
M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 347 – 359, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Process Programming to Support Medical Safety:
A Case Study on Blood Transfusion

Lori A. Clarke1, Yao Chen1, George S. Avrunin1, Bin Chen1, Rachel Cobleigh1,
Kim Frederick1, Elizabeth A. Henneman2, and Leon J. Osterweil1

1 Department of Computer Science, University of Massachusetts
Amherst, MA 01003, USA

{clarke, yaoc, avrunin, chenbin, rcobleig,
kfrederi, ljo}@cs.umass.edu

2 School of Nursing, University of Massachusetts
Amherst, MA 01003, USA

henneman@nursing.umass.edu

Abstract. Medical errors are now recognized as a major cause of untimely
deaths or other adverse medical outcomes. To reduce the number of medical er-
rors, the Medical Safety Project at the University of Massachusetts is exploring
using a process programming language to define medical processes, a require-
ments elicitation framework for specifying important medical properties, and
finite-state verification tools to evaluate whether the process definitions adhere
to these properties. In this paper, we describe our experiences to date. Although
our findings are preliminary, we have found that defining and evaluating proc-
esses helps to detect weaknesses in these processes and leads to improved
medical processes definitions.

1 Introduction

It has been estimated that there are approximately 98,000 deaths per year in the
United States resulting from medical errors [7]. The Institute of Medicine (IOM) re-
ported that many medical errors are caused by faulty processes and conditions that
lead people to make mistakes or fail to prevent them [6]. Although the IOM advocates
using more information technology in order to help improve medical care, it does not
indicate what kinds of technology should be employed.

In the University of Massachusetts Medical Safety Project, software engineering
researchers from the Department of Computer Science have been working with re-
searchers and medical practitioners from the University of Massachusetts School of
Nursing and from Baystate Medical Center to evaluate how selected technologies
might help reduce medical errors. Although it is not possible to totally eliminate mis-
takes, it is our hypothesis that medical processes can be defined in such a way that
mistakes are less likely to occur.

Medical processes tend to be complex, concurrent, and exception-prone. They tend
to involve multiple practitioners with very different perspectives about the on-going
process. Thus, we are interested in a process language that can capture this complex-
ity yet still be understandable to a (trained) medical professional. Moreover, the proc-

348 L.A. Clarke et al.

ess language should be precise enough to support static analysis techniques and to
eventually drive simulations and executions.

To date we have experimented with using the Little-JIL process programming lan-
guage [11], the Propel property elucidation system [10], and several finite-state verifi-
cation systems, specifically LTSA [1, 9], SPIN [5], and FLAVERS [4]. In this paper
we report on our experiences using these technologies to define and evaluate a in-
patient blood transfusion process. In-patient blood transfusion plays a vital process in
modern health systems. Although in-patient blood transfusion errors are rare, when
they do occur, they can result in death and are among the most serious types of medi-
cal errors. Thus, we use in-patient blood transfusion as an example to demonstrate
how our approach is effective at improving the safety of medical processes.

The rest of this paper is organized as follows. Section 2 presents a brief overview
of the Little-JIL process programming language. Section 3 presents part of the in-
patient blood transfusion process as specified using Little-JIL. Section 4 describes
how properties are specified using Propel and the results of our analysis using finite
state verification. The final section highlights our results and discusses future work.

2 Little-JIL Features

Little-JIL is a visual language for coordinating tasks that are to be executed by either
computation or human agents. A process is defined in Little-JIL using hierarchically
decomposed steps, where a step represents some specified task to be done by the as-
signed agent. Steps may also indicate any prerequisites, postrequisites, and exception
handling behavior that should be associated with the step. Non-leaf steps, in addition
to the above, also indicate the order for processing all substeps. The language has pre-
cise enough semantics that Little-JIL programs can be executed or can serve as the
subject of careful static analysis.

To help the reader understand the blood transfusion process example, we first give
an overview of the semantics and notation of Little-JIL. For a detailed description of
Little- JIL, see the Little-JIL Language Report [11].

Steps. Steps are the basic elements of Little-JIL programs. As shown in Figure 1,
each step has a name and a set of badges to represent the control flow, exceptions
handled, prerequisites, and postrequisites. Each step need only be defined once, but
can be referenced many times. References are represented by a step with the name of
the referenced step, but with no badges. Although not shown in our examples here,
steps also can indicate the resources required, including the agent responsible for step
execution.

Step Execution. At run-time, a step can be in one of five states: posted, started, com-
pleted, terminated and retracted as shown in Figure 2. When a step is eligible to be
started, it is moved into the posted state. It is started when the agent assigned to the
step obtains the resources that it requires and begins to do the work. If the step is fin-
ished successfully, it is moved into the completed state and resources are released. If
the agent fails to complete the work, the step is moved to the terminated state. A step
is retracted if it is withdrawn from an agenda after having been posted but without be-
ing started by the agent. In the analysis phase, we often want to refer to a specific

Process Programming to Support Medical Safety: A Case Study on Blood Transfusion 349

Fig. 1. Little-JIL step icon

Fig. 2. States associated with Little-JIL step execution

state of a step. To do this, we append the state name to the name of the step. Thus,
“Transfuse_ STARTED” refers to the step “Transfuse” when it is in the started state.

Step Sequencing. Every non-leaf step has a sequencing badge, which defines the or-
der in which its substeps execute. A sequential step indicates that its substeps are to
be executed from left to right and is only successfully completed after all of its sub-
steps has successfully completed. A parallel step indicates that its substeps are to be
executed asynchronously and that it cannot be successfully completed until all of its
substeps successfully complete. A choice step allows the agent to dynamically select a
substep to execute among its substeps. A choice step is considered completed only af-
ter one of its substeps have completed. A try step indicates that its substeps are exe-
cuted from left to right until one of them has been completed. A try step is success-
fully completed only if one of its substeps successfully complete.

