
Breaking Up is Hard to Do: An Investigation of
Decomposition for Assume-Guarantee Reasoning∗

Jamieson M. Cobleigh, George S. Avrunin, and Lori A. Clarke
Department of Computer Science

University of Massachusetts
Amherst, MA 01003, USA

jcobleig@cs.umass.edu, avrunin@cs.umass.edu, clarke@cs.umass.edu

ABSTRACT
Finite-state verification techniques are often hampered by the state-
explosion problem. One proposed approach for addressing this
problem is assume-guarantee reasoning. Using recent advances in
assume-guarantee reasoning that automatically generate assump-
tions, we undertook a study to determine if assume-guarantee rea-
soning provides an advantage over monolithic verification. In this
study, we considered all two-way decompositions for a set of sys-
tems and properties, using two different verifiers, FLAVERS and
LTSA. By increasing the number of repeated tasks, we evaluated
the decompositions as the systems were scaled. In only a few
cases could assume-guarantee reasoning verify properties on larger
systems than monolithic verification and, in these cases, assume-
guarantee reasoning could only verify these properties on systems
a few sizes larger than monolithic verification. This discouraging
result, although preliminary, raises doubts about the usefulness of
assume-guarantee reasoning.

Categories and Subject Descriptors: D.2.4 [Software Engineer-
ing]: Software/Program Verification— model checking

General Terms: Verification, Experimentation

Keywords: Assume-guarantee reasoning

1. INTRODUCTION
Finite-state verification techniques are being developed to verify

behavioral properties of distributed and concurrent systems. One
of the major problems that these techniques must address is the
state-explosion problem, where the number of reachable states to
be explored is exponential in the number of concurrent tasks in a

∗This research was partially supported by the National Science
Foundation under grants CCR-0205575 and CCF-0427071, by
the U.S. Army Research Laboratory and the U.S. Army Re-
search Office under agreement DAAD190110564, and by the U.S.
Department of Defense/Army Research Office under agreement
DAAD190310133. Any opinions, findings, and conclusions or rec-
ommendations expressed in this publication are those of the authors
and do not necessarily reflect the views of the National Science
Foundation, the U.S. Army Research Office or the U.S. Department
of Defense/Army Research Office.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’06, July 17–20, 2006, Portland, Maine, USA.
Copyright 2006 ACM 1-59593-263-1/06/0007 ...$5.00.

system. Compositional reasoning techniques have been proposed
as one way to address the state-explosion problem. One of the
most frequently advocated compositional reasoning techniques is
assume-guarantee reasoning [28, 33] in which a verification prob-
lem is represented as a triple, 〈A〉 S 〈P〉, where

• S is the subsystem being analyzed,
• P is the property to be verified, and
• A is an assumption about the environment in which S is used.

The formula 〈A〉 S 〈P〉 is true if, whenever S is used in an envi-
ronment satisfying A, then the property P must hold. Consider a
system S decomposed into two subsystems, S1 and S2 (which may
then be further decomposed). To verify that a property P holds on
the system made up of S1 and S2, denoted S1 ‖ S2, the following is
the simplest assume-guarantee rule that can be used:

Premise 1: 〈A〉 S1 〈P〉
Premise 2: 〈true〉 S2 〈A〉

〈true〉 S1 ‖ S2 〈P〉
By checking these two premises, a property can be verified on
S1 ‖ S2 without ever having to examine S1 ‖ S2.

There are several issues that make using the above assume-
guarantee rule difficult. First, if the system under analysis is made
up of more than two subsystems, which is often the case, then S1
and S2 may each need to be made up of several subsystems. Decid-
ing how to partition the subsystems into S1 and S2 is not easy and
can have a significant impact on the time and memory needed for
verification. We have found that the memory usage between two
different decompositions can vary by over an order of magnitude.
Second, once a decomposition is selected, it can be difficult to man-
ually find an assumption A that completes the assume-guarantee
proof. Because of these difficulties, it had not been practical to un-
dertake an empirical evaluation of this approach, although several
case studies have been reported (e.g., [18, 25]).

There has been recent work on automatically computing assump-
tions for compositional analysis [1,5,6,11,21,24]. This eliminates
one of the obstacles to empirical evaluation by making it feasible
to examine a large number of decompositions without having to
manually produce a suitable assumption for each one. Using the
algorithm presented in [11], we undertook such a study to evaluate
the effectiveness of assume-guarantee reasoning.

We initially undertook this study to gain insight into how to
best decompose systems and to learn what kind of savings could
be expected from assume-guarantee reasoning. We implemented
this automated assume-guarantee reasoning algorithm for two ver-
ifiers, FLAVERS [15] and LTSA [30]. We began by looking at
several examples using FLAVERS, but the results of these experi-
ments were not as promising as the results seen in [11], which used
LTSA. Although the two tools use different models and verifica-
tion methods, this was surprising to us. As a result, we translated

97

our examples into LTSA to see if our choice of tool affected our
results. In the study reported here, we applied both tools to a small
set of scalable systems and properties. For each property of each
system, we examined all of the ways to partition the subsystems of
that system into S1 and S2 at the smallest system size to find the
best decomposition, that is, the decomposition for which assume-
guarantee reasoning explores the fewest states. Because examining
all decompositions for each of the larger system sizes is infeasible
due to the time cost, we generalized the best decompositions found
for smaller system sizes and used those generalizations for assume-
guarantee reasoning at larger sizes. To evaluate these generalized
decompositions, however, we did explore all two-way decomposi-
tions for a few larger sizes, although we were not able to find the
best decomposition in all cases because of the time required. In
total, we examined over 43,000 two-way decompositions and used
over 1.43 years of CPU time.

The results of our experiments are not very encouraging and raise
concerns about the effectiveness of assume-guarantee reasoning.
For the vast majority of decompositions, more states are explored
using assume-guarantee reasoning1 than are explored using mono-
lithic verification. If we restrict our attention to the best decom-
position for each example, then we found that in about half of the
examples our automated assume-guarantee reasoning technique ex-
plores fewer states than monolithic verification for the smallest sys-
tem size. When we used generalized decompositions to scale the
systems, compositional analysis often explores fewer states than
monolithic verification. This memory savings, however, was rarely
enough to increase the size of the systems that could be verified
beyond what could be done with monolithic verification.

Section 2 provides some background information about the
finite-state verifiers and the automated assume-guarantee algorithm
we used. In Section 3 we describe our experimental methodology
and results. We end by discussing related work and conclusions.

2. BACKGROUND
This section gives a brief description of the two verifiers used

in our experiments, FLAVERS and LTSA. It also briefly describes
the L* algorithm and how it can be used for automated assume-
guarantee reasoning.

2.1 FLAVERS
FLAVERS (FLow Analysis for VERification of Systems) is a

finite-state verifier that can prove user-specified properties of se-
quential and concurrent systems [15]. These properties need to be
expressed as sequences of events that should (or should not) hap-
pen on any execution of the system. A property can be expressed
in a number of different notations, but is translated into a Finite
State Automaton (FSA). The model FLAVERS uses to represent a
system is based on annotated Control Flow Graphs (CFGs). An-
notations are placed on nodes of the CFGs to represent events that
occur during execution of the actions associated with a node. Since
a CFG corresponds to the control flow of a sequential system, this
representation is not sufficient for modeling a concurrent system.
FLAVERS uses a Trace Flow Graph (TFG) to represent concurrent
systems. The TFG consists of a collection of CFGs with additional
nodes and edges to represent intertask control flow. A CFG, and

1When discussing the number of states explored by assume-
guarantee reasoning, we mean the maximum number of states ex-
plored by a verifier when computing an assumption or checking
the two premises. Since assume-guarantee reasoning is intended
to reduce the impact of the state explosion problem, the maximum
number of states explored at any one time seems to be the appropri-
ate measure rather than the sum of the number of states explored.

thus a TFG, over-approximates the sequences of events that can
occur when executing a system.

