as a formal representation. While both of these
representations are designed to be used as property speci-
fications, their NL representation is meant to capture only
the basic concepts of their real-time behaviors, since they do
not support the possible variations in those behaviors. Their
work also differs from Propel in that they do not provide
any kind of decision-tree guidance for selecting among their
real-time property patterns.

6. CONCLUSIONS
The results from our case studies showed that Propel

could handle most of the properties that were encountered.
It is interesting to note that of the four case studies, only
one was specifically selected to evaluate Propel. The three
other case studies are part of a larger investigation on ways
to reduce medical errors. Although the property patterns
covered 92% of the properties examined in [8], these prop-
erties were mostly selected from the finite-state verification
literature, which was the domain used to help develop the
property patterns. In our case studies, the medical profes-
sionals had no knowledge of finite-state verification or re-
quirements engineering. Thus, it is somewhat surprising
that we achieved similarly promising results; we are able
to handle 83% of the properties in these case studies, al-
though we currently only support four of the property pat-
tern behaviors with our templates. In our case studies, com-
puter scientists formulated the properties based on discus-
sions with the medical experts. The medical professionals
were taken aback by the amount of detail required to pre-
cisely capture medical guidelines. In fact, one nursing fac-
ulty member remarked that working with us on this project
significantly changed the way she views and teaches medical
procedures.

All but two of the properties that were not supported by
Propel appear to be ones that will be supported in the next
planned version of the tool. Some of the properties involved
real-time constraints or combinations of state and events
that perhaps could be better supported by representations
designed to address those types of properties [12, 14].

Results from the DNL experiment were also promising.
For the majority of the properties in the experiment, the
computer scientists could exactly or almost exactly formu-
late an FSA representation of the intended property based
on the DNL descriptions used in Propel. Mistakes tended
to be made when the Between scope was involved. Although
we will reexamine the phrasing for this scope, there is no
doubt that it is a difficult concept that results in a complex
FSA. We may just have to acknowledge that the Between
scope can not be represented succinctly or quickly compre-
hended in its entirety.

Although anecdotal, we have a few observations about the
elicitation support provided by Propel. The various do-
main experts we have worked with seemed comfortable with
the QT representation for selecting the scope and behavior
templates and for resolving the options in those templates.
The industrial computer scientist used the FSA representa-
tion to evaluate whether the answers she gave in the QT
representation provided what she wanted. Non-computer
scientists, on the other hand, liked the QT representation
for creating a property, preferred the DNL for reading about
a property, and avoided the FSA representation altogether.
We also found that the QT and DNL representations are
relatively easy to understand, even for non-computer scien-
tists.

The Propel tool supports all the capabilities described
in this paper. While creating properties for the case studies,
we soon discovered that we needed support for collections of
properties. Propel provides two capabilities that support
property collections. One is a project directory hierarchy,
where users can define projects and subprojects and then
associate each property with a project in the hierarchy. An-
other capability is the summary view, which provides a tabu-

217

lar representation of the project organization and attributes
of the properties associated with a project (and possibly its
subprojects). For example, a summary could be created that
lists all the primary events, secondary events, scope events,
and comments associated with each property in the project.
We have found that a summary provides a useful high-level
view of a set of properties and their focus.

There are several issues that we intend to address in the
future. As noted previously, there are some other patterns
that we plan to support, since these patterns have arisen
several times in our case studies. Some of these patterns,
such as chains, are included in the property patterns and
some are not, such as the concept of one event blocking the
subsequent occurrence of another event and the concept of
alternation. Properties that involve a conjunction or dis-
junction of events also merit further scrutiny. Finally, we
intend to investigate the possibility of loosening the restric-
tions on the scope alphabets.

7. ACKNOWLEDGMENTS
We thank Elizabeth Henneman and Jamieson M. Cobleigh

for their helpful comments, and we also thank Valerie A.
Gartland, Vitaliy Lvin, David Miller, Matthew O’Connell,
and Andrew Roberts for their contributions.