FLAVERS uses an efficient state-propagation algorithm to deter-
mine whether all potential behaviors of the system being analyzed
are consistent with the property being verified. FLAVERS analyses
are conservative, meaning FLAVERS will only report that the prop-
erty holds when the property holds for all TFG paths. If FLAVERS
reports that the property does not hold, this can either be because
there is an execution that actually violates the property or because
the property is violated on infeasible paths through the TFG. These
infeasible paths do not correspond to any possible execution of the
system but are an artifact of the imprecision of the model. The ana-
lyst can introduce feasibility constraints, also represented as FSAs,
to improve the precision of the model and thereby eliminate some
infeasible paths from consideration. An analyst might need to iter-
atively add feasibility constraints and observe the analysis results
several times before determining whether or not a property holds.
Feasibility constraints give analysts some control over the analysis
process by letting them determine exactly what parts of a system
need to be modeled in order to prove a property.

The FLAVERS state-propagation algorithm has worst-case com-
plexity that is O

(
N2 ·Q)

, where N is the number of nodes in the
TFG, and Q is the product of the number of states in the prop-
erty and all constraints. Experimental evidence shows that the per-
formance of FLAVERS is often sub-cubic in the size of the sys-
tem [15] and that the performance of FLAVERS is good when com-
pared to other finite-state verifiers [3, 4].

2.2 LTSA
LTSA (Labeled Transition Systems Analyzer) is a finite-state

verifier that can prove user-specified properties of sequential and
concurrent systems [30]. LTSA can check both safety and liveness
properties, but the assume-guarantee algorithm we use can only
handle safety properties. Safety properties in LTSA are specified
as FSAs where every state except one is an accepting state. This
single non-accepting state must be a trap state, meaning all transi-
tions that leave it must be self-loop transitions. This type of FSA
corresponds to the set of prefix-closed regular languages, those lan-
guages where every prefix of every string in the language is also
in the language. LTSA uses Labeled Transition Systems (LTSs),
which resemble FSAs, for modeling the components of a system.
LTSs are written in FSP, a process-algebra style notation.

Unlike FLAVERS, in which the nodes of the model are labeled
with the events of interest, in LTSA, the edges (or transitions) of
the LTSs are labeled with the events of interest. To build a model
of the entire system, individual LTSs are combined using the par-
allel composition operator (‖). The parallel composition operator
is a commutative and associative operator that combines the behav-
ior of two LTSs by synchronizing the events common to both and
interleaving the remaining events.

LTSA supports Compositional Reachability Analysis (CRA) of
a software system based on its hierarchical structure. CRA incre-
mentally computes and abstracts the behavior of composite com-
ponents using the architecture of the system as a guide to the order
to perform the composition [19]. While CRA can reduce the cost
of verification, state explosion can still occur and result in the cost
of verification being exponential in the number of concurrent tasks
in the system.

2.3 Using the L* Algorithm for Automated
Assume-guarantee Reasoning

The L* algorithm was originally developed by Angluin [2] and
later improved by Rivest and Schapire [34]. In this work, we

98

use Rivest and Schapire’s version of the L* algorithm. The L*
algorithm learns an FSA for an unknown regular language over
an alphabet Σ through its interactions with a minimally adequate
teacher, henceforth referred to as a teacher. The L* algorithm
poses two kinds of questions to the teacher, queries and conjectures,
and the questions it poses are based on the answers it received to
previously asked questions. Due to space limitations, we cannot
describe the L* algorithm, but do provide a high-level description
of how queries and conjectures are answered to allow the L* al-
gorithm to learn an assumption A that can be used in the simple
assume-guarantee rule given earlier.

2.3.1 Answering Queries
A query consists of a sequence of events from Σ∗, and the teacher

must return true if the string is in the language being learned and
false otherwise. In answering queries for assume-guarantee rea-
soning, the focus is on Premise 1, 〈A〉 S1 〈P〉. To answer a query,
the model of S1 is examined to determine if the given sequence re-
sults in a violation of the property P. If it does, then the assumption
needed to make 〈A〉 S1 〈P〉 true should not allow the event sequence
in the query and, thus, false will be returned to the L* algorithm.
Otherwise, the event sequence is permissible and true will be re-
turned to the L* algorithm.

2.3.2 Answering Conjectures
A conjecture consists of an FSA that the L* algorithm believes

will recognize the language being learned. The teacher returns true
if the conjecture is correct. Otherwise, the teacher returns false
and a counterexample, a string in Σ∗ that is in the symmetric dif-
ference of the language of the conjectured automaton and the lan-
guage being learned. In the context of assume-guarantee reasoning,
the conjectured FSA is a candidate assumption that may be able to
be used to complete an assume-guarantee proof. Thus, conjectures
are answered by determining if the conjectured assumption makes
the two premises of the assume-guarantee proof rule true.

First, the conjectured automaton, A, is checked in Premise 1,
〈A〉 S1 〈P〉. To check this, the model of S1, as constrained by the
assumption A, is verified. If this verification reports that P does
not hold, then the counterexample returned represents an event se-
quence permitted by A, but violating P. Thus, the conjecture is
incorrect and the counterexample is returned to the L* algorithm.
If the verification reports that the property does hold, then A is good
enough to satisfy Premise 1 and Premise 2 can be checked.

Premise 2 states that 〈true〉 S2 〈A〉 should be true. To check this,
the model for S2 is verified to see if it satisfies A. If this verification
reports that A holds, then both Premise 1 and Premise 2 are true,
so it can be concluded that P holds on S1 ‖ S2. If this verification
reports that A does not hold, then the resulting counterexample is
examined to determine what should be done next.

The first thing that is done is to make a query to see if the event
sequence of the counterexample leads to a violation of the property
P on S1. If a property violation results, then the counterexample is
a behavior that occurs in S2 that will result in a property violation
when S2 interacts with S1, so it can be concluded that P does not
hold on S1 ‖ S2. If a property violation does not occur, then the
counterexample is a behavior that occurs in S2 that will not result
in a property violation when S2 interacts with S1 and, thus, A is
restricting the behavior of S2 unnecessarily. The counterexample is
then returned to the L* algorithm in response to the conjecture.

2.3.3 Complexity and Correctness
It is shown in [11] that this approach to assume-guarantee rea-

soning terminates and correctly determines whether or not S1 ‖ S2

satisfies P. The description of the teacher we provide is at a high
level, but works for both FLAVERS and LTSA. Differences in the
models used by FLAVERS and LTSA necessitate differences in
the implementation of their teachers. Space does not permit us to
describe the specific teachers for the two verifiers, which are de-
scribed in [10] for FLAVERS and [11] for LTSA.

Using Rivest and Schapire’s version of the L* algorithm, l−1
conjectures and O

(
kl2 + l logm

)
queries are needed where k is the

size of the alphabet of the FSA being learned, l is the number of
states in the minimal deterministic FSA that recognizes the lan-
guage being learned, and m is the length of the longest counterex-
ample returned when a conjecture is made.

While this approach to assume-guarantee reasoning is correct
and will terminate, it is not guaranteed to save memory over mono-
lithic verification. When the L* algorithm is learning an assump-
tion A to make Premise 1 (〈A〉 S1 〈P〉) true, it might learn an as-
sumption that is smaller than S2 but that allows more behavior than
S2. This could result in the verification of Premise 1 using more
memory than monolithic verification. Similarly, while the learned
assumption is expected to be smaller than S2, it is often larger than
the property P. As a result, checking Premise 2 (〈true〉 S2 〈A〉) may
use more memory than monolithic verification.

3. METHODOLOGY AND RESULTS
Our goal was to try to gain a sense of whether or not the auto-

mated assume-guarantee reasoning algorithm presented in [11] pro-
vides an advantage over monolithic verification. There are several
different ways that this technique could provide such an advantage:

1. Does this technique use less memory than monolithic verifi-
cation?

2. Does this technique use less time than monolithic verifica-
tion?

3. Can this technique verify properties on larger systems than
monolithic verification?

Since finite-state verification techniques are more often limited by
memory than by time, we focused our study on points 1 and 3 rather
than point 2.

To evaluate the usefulness of this automated assume-guarantee
reasoning technique, we tried to verify properties that were known
to hold on a small set of scalable systems: the Chiron user interface
system [29] (both the single and the multiple dispatcher versions as
described in [4]), the Gas Station problem [23], Peterson’s mutual
exclusion protocol [32], the Relay problem [35], and the Smokers
problem [31]. These systems were specified in Ada and use ren-
dezvous for intertask communication. Peterson’s mutual exclusion
protocol also uses shared variables for intertask communication.
Except for Peterson’s mutual exclusion protocol, these systems all
have a client-server architecture where the server has an interface
made up of a small number of rendezvous that may be called by
the clients. For LTSA, INCA [12] was used to translate the Ada
systems into FSAs, which are easily translated into LTSs. We used
the version of FLAVERS that directly accepts Ada programs.

Both FLAVERS and LTSA prove that a property holds by ex-
ploring all of the reachable states in an abstracted model of a sys-
tem. On properties that do not hold, these two tools stop as soon
as a property violation is found. As a result, their performance on
properties that do not hold is more variable. While using only prop-
erties that hold restricts the scope of our study, including properties
that do not hold would have made it more difficult to meaningfully
compare the performance of monolithic verification to assume-
guarantee reasoning.

Since FLAVERS uses constraints to control the amount of pre-
cision in a verification, we used a minimal set of constraints when

99

Table 1: Number of two-way decompositions examined for systems of size 2
FLAVERS LTSA

System Properties Decompositions Total Properties Decompositions Total

Chiron single 9 62 558 8 62 496
Chiron multiple 9 254 2,286 8 254 2,032
Gas Station 4 30 120 4 30 120
Peterson 1 6 6 1 6 6
Relay 1 6 6 1 6 6
Smokers 8 14 112 8 14 112

Total 32 3,088 30 2,772

0
50

0
10

00
15

00

Properties, in Increasing Order of Percentage

P
er

ce
nt

ag
e

of
 M

on
ol

ith
ic

50
10

0
15

0
20

0
25

0
30

0
Properties, in Increasing Order of Percentage

P
er

ce
nt

ag
e

of
 M

on
ol

ith
ic

Figure 1: Memory Used by the Best Decomposition of Size 2
for FLAVERS

Figure 2: Memory Used by the Best Decomposition of Size 2
for LTSA

verifying properties monolithically and compositionally.2 We did
not use the most recent version of LTSA, which is based on plu-
gins [7], because the plugin interface does not provide direct ac-
cess to the LTSs. An implementation of this automated assume-
guarantee reasoning technique exists for the plugin version of
LTSA [20], but verification takes significantly longer because all
LTSs must be created by writing appropriate FSP, necessitating re-
parsing the entire model during each query and conjecture, even for
the parts of the model that do not change between different queries
and conjectures.

Since the scalable systems we looked at had more than two
subsystems, we needed to partition those subsystems into S1 and
S2 to use the assume-guarantee rule presented earlier. For both
FLAVERS and LTSA we considered a task to be an indivisible sub-
system. We wanted to find a two-way decomposition where neither
S1 nor S2 is empty, on which assume-guarantee reasoning used the
least amount of memory.

Each of the systems we used was scaled by creating more in-
stances of one particular task, and the size of the system is mea-
sured by counting the number of occurrences of that task in the
system. For the Chiron systems we counted the number of artists,
for the Gas Station system we counted the number of customers, for
the Peterson system we counted the number of tasks trying to gain

2A minimal set of constraints is one such that removal of any con-
straint causes FLAVERS to report that the property may not hold.
While these sets are minimal for each property, they may not be
the smallest possible set of constraints with which FLAVERS can
prove the property holds nor the best set with respect to the mem-
ory or time cost for FLAVERS. While the worst-case complexity
of FLAVERS increases with each constraint that is added, some-
times adding more constraints can improve the actual performance
of FLAVERS. These minimal sets were found using the process
described in [15].

access to the critical section, for the Relay system we counted the
number of tasks accessing the shared variable, and for the Smokers
system we count the number of smokers.

3.1 Does Assume-guarantee Reasoning Save
Memory at Small System Sizes?

To determine the amount of memory used by assume-guarantee
reasoning, we looked at the maximum number of states explored by
the teacher when answering a query or a conjecture of the L* algo-
rithm. While the data structures used by the L* algorithm and the
artifacts created by the verifiers (e.g. TFGs and FSAs in FLAVERS,
LTSs in LTSA) do use memory, we did not count them when de-
termining memory usage since the amount of memory needed to
store them is small when compared to the amount of memory
needed to store the states explored when queries and conjectures
are answered. We say one decomposition is better than another de-
composition if the maximum number of states explored when the
teacher answers a query or conjecture using the first decomposition
is smaller than the maximum number of states explored when the
teacher answers a query or conjecture using the second decomposi-
tion. On some properties, assume-guarantee reasoning using the L*
algorithm explored more states than would have been explored had
an assumption been supplied and just 〈A〉 S1 〈P〉 and 〈true〉 S2 〈A〉
checked. We count this additional overhead when determining the
amount of memory used by assume-guarantee reasoning and dis-
cuss this issue in Section 3.5. Similarly, we determine the amount
of memory used by monolithic verification by looking at the num-
ber of states explored during verification and do not consider the
amount of memory needed to hold the artifacts created by the veri-
fiers.

Initially, we selected several decompositions for each property
of each system at size 2 based on our understanding of the sys-

100

Table 2: Performance of the best decompositions for size 2 and the generalized decompositions compared to monolithic verification
Best decomp. Generalized

Total at size 2 decomp.
number of is better is better

Tool properties than mono. Percentage than mono. Percentage

FLAVERS 32 17 53.1% 18 56.3%
LTSA 30 17 56.7% 5 16.7%

tem and of assume-guarantee reasoning. We expected that in many
cases assume-guarantee reasoning would save memory over mono-
lithic verification, although we knew that this might not always be
the case. In our experiments, we were surprised to discover that
in over half of our examples the decompositions we selected did
not use less memory than monolithic verification. Then, for each
property of each system with each verifier, we examined all two-
way decompositions to find the best decomposition with respect to
memory. For some of the examples where the decompositions we
selected did not save memory, our exhaustive search found decom-
positions that use less memory than monolithic verification, show-
ing that our intuition about selecting appropriate decompositions
was not good. For other examples, however, every decomposition
uses more memory than monolithic verification.

Table 1 lists, for FLAVERS and LTSA, the number of proper-
ties for each system,3 the number of two-way decompositions4 ex-
amined for each property when each system is size 2, and the to-
tal number of decompositions examined on each system when that
system is size 2.

Figures 1 and 2 show, for FLAVERS and LTSA respectively, the
amount of memory used by the best decomposition at size 2 as a
percentage of the amount of memory used by monolithic verifica-
tion. For reference, a line at 100% has been drawn. Points below
this line represent properties on which the best decomposition is
better than monolithic verification.

For FLAVERS, the best decomposition is better than monolithic
verification on 17 of the 32 properties. For these 17 properties, on
average the best decomposition uses 48.4% of the memory used
by monolithic verification. For the 15 properties where the best
decomposition is worse than monolithic verification, on average the
best decomposition uses 637.1% of the memory used by monolithic
verification.