8. REFERENCES
[1] S. S. Ali. A logical language for natural language

processing. In Proc. of the Tenth Biennial Canadian
Artificial Intelligence Conf., Banff, Alberta, Canada,
May 1994.

[2] V. Ambriola and V. Gervasi. On the systematic
analysis of natural language requirements with Circe.
Automated Software Eng., 13(1):107–167, Jan. 2006.

[3] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, 2000.

[4] J. C. Corbett and G. S. Avrunin. Using integer
programming to verify general safety and liveness
properties. Formal Methods in System Design,
6(1):97–123, Jan. 1995.

[5] C. Denger, D. M. Berry, and E. Kamsties. Higher
quality requirements specifications through natural
language patterns. In Proc. of the IEEE Int. Conf. on
Software – Sci. Tech. and Eng., pages 80–91, Nov.
2003.

[6] D. Drusinsky. Visual formal specification using
(N)TLCharts: Statechart automata with temporal
logic and natural language conditioned transitions. In
Int. Workshop on Parallel and Distributed Systems:
Testing and Debugging, Santa Fe, NM, Apr. 2004.

[7] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett.
Property specification patterns web site.
http://www.cis.ksu.edu/santos/spec-patterns/.

[8] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett.
Patterns in property specifications for finite-state
verification. In Proc. of the 21st Int. Conf. on Software
Eng., pages 411–420, Los Angeles, CA, May 1999.

[9] M. B. Dwyer, L. A. Clarke, J. M. Cobleigh, and
G. Naumovich. Flow analysis for verifying properties
of concurrent software systems. ACM Trans. on
Software Eng. and Methodology, 13(4):359–430, Oct.
2004.

[10] N. E. Fuchs, U. Schwertel, and R. Schwitter.
Attempto Controlled English - not just another logic
specification language. In Proc. of the Eighth Int.
Workshop on Logic-based Program Synthesis and
Transformation, pages 1–20, June 1998.

[11] V. Gervasi and D. Zowghi. Reasoning about
inconsistencies in natural language requirements.
ACM Trans. on Software Eng. and Methodology,
14(3):277–330, July 2005.

[12] C. L. Heitmeyer. Software Cost Reduction. In J. J.
Marciniak, editor, Encyc. of Software Eng.
Wiley-Interscience, Jan. 2002.

[13] G. J. Holzmann. The model checker SPIN. IEEE
Trans. on Software Eng., 23(5):279–294, May 1997.

[14] S. Konrad and B. H.C.Cheng. Real-time specification
patterns. In Proc. of the 27th Int. Conf. on Software
Eng., pages 372–381, May 2005.

[15] K. L. McMillan. Symbolic Model Checking: An
Approach to the State Explosion Problem. Kluwer
Academic Publishers, 1993.

[16] L. Mich, M. Franch, and P. Novi Inverardi. Market
research for requirements analysis using linguistic
tools. Req. Eng. J., 9(1):40–56, Feb. 2004.

[17] O. Mondragon and A. Gates. Supporting elicitation
and specification of software properties through
patterns and composite propositions. Int. J. of
Software Eng. and Knowledge Eng., 14(1):21–41, Feb.
2004.

[18] O. Mondragon, A. Q. Gates, and O. Sokolsky.
Generating properties for runtime monitoring from
software specification patterns. Technical Report
UTEP-CS-04-21, U. of Texas at El Paso, 2004.

[19] M. H. Smith, G. J. Holzmann, and K. Etessami.
Events and constraints: A graphical editor for
capturing logic requirements of programs. In Proc. of
the Fifth IEEE Int. Symp. on Req. Eng., pages 14–22,
Aug. 2001.

[20] R. L. Smith, L. A. Clarke, G. S. Avrunin, and L. J.
Osterweil. Propel: An approach supporting property
elucidation. In Proc. of the 24th Int. Conf. on
Software Eng., pages 11–21, Orlando, FL, May 2002.

[21] A. van Lamsweerde. Formal specification: A roadmap.
In A. Finkelstein, editor, The Future of Software
Engineering, pages 147–159. ACM Press, June 2000.

218