For LTSA, the best decomposition is better than monolithic veri-
fication on 17 of the 30 properties with LTSA.5 For these 17 proper-
ties, on average the best decomposition uses 33.6% of the memory
used by monolithic verification. For the 13 properties where the
best decomposition is worse than monolithic verification, on aver-
age the best decomposition uses 222.9% of the memory used by
monolithic verification.

It is important to note that the vast majority of decompositions
are not better than monolithic verification. Even for the properties
where the best decomposition is better than monolithic verification,

3There is one fewer Chiron property for LTSA than for FLAVERS.
The events needed to express that property are removed from the
model when LTSA constructs the LTSs. Since this property states
that those events cannot occur, LTSA proves this property holds
during model construction, making verification unnecessary.
4Note that the number of two-way decompositions examined for
each property are always two fewer than a power of two because the
two-way decompositions that put all of the subsystems into either
S1 or S2 are not checked.
5These are not the same 17 properties as for FLAVERS. There are
a total of 13 properties for which the assume-guarantee approach is
better than monolithic verification for both FLAVERS and LTSA.

most of the decompositions we examined for those properties are
not better than monolithic verification. Thus, randomly selecting
decompositions would likely not yield a decomposition better than
monolithic verification. Although it might be possible to develop
heuristics to aid in decomposing a system, in our experiments we
did not see any patterns in the decompositions that saved memory
that could be used as the basis for heuristics.

Although assume-guarantee reasoning using learned assump-
tions could save memory in only about half of our examples when
the best decomposition is used and finding the decompositions to
make assume-guarantee reasoning most effective was expensive,
the overall approach was not too onerous. On average, it required
about two minutes to examine one decomposition with FLAVERS
and about half a minute to examine one decomposition with LTSA.
It is infeasible to evaluate all two-way decompositions for larger
system sizes, however, because the number of decompositions to be
evaluated increases exponentially and the cost of evaluating each
decomposition increases as well. In the next section we examine
whether or not the best decomposition for size 2 can be used to help
find a decomposition that can save memory compared to monolithic
verification at larger system sizes.

3.2 Does Assume-guarantee Reasoning Save
Memory at Larger System Sizes?

While the cost to find the best decomposition for each property
at size 2 was not too great, it is infeasible to evaluate all two-way
decompositions for larger system sizes. We have several instances
where evaluating a single decomposition on a system of size 4 took
over 1 month. Thus, if memory was a concern in verifying a spe-
cific system and it was important to verify it for a larger size, a
reasonable approach might be to examine all decompositions for
a small system size and then generalize the best decomposition
for that small system size to a larger system size. We used this
approach to evaluate the memory usage of assume-guarantee rea-
soning for larger system sizes, and our algorithm for generalizing
decomposition from the best decomposition for size 2 is described
in Appendix A.

Table 2 gives the performance of the best decomposition at size 2
compared to monolithic verification. It also gives the performance
of the generalized decomposition compared to monolithic verifi-
cation at the largest system size that such a comparison could be
made. This size varies from property to property depending on
when compositional analysis and monolithic verification run out of
memory.

With FLAVERS, if the best decomposition at size 2 is better than
monolithic verification, the associated generalized decomposition
is usually better than monolithic verification. While there were 17
properties on which the best decomposition at size 2 is better than
monolithic verification, there were 18 properties on which the gen-
eralized decomposition is better than monolithic verification. There
was 1 property on which the best decomposition at size 2 is better
than monolithic verification, but the generalized decomposition is
not better than monolithic verification. There were also 2 proper-

101

Table 3: Generalized Decompositions Compared to Monolithic Verification with respect to Scaling
FLAVERS LTSA

Number of Number of
Properties Percentage Properties Percentage

Potential
Success

1. Generalized can scale farther than
monolithic

6 18.8% 0 0.0%

2. Don’t know, but generalized appears
better than monolithic

7 21.9% 5 16.7%

Subtotal 13 40.6% 5 16.7%

Likely
Failure

3. Generalized cannot scale farther than
monolithic

13 40.6% 0 0.0%

4. Don’t know, but generalized appears
worse than monolithic

2 6.3% 25 83.3%

5. Monolithic scales well, so
generalized unlikely to be of much use

4 12.5% 0 0.0%

Subtotal 19 59.4% 25 83.3%
Total 32 100.0% 30 100.0%

ties on which the best decomposition at size 2 is worse than mono-
lithic verification, but the generalized decomposition is better than
monolithic verification.

With LTSA, of the 17 properties on which the best decomposi-
tion at size 2 is better than monolithic verification, on only 5 of
these is the generalized decomposition better than monolithic veri-
fication.

In summary, with FLAVERS the best decomposition at size 2
is better than monolithic verification on 17 of the 32 examples, or
about 53% of the time, and the generalized decomposition is bet-
ter than monolithic verification on 18 of the 32 examples, or about
56% of the time. With LTSA the best decomposition at size 2 is
better than monolithic verification on 17 of the 30 examples, or
about 56% of the time, and the generalized decomposition is bet-
ter than monolithic verification on 5 of the 30 examples, or 1/6 of
the time. Thus, the automated assume-guarantee reasoning tech-
nique we used was able to save memory on larger size systems in
a bit more than half the cases with FLAVERS and about 1/6 of
the cases with LTSA. This memory savings, however, is probably
not of much value unless it is significant enough to allow proper-
ties to be verified that could not be verified monolithically. In the
next section, we examine whether or not the generalized decompo-
sitions allowed us to verify properties on systems larger than could
be verified monolithically.

3.3 Can Assume-guarantee Reasoning Verify
Properties of Larger Systems than
Monolithic Verification Can?

We tried to determine, for each property, whether or not com-
positional analysis using the generalized decompositions, as de-
scribed in Appendix A, would allow us to verify that property on
larger systems sizes than monolithic verification.

Unfortunately, we were not able to determine an answer to this
question for each property in our study. There were some systems
on which we were unable to build models for larger system sizes.
As a result, we were unable to definitively determine whether or
not compositional analysis using the generalized decompositions
would allow us to verify properties on larger system sizes than
monolithic verification would. For example, the language process-
ing toolkit used by FLAVERS6 [36] was unable to generate models

6This toolkit is very old and not easily modifiable. We are working
on building models for FLAVERS from Java programs using Ban-

Chiron systems larger than size 6. After running these ex-
periments, we assigned each property to one of five categories:

1. Compositional analysis can verify a larger system than
monolithic verification.

2. It is unknown if compositional analysis can verify a larger
system than monolithic verification. We consider it likely,
however, because compositional analysis is substantially bet-
ter than monolithic verification for the largest system size
such a comparison could be made.

3. Compositional analysis cannot verify a larger system than
monolithic verification.

4. It is unknown if compositional analysis can verify a larger
system than monolithic verification. We consider it un-
likely, however, because compositional analysis is worse
than monolithic verification for the largest system size such
a comparison could be made.

5. Compositional analysis is better than monolithic verification,
but monolithic verification can verify the property on sys-
tems with sizes 45 or more. While compositional analysis
might be able to verify a larger system, we think verifying
these properties on larger systems will not be of much use.7

Table 3 shows the number of properties in each category for
FLAVERS and LTSA. We consider using generalized decompo-
sitions to be a potential success in verifying a larger system than
monolithic verification if the property is in category 1 or 2. We
consider using generalized decomposition to be a likely failure in
verifying a larger system than monolithic verification if the prop-
erty is in category 3, 4, or 5. This yields a potential success rate of
about 40% for FLAVERS and about 16% for LTSA. Note that this
rate is what we believe to be the upper bound of the success rate.
By looking at just the properties where we could demonstrate that
compositional analysis could scale farther, meaning those in cate-
gory 1, we obtain the lower bound of the success rate: about 18%
for FLAVERS and 0% for LTSA.

While we could demonstrate that assume-guarantee reasoning
could scale farther than monolithic verification on six properties, it
is also important to look at how much farther assume-guarantee rea-

dera [13] and, thus, expect to remove some of the limitations of our
old language processing toolkit.
7The somewhat arbitrary cutoff of 45 represents a substantial size
for the systems under consideration. All of the properties we ex-
amined that could be verified on systems larger than size 10 could
be verified on systems with size 45.

102

size

S
ta

te
s

10
^3

10
^4

10
^5

10
^6

10
^7

10
^8

10
^9

2 3 4 5 6

Monolithic
Generalized from 2
Generalized from 4

size

S
ta

te
s

10
^2

10
^3

10
^4

10
^5

10
^6

10
^7

2 3 4 5 6 7

Monolithic
Generalized from 2
Odd/Even Pattern

Figure 3: States Explored on the “Mutual Exclusion” Property
of Gas Station with FLAVERS

Figure 4: States Explored on the “Always 1 Between 0” Prop-
erty of Relay with FLAVERS

soning could scale. On five of these six properties, compositional
analysis could verify the property on a system one size larger, but
not two sizes larger, than monolithic verification could.8 On the
sixth property, compositional analysis could verify the property on
a system two sizes larger, but not three sizes larger, than monolithic
verification could. In addition, there was one property, counted in
category 5, where compositional analysis could verify the system
at least three sizes larger than monolithic verification could. This
allowed us to increase the size of the system that could be veri-
fied from 47 to 50. Since monolithic verification could scale to
size 47, a fairly large system size, we do not believe verifying the
system on size 50 is particularly useful and do not count this exam-
ple as a success. While there were six properties where we could
demonstrate that assume-guarantee reasoning could scale farther
than monolithic verification, compositional analysis could verify
these properties on systems only slightly larger than the size of the
system on which these properties could be verified monolithically.

In summary, we could only verify a larger system using our au-
tomated assume-guarantee technique on about 18% of the proper-
ties for FLAVERS and on no properties for LTSA. If we had not
encountered model building issues, we believe that compositional
analysis could verify a larger system size than monolithic verifica-
tion on at most 40.6% of the properties for FLAVERS and 16.7%
of the properties for LTSA. While a 40% success rate may look
encouraging, compositional analysis using generalized decomposi-
tions did not significantly increase the size of the systems that could
be verified. Considering the amount of time that was spent to find
the best decomposition at size 2, it is questionable if the benefit of
verifying a property on a slightly larger system size is worth the
necessary investment of time.

While these results were discouraging, we were interested in de-
termining if there was some way to classify the systems and prop-
erties to determine which problems assume-guarantee reasoning
would likely produce a significant memory savings. Unfortunately,
we could not find such a classification, though we do have some
observations. One type of feasibility constraint used by FLAVERS
is a Task Automaton (TA). Without TAs, analyses in FLAVERS are
partially flow-insensitive. Adding a TA for a task makes FLAVERS
flow-sensitive with respect to that task. It appears that when more
TAs are needed to prove a property, assume-guarantee reasoning
based on generalized decompositions is more likely to use more
memory than monolithic verification. Of the 14 properties where

8Recall that by size, as described in section 3, we mean the number
of repeated tasks in a system. Thus, increasing the size by two
means adding two more of these repeated tasks to a system.

the number of TAs needed to prove the property increases as the
system size increases, 10 of them are classified as failures in Ta-
ble 3. Of the 13 properties where only one TA is needed to prove
the property regardless of system size, 7 are classified as failures in
Table 3, though 3 of these failures are in category 5 where assume-
guarantee reasoning based on generalized decompositions does bet-
ter than monolithic verification but assume-guarantee reasoning is
not likely to be of much use since monolithic verification scales
well. On the remaining 5 properties, we cannot find a pattern to de-
termine whether or not assume-guarantee reasoning based on gen-
eralized decompositions will perform better than monolithic verifi-
cation. For LTSA, the picture is less clear. On some of the proper-
ties where assume-guarantee reasoning for FLAVERS works well,
assume-guarantee reasoning for LTSA does not work well. Con-
versely, there was 1 property where assume-guarantee reasoning
for FLAVERS works poorly, but assume-guarantee reasoning for
LTSA works well. While these observations may provide some
guidance to help determine whether or not assume-guarantee rea-
soning is likely to save memory, more experimentation is needed
before any conclusions can be drawn.

3.4 Are the Generalized Decompositions the
Best Decompositions?

These discouraging results were obtained using decompositions
that were generalized from the best decomposition on problems of
size 2. It is possible that the generalized decompositions we se-
lected are not the best decompositions to use on the larger systems
sizes. To investigate this issue, we tried to find the best decomposi-
tion for some larger system sizes.

We considered only some of the systems because of the time
costs involved. We encountered a number of two-way decompo-
sitions where it took more than a month to learn an assumption.9

As a result, we imposed an upper bound on the amount of time we
spent evaluating a single two-way decomposition to be the maxi-
mum of 1 hour and 10 times the amount of time needed to verify
that property monolithically.10 On the largest-sized systems that

9The time needed to evaluate the decompositions that took more
than a month is counted in the 1.43 years of CPU time needed for
our experiments. Still, more than 99% of the decompositions re-
quired less than 1 day to evaluate. The time used evaluating just
the decompositions that took less than 1 day to evaluate added up
to over 10 months of CPU time.

10On every property where the upper bound on time was reached,
we were able to find at least one decomposition that was better than
the generalized decomposition.

103

0 50 100 150 200 250

0
20

40
60

80
10

0

Assumption Size
18 of 32 properties have assumption size 1

P
er

ce
nt

ag
e

of
 T

im
e

S
pe

nt
 L

ea
rn

in
g

0 20 40 60 80 100 120

0
20

40
60

80
10

0

Assumption Size
19 of 30 properties have assumption size 1

P
er

ce
nt

ag
e

of
 T

im
e

S
pe

nt
 L

ea
rn

in
g

Figure 5: Percentage of Time Spent Learning for FLAVERS Figure 6: Percentage of Time Spent Learning for LTSA

we completed and for which such a comparison can be made, the
generalized decompositions from size 2 are the best decomposi-
tions on 31.3% of the properties with FLAVERS and 40.0% of the
properties with LTSA.

When we found a decomposition at size n (n > 2) that was better
than the generalized decomposition for size 2, we generalized the
decomposition for size n to systems larger than size n. In all cases,
the generalized decomposition for size n is better than the gener-
alized decomposition for size 2. We also tried taking the decom-
positions for size n and simplifying them so they could be used on
systems of size 2, similar to the process described in Appendix A
but in reverse. The decompositions for size n, when simplified to
size 2, are worse than monolithic verification in all but one case.

In addition we have 3 examples where there are decompositions
that can be used to verify a property on a larger system size than
both monolithic verification and the generalized decompositions
from size 2. One of these examples is the “mutual exclusion” prop-
erty of the Gas Station system with FLAVERS. Figure 3 compares
the number of states explored using two different generalizations
(from size 2 and size 4) to the number of states explored using
monolithic verification. On this example, the generalized decom-
position for size 2 is the best decomposition for size 3. When the
system size is 4, however, the generalized decomposition for size 2
is not the best decomposition. We do not know what the best de-
composition for size 4 is because it requires too much time to find.
We do know that if we generalize the best known decomposition for
size 4, we can verify this property on systems with size 6, one size
greater than monolithic verification and the generalized decompo-
sition for size 2.

On one of the other examples, the “always 1 between 0” prop-
erty of the Relay system with FLAVERS, the generalized decom-
positions for size 2 are worse than monolithic. We were able to
find a decomposition that could allow us to verify this property on
the system with size 7, one size larger than monolithic verification.
However, this decomposition was not easy to find. When looking at
the best decompositions for size 2, 3, 4, and 5, we noticed that there
is a pattern to the best decompositions, which depends on whether
or not the size of the system is odd or even. Figure 4 compares the
number of states using the generalized decomposition for size 2, the
decompositions based on the odd/even pattern, and the monolithic
verification for this property.

On these two examples, we were able to find decompositions that
could scale farther than the generalized decomposition for size 2,
but at significant expense, since it involved trying all two-way de-
compositions for larger system sizes; this approach is probably too
costly to be useful in practice.

3.5 What is the Cost of Using the L*
Algorithm?

In addition to evaluating our use of generalized decompositions,
we were also interested in investigating whether or not using the L*
algorithm to learn assumptions increased the cost of compositional
analysis. To do this, we first determined, for each property, the cost
of compositional analysis when the L* algorithm is used to learn an
assumption. At the end of each compositional analysis, we saved
the assumption that was used to complete the assume-guarantee
proof. These assumptions were then used to evaluate the cost of
compositional analysis when assumptions are not learned. For
each property P, this cost was determined by checking 〈A〉 S1 〈P〉
and 〈true〉 S2 〈A〉, letting A be the assumption that was previously
learned when P was verified using compositional analysis with the
L* algorithm. For each property, we compared the time and mem-
ory costs for the largest sized system on which that property could
be verified using automated assume-guarantee reasoning with the
decompositions generalized from size 2.

For a property P, we consider the amount of memory used during
compositional analysis with the L* algorithm to be the maximum
number of states explored when the teacher answers a query or con-
jecture of the L* algorithm. We consider the amount of memory
used during compositional analysis without the L* algorithm to be
the maximum number of states explored when verifying 〈A〉 S1 〈P〉
and 〈true〉 S2 〈A〉, where A is the assumption that was previously
learned by the L* algorithm.

For FLAVERS, the amount of memory used by the two ap-
proaches is the same on 29 of the 32 properties. On the remain-
ing three properties, on average, compositional analysis without the
L* algorithm uses 88.6% of the memory of compositional analysis
with the L* algorithm. On one of these properties, compositional
analysis was able to scale at least three sizes farther than mono-
lithic verifications. On the other two properties, the memory used
by compositional analysis without the L* algorithm was about 10
times more than the memory used by monolithic verification.

For LTSA, the amount of memory used by the two approaches
is the same on 26 of the 30 properties. On the remaining four
properties, on average, compositional analysis without the L* al-
gorithm uses 65.9% of the memory of compositional analysis with
the L* algorithm. On three of these properties, the memory used
by compositional analysis without the L* algorithm was about 2
times more than the memory used by monolithic verification. On
the fourth property, the amount of memory used by compositional
analysis without the L* algorithm was 78.1% of the memory used
by monolithic verification.

104

To summarize, on one of the properties where compositional
analysis with the L* algorithm used more memory than compo-
sitional analysis without the L* algorithm, compositional analysis
with the L* algorithm could scale at least three sizes farther than
monolithic verification. This allowed us to increase the size of the
system that could be verified from 47 to 50. Since monolithic veri-
fication, however, could scale to size 47, a fairly large system size,
we do not believe that verifying the system on size 50 is particu-
larly useful. On one of the other properties, compositional analy-
sis without the L* algorithm used 78.1% of the memory used by
monolithic verification, so it is unlikely that compositional analysis
without the L* algorithm would be able to scale significantly farther
than monolithic verification. On the remaining properties, compo-
sitional analysis without the L* algorithm used more memory than
monolithic verification. Unless a better assumption and decompo-
sition could be found for these properties, it is unlikely that com-
positional analysis would be able to scale farther than monolithic
verification. While such assumptions and decompositions may ex-
ist, we do not know of a good way to find them and do not believe
that it will be easy for analysts to find them without some form of
automated support.

To determine the time cost for using the L* algorithm to learn
an assumption, we looked at the amount of time that was needed
to learn an assumption to verify each property. Figures 5 and 6
show the percentage of time that was spent learning an assumption
compared to the size of the assumption that was learned. When
the size of the learned assumption is small, fewer than 10 states,
less than 50% of the total verification time is spent learning the
assumptions. When the size of the learned assumption is larger
than 10 states, however, in most cases over 90% of the verification
time is spent learning the assumptions, a substantial overhead.

Because of this time and memory overhead, we looked at two
ways to reduce the cost of automatically learning an assumption.
First, since we were able to use generalized decompositions to ap-
ply assume-guarantee reasoning to larger-sized systems, we tried
generalizing the assumptions in a similar fashion. When the learned
assumption was large, however, it was difficult to understand what
behavior the assumption is trying to capture. Without such an un-
derstanding, it is not possible to determine what the assumption
should be for a larger-sized system. As a result, we were unable
to use generalized assumptions to reduce the cost of automated
assume-guarantee reasoning.

Second, Groce et al. developed a technique for initializing some
of the L* algorithm’s data structures when given an automaton that
recognizes a language close to the one being learned [22]. By do-
ing this, they reduced the amount of time needed to run Angluin’s
version of the L* algorithm. To determine if this technique would
reduce the cost of using learning, for each property, we used the L*
algorithm to learn an assumption capable of completing an assume-
guarantee proof. This assumption was then used to initialize some
of the data structures of Angluin’s version of the L* algorithm. Per-
forming this initialization reduced the number of queries made by
the L* algorithm (and consequently the running time) when com-
pared to not initializing these data structures. Initializing these data
structures in Angluin’s version of the L* algorithm, however, did
not offer any performance benefits over using Rivest and Schapire’s
version of the L* algorithm, which has better worst-case bounds.
We have been unable to find a similar technique to initialize the
data structures of Rivest and Schapire’s version of the L* algorithm
because of the constraints this version places on its data structures.

Using the L* algorithm to learn an assumption can increase both
the time and memory cost needed to complete an assume-guarantee
proof, compared to the cost of completing a proof using a supplied

assumption. Some of the learned assumptions are very large: in
fact, one has over 250 states. For such systems, analysts cannot be
expected to develop these assumptions manually and we do not be-
lieve that small assumptions exist that can be used to complete the
assume-guarantee proof. Thus, some automated support is needed
to make assume-guarantee reasoning practical on these systems.

3.6 Threats to Validity
While our experiments examined several systems in detail, they

are still limited in scope: we used two finite-state verifiers, one
assume-guarantee reasoning technique, and a small number of sys-
tems. Even in this limited context, our experiments were expensive
to perform; we examined over 43,000 two-way decompositions and
used over 1.43 years of CPU time.

Although we used only two verifiers, we expect that using the
L* algorithm to learn assumptions with other verifiers will produce
similar results. This conjecture is consistent with the results of
Alur et al. [1] for NuSMV [9] in which they found some exam-
ples where assume-guarantee reasoning could verify a larger sys-
tem than monolithic verification and other examples where assume-
guarantee reasoning used more memory than monolithic verifica-
tion.

We looked only at one assumption generation technique, which
influenced the assumptions that we used in completing the assume-
guarantee proofs. Although other assumptions could be used in
our examples, automated support to help find assumptions is nec-
essary to make assume-guarantee reasoning useful in practice. Ad-
ditionally, we expect that other assumption generation techniques
based on two-way decompositions (e.g., [1,5,6,21,27]) would pro-
duce assumptions similar to the ones generated by the algorithm
we used. Since discharging the premises of the assume-guarantee
rules tended to be the most expensive part of the analysis with re-
spect to memory, we do not expect that using these other techniques
will produce better results. While techniques based on assume-
guarantee rules that allow for more than two-way decompositions
(e.g., [14, 24, 26]) might perform better with respect to memory,
there has not yet been enough empirical evaluation of these tech-
niques to draw any such conclusions.

Additionally, we looked only at a small number of systems that
were mostly based on a client-server architecture and where scaling
was achieved by replicating the number of clients. This allowed us
to easily increase the size of the system to look at the effects of
scaling on assume-guarantee reasoning. Looking at just one kind
of scaling, however, is a threat to the validity of our results. Alur et
al., however, looked at systems with different architectures and had
results that were similar to ours [1].

4. RELATED WORK
Our work uses the automated assume-guarantee approach of

Cobleigh et al., which uses the L* algorithm to learn assumptions
to complete assume-guarantee proofs [11]. Several other assume-
guarantee reasoning approaches based on the L* algorithm have
been proposed. The work of Barringer et al. extends the approach
of [11] to use symmetric assume-guarantee rules [5]. Chaki et al.
developed an algorithm based on the L* algorithm for learning tree
automata for checking simulation conformance [6]. Alur et al. [1]
adapted the L* algorithm for use with NuSMV. They found some
examples that could be verified using assume-guarantee reasoning
but could not be verified monolithically. Some of these examples
were scalable systems and, on these systems, they were able to in-
crease the size of the system that could be verified by 1 or 2. They
did not, however, determine if assume-guarantee reasoning could
scale farther than this, but, based on their data, it seems unlikely.

105

Alur et al. also reported on one example where assume-guarantee
reasoning used more time and memory than monolithic verifica-
tion. The work of Giannakopoulou et al. also computes assump-
tions, but requires exploring the entire state space of S1 [21]. Since
this may not be necessary when the L* algorithm is used, we be-
lieve the approach using the L* algorithm is more scalable.

Henzinger et al. have presented a framework for thread-modular
abstraction refinement, in which assumptions and guarantees are
both refined in an iterative fashion [24]. This framework applies to
programs that communicate through shared variables, and, unlike
our approach, is not guaranteed to terminate. The work of Flana-
gan and Qadeer also focuses on a shared-memory communication
model [17], but does not address notions of abstractions as is done
in [24]. Jeffords and Heitmeyer use an invariant generation tool to
generate invariants for components that can be used to complete an
assume-guarantee proof [27]. While their proof rules are sound and
complete, their invariant generation algorithm is not guaranteed to
produce invariants that will complete an assume-guarantee proof
even if such invariants exist.

Another compositional analysis approach that has been advo-
cated is Compositional Reachability Analysis (CRA) (e.g., [19,
37]). CRA incrementally computes and abstracts the behavior of
composite components using the architecture of the system as a
guide to the order in which to perform the composition. CRA can
be automated and in some case studies (e.g., [8]) has been shown to
reduce the cost of verification. Still, CRA is hampered by the state
explosion problem. Although constraints, both manually supplied
and automatically derived, can help reduce the cost of CRA [8],
determining how to apply CRA to effectively reduce the cost of
verification still remains a difficult problem.

5. CONCLUSIONS
In this work, we explored the question of whether or not assume-

guarantee reasoning provides an advantage over monolithic verifi-
cation. Unfortunately, the results of our experiments are not very
encouraging. The vast majority of decompositions explored more
states than monolithic verification. While this is not surprising, it
is worth noting. The process of examining all two-way decompo-
sitions is too costly to be useful in practice and we do not have a
good way to predict whether or not a given decomposition will save
memory over monolithic verification. Thus, even in those cases
when assume-guarantee reasoning can save memory over mono-
lithic verification, it is unclear how analysts will be able to find
those decompositions without some guidance on how to decom-
pose the system being analyzed.

If we restrict our attention to just the best decomposition at the
smallest size for each example, then in only about half of the cases
we examined did the assume-guarantee reasoning technique we
used explore fewer states than monolithic verification. For the
cases where there is a memory savings with FLAVERS, assume-
guarantee reasoning used, on average, 48.4% of the memory used
by monolithic verification. With LTSA, this percentage was 33.6%.
We were most interested in determining if this memory savings
would be substantial enough to allow us to verify properties on
larger systems than could be verified monolithically.

Since it is impractical to examine all two-way decompositions
for larger system sizes, we used a generalization approach. For
each property, we found the best decomposition for a small sys-
tem size and then generalized that best decomposition so it could
be used on larger system sizes. Using this approach, we found that
even when assume-guarantee reasoning could save memory over
monolithic verification, there were very few cases in which this
savings was sufficient to allow verification of a larger system. Fur-

thermore, for the cases where assume-guarantee reasoning could
verify a larger system than monolithic verification, it could not sig-
nificantly increase the size of the system that could be verified.

Of course, there are decompositions other than the generalized
ones that we could have tried on larger systems. In fact, we know
that there are some decompositions for some examples that can be
used to verify larger systems than what the generalized decompo-
sitions can be used to verify. We were unable to find such decom-
positions using our intuition and did not observe any pattern that
could be used to select a good decomposition for a given system.

Although these results are preliminary, they raise doubts about
the usefulness of assume-guarantee reasoning as an effective com-
positional analysis technique. In our experiments, we found that
assume-guarantee reasoning only rarely allowed us to verify larger
systems than could be verified monolithically. While automated
assume-guarantee reasoning techniques can make compositional
analysis easier to use, determining how to apply these techniques
most effectively is still difficult, can be expensive, and may not
significantly increase the sizes of the systems that can be verified.
Clearly additional experiments should be done using other auto-
mated learning techniques, other verification systems, and other
compositional approaches. The negative results presented here,
however, increase the need for strong empirical justification of new
compositional approaches.

6. REFERENCES
[1] R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional

verification by learning assumptions. In Etessami and
Rajamani [16], pages 548–562.

[2] D. Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87–106, Nov. 1987.

[3] G. S. Avrunin, J. C. Corbett, and M. B. Dwyer. Benchmarking
finite-state verifiers. Int. J. on Soft. Tools for Tech. Transfer,
2(4):317–320, 2000.

[4] G. S. Avrunin, J. C. Corbett, M. B. Dwyer, C. S. Păsăreanu, and S. F.
Siegel. Comparing finite-state verification techniques for concurrent
software. TR 99-69, U. of Massachusetts, Dept. of Comp. Sci., Nov.
1999.

[5] H. Barringer, D. Giannakopoulou, and C. S. Păsăreanu. Proof rules
for automated compositional verification through learning. In Proc.
of the Second Workshop on Spec. and Verification of
Component-Based Systems, pages 14–21, Sept. 2003.

[6] S. Chaki, E. M. Clarke, N. Sinha, and P. Thati. Automated
assume-guarantee reasoning for simulation conformance. In
Etessami and Rajamani [16], pages 534–547.

[7] R. Chatley, S. Eisenbach, and J. Magee. MagicBeans: a platform for
deploying plugin components. In W. Emmerich and A. L. Wolf,
editors, Proc. of the Second Int. Working Conf. on Component
Development, volume 3083 of LNCS, pages 97–112, May 2004.

[8] S.-C. Cheung and J. Kramer. Context constraints for compositional
reachability analysis. ACM Trans. on Soft. Eng. and Methodology,
5(4):334–377, Oct. 1996.

[9] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV 2: An
opensource tool for symbolic model checking. In E. Brinksma and
K. G. Larsen, editors, Proc. of the Fourteenth Int. Conf. on
Computer-Aided Verification, volume 2404 of LNCS, pages
359–364, July 2002.

[10] J. M. Cobleigh, G. S. Avrunin, and L. A. Clarke. Breaking up is hard
to do: An investigation of decomposition for assume-guarantee
reasoning. TR UM-CS-2004-023, U. of Massachusetts, Dept. of
Comp. Sci., Apr. 2004.

[11] J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu. Learning
assumptions for compositional verification. In H. Garavel and
J. Hatcliff, editors, Proc. of the Ninth Int. Conf. on Tools and Alg. for
the Construction and Analysis of Sys., volume 2619 of LNCS, pages
331–346, Apr. 2003.

106

[12] J. C. Corbett and G. S. Avrunin. Using integer programming to
verify general safety and liveness properties. Formal Methods in
System Design, 6(1):97–123, Jan. 1995.

[13] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu,
Robby, and H. Zheng. Bandera: Extracting finite-state models from
Java source code. In Proc. of the 22nd Int. Conf. on Soft. Eng., pages
439–448, June 2000.

[14] C. de la Riva and J. Tuya. Modular model checking of software
specifications with simultaneous environment generation. In
F. Wang, editor, Proc. of the Second Int. Conf. on Automated Tech.
for Verification and Analysis, volume 3299 of LNCS, pages 369–383,
Oct.-Nov. 2004.

[15] M. B. Dwyer, L. A. Clarke, J. M. Cobleigh, and G. Naumovich.
Flow analysis for verifying properties of concurrent software
systems. ACM Trans. on Soft. Eng. and Methodology,
13(4):359–430, Oct. 2004.

[16] K. Etessami and S. K. Rajamani, editors. Proc. of the Seventeenth
Int. Conf. on Computer-Aided Verification, volume 3576 of LNCS,
July 2005.

[17] C. Flanagan and S. Qadeer. Thread-modular model checking. In
T. Ball and S. K. Rajamani, editors, Proc. of the Tenth SPIN
Workshop, volume 2648 of LNCS, pages 213–224, May 2003.

[18] C. Fournet, T. Hoare, S. K. Rajamani, and J. Rehof. Stuck-free
conformance. In R. Alur and D. Peled, editors, Proc. of the Sixteenth
Int. Conf. on Computer-Aided Verification, volume 3114 of LNCS,
pages 242–254, July 2004.

[19] D. Giannakopoulou, J. Kramer, and S.-C. Cheung. Behaviour
analysis of distributed systems using the Tracta approach. Automated
Soft. Eng., 6(1):7–35, Jan. 1999.

[20] D. Giannakopoulou and C. S. Păsăreanu. Learning-based
assume-guarantee verification. In P. Godefroid, editor, Proc. of the
Twelfth SPIN Workshop, volume 3639 of LNCS, pages 282–287,
Aug. 2005.

[21] D. Giannakopoulou, C. S. Păsăreanu, and H. Barringer. Assumption
generation for software component verification. In Proc. of the
Seventeenth IEEE Int. Conf. on Automated Soft. Eng., pages 3–12,
Sept. 2002.

[22] A. Groce, D. Peled, and M. Yannakakis. Adaptive model checking.
In Proc. of the Eighth Int. Conf. on Tools and Alg. for the
Construction and Analysis of Sys., number 2280 in LNCS, pages
357–370. Springer-Verlag, Apr. 2002.

[23] D. Helmbold and D. Luckham. Debugging Ada tasking programs.
IEEE Software, 2(2):47–57, Mar. 1985.

[24] T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer.
Thread-modular abstraction refinement. In W. A. Hunt, Jr. and
F. Somenzi, editors, Proc. of the Fifteenth Int. Conf. on
Computer-Aided Verification, volume 2725 of LNCS, pages
262–274, July 2003.

[25] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. You assume, we
guarantee: Methodology and case studies. In A. J. Hu and M. Y.
Vardi, editors, Proc. of the Tenth Int. Conf. on Computer-Aided
Verification, volume 1427 of LNCS, pages 440–451, June–July 1998.

[26] P. Inverardi, A. L. Wolf, and D. Yankelevich. Static checking of
system behaviors using derived component assumptions. ACM
Trans. on Soft. Eng. and Methodology, 9(3):239–272, July 2000.

[27] R. D. Jeffords and C. L. Heitmeyer. A strategy for efficiently
verifying requirements. In Proc. of the Ninth European Soft. Eng.
Conf. held jointly with the Eleventh ACM SIGSOFT Symp. on the
Foundations of Soft. Eng., pages 28–37, Sept. 2003.

[28] C. B. Jones. Specification and design of (parallel) programs. In
R. Mason, editor, Information Processing 83: Proc. of the IFIP 9th
World Congress, pages 321–332. IFIP: North Holland, 1983.

[29] R. K. Keller, M. Cameron, R. N. Taylor, and D. B. Troup. User
interface development and software environments: The Chiron-1
system. In Proc. of the Thirteenth Int. Conf. on Soft. Eng., pages
208–218, May 1991.

[30] J. Magee and J. Kramer. Concurrency: State Models & Java
Programs. John Wiley & Sons, 1999.

[31] S. S. Patil. Limitations and capabilities of Dijktra’s semaphore
primitives for coordination among processes. Computational
Structures Group Memo 57, Project MAC, Feb. 1971.

[32] G. L. Peterson. Myths about the mutual exclusion problem.
Information Processing Letters, 12(3):115–116, June 1981.

[33] A. Pnueli. In transition from global to modular temporal reasoning
about programs. In K. R. Apt, editor, Logics and Models of
Concurrent Systems, volume 13 of NATO ASI, pages 123–144.
Springer-Verlag, Oct. 1984.

[34] R. L. Rivest and R. E. Schapire. Inference of finite automata using
homing sequences. Information and Computation, 103(2):299–347,
Apr. 1993.

[35] S. F. Siegel and G. S. Avrunin. Improving the precision of INCA by
eliminating solutions with spurious cycles. IEEE Trans. on Soft.
Eng., 28(2):115–128, Feb. 2002.

[36] R. N. Taylor, F. C. Belz, L. A. Clarke, L. J. Osterweil, R. W. Selby,
J. C. Wileden, A. L. Wolf, and M. Young. Foundations for the
Arcadia environment architecture. In Proc. of the ACM
SIGSOFT/SIGPLAN Soft. Eng. Symp. on Practical Soft.
Development Environments, pages 1–13, Nov. 1988.

[37] W. J. Yeh and M. Young. Compositional reachability analysis using
process algebra. In Proc. of the 1991 Symp. on Testing, Analysis, and
Verification, pages 49–59, Oct. 1991.

APPENDIX

A. GENERATING DECOMPOSITIONS
FOR LARGER SYSTEM SIZES

The process we used for generating decompositions for larger
sizes given the best decomposition for size 2 is as follows:
• For each non-repeatable task, put the task into S1 if the task

was put into S1 in the best decomposition at size 2. Otherwise,
put the task into S2.

• For each repeatable task:
◦ If the best decomposition for size 2 had both repeatable

tasks in S1, put the repeatable task in S1. Otherwise, put
the repeatable task in S2.

◦ If the best decomposition for size 2 had one of the repeat-
able tasks in S1 and the other in S2, look at the property.
Often, the property treated one of the repeatable tasks in a
different way than all the other repeatable tasks.
+ If one of the repeatable tasks is treated in a different way

in the property, then
– If this repeatable task is the one that is treated differ-

ently, then put this repeatable task into S1 if its corre-
sponding task in the best decomposition at size 2 was
put into S1. Otherwise, put this task into S2.

– If this repeatable task is not the one that is treated dif-
ferently, then put this repeatable task into S1 if the re-
peatable task that is treated differently was in S2 on the
best decomposition at size 2. Otherwise, put this task
into S1.

+ If one of the repeatable tasks is not treated in a different
way, then, in the properties in our case study, all of the
repeatable tasks are treated the same way.
– If this repeatable task is the repeatable task with the

smallest ID, put this repeatable task into S1 if the re-
peatable task with the smallest ID was put into S1 in
the best decomposition at size 2. Otherwise, put this
repeatable task into S2.

– If this repeatable task is not the repeatable task with
the smallest ID, put this repeatable task into S2 if the
repeatable task with the smallest ID was put into S1 in
the best decomposition at size 2. Otherwise, put this
repeatable task into S1.

107

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