Exception Handling. A step in Little-JIL can throw exceptions when aspects of the
step fail. For example, if a prerequisite is not satisfied, it may indicate that an excep-
tion is to be thrown. A thrown exception is handled by a matching exception handler
associated with the parent step of the step that throws the exception or, if no such
handler is found, the exception is rethrown by the parent step.

An exception handler has an associated control-flow badge that indicates how the
step catching the exception executes after the handler finishes. There are four kinds of
control badges:

350 L.A. Clarke et al.

• continue: the step catching the exception should continue as if the substep that
throws the exception completed successfully;

• complete: the step catching the exception should be completed;
• rethrow: the step catching the exception should be terminated and the exception

rethrown to the parent of this step;
• restart: the step with the exception handler should be restarted.

Requisites. Each step may have a prerequisite and a postrequisite. Requisites provide
a way to check entry and exit conditions associated with a step. A prerequisite has to
be completed before its associated step is initiated. A postrequisite has to be com-
pleted before its associated step is completed. When a requisite cannot successfully
complete, the associated step is terminated and an exception is thrown.

Deadlines. Deadlines determine the time by which a step must be completed.
Deadlines are used to define the maximum time allowed for a certain task. If a step
continues to execute past its stated deadline, an exception is thrown.

Resources and Agents. The interface to a step specifies the resources used by the
step, where agent is a special type of resource. For example, in a medical process, the
agent might be a nurse, doctor, patient, or computer system. Each step must have an
agent; if no agent is declared, the agent is inherited from the parent step.

Diagrams. To facilitating viewing, Little-JIL programs are decomposed into
diagrams, where a diagram usually fits into a single window. Diagrams are usually
used to decompose a Little-JIL program into conceptually meaningful subprocesses.

3 In-Patient Blood Transfusion Example

We have used Little-JIL to model a real-world in-patient blood transfusion process.
This process model consists of 23 Little-JIL diagrams, comprised of about 112 steps.
In this section, we present a few of the Little-JIL in-patient blood transfusion dia-
grams to give the reader an indication of what the model looks like.

An in-patient blood transfusion process cannot start unless there is a blood transfu-
sion order from a physician. One order may require that several units of blood product
be transfused to the patient. Once the required units have been transfused, the process
completes. Figure 3 shows the top diagram of this process.1

In the root step, In-Patient Blood Transfusion Process has a prerequisite step Phy-
sician Prescribes Blood Transfusion. There is a cardinality “+” adjacent to the edge
between the In-Patient Blood Transfusion Process step and Carry Out Physician Order
for Transfusion step, which means that Carry Out Physician Order for Transfusion
will be done at least once. Since In-Patient Blood Transfusion Process is a sequential
step, instances of Carry Out Physician Order for Transfusion must be executed
sequentially. Before Carry Out Physician Order for Transfusion starts, the agent

1 In the actual In-Patient Blood Transfusion Process diagram (a modified version of which is

shown in Fig. 3), the Single-Unit Transfusion Process step is replaced by an intermediate step
called "Perform Transfusion". The Single-Unit Transfusion Process (Fig. 4) is really a sub-
step of the Perform Transfusion step. This missing intermediate step is not shown because of
space considerations.

Process Programming to Support Medical Safety: A Case Study on Blood Transfusion 351

(agent assignments are not shown) must check the form signed by the patient, indicat-
ing consent for the blood transfusion. If the consent form is not signed, a NoPatient-
Consent exception will be thrown and then handled by the No Patient Consent excep-
tion handler associated with the In-Patient Blood Transfusion Process step.

Fig. 3. In-Patient Blood Transfusion Process

Since this handler is a continue exception handler, as indicated by the right arrow,
after completion of the handler, the process continues the sequential execution of the
In-Patient Blood Transfusion Process step, meaning that the “next” instance of the
Carry Out Physician Order for Transfusion step may start. If the consent form is
signed, the agent can start to execute Carry Out Physician Order for Transfusion. The
Carry Out Physician Order for Transfusion step has five substeps: Check for Exis-
tence of Type and Screen, Prepare Documentation for Blood Pick-up, Pick up Blood
from Blood Bank, Single-Unit Transfusion Process, and Follow Through Check. The
right arrow sequencing badge specifies that these substeps should be executed one by
one, from left to right. Each one of these substeps is a reference to a step defined in
another diagram, so none of these steps are elaborated in this diagram. There is a car-
dinality “+” adjacent to the edge between the Carry Out Physician Order for Transfu-
sion step and Single-Unit Transfusion Process step, which means that Single-Unit
Transfusion Process will be done once per unit of blood product.

Figure 4 shows the diagram that elaborates the Single-Unit Transfusion Process
step. According to clinical research, the most common adverse outcomes during blood
transfusions are caused by a failure to detect that an incorrect unit had been issued at
the bedside [7]. To prevent such common errors, bedside checks are recommended.
Thus, in our process definition, there are two bedside checks, Verify Patient Identifi-
cation and Product Verification. Verify Patient Identification requires that the identity
of the patient be established.

The Product Verification step definition, which is shown in Figure 5, requires a vis-
ual comparison of the information on the transfusion tag with the blood product bag. All
identifying information on the blood product, the transfusion tag, and the patient identi-
fication armband must be verified. Thus there are four substeps to be executed: Verify

S eq u en c in g B a d g es :

S eq u en tia l
P a ra lle l
C h o ice
T ry

E x cep tio n B a d g es:
R eth ro w
C o n tin u e
C o m p lete
R esta rt

S eq u en c in g B a d g es :

S eq u en tia l
P a ra lle l
C h o ice
T ry

S eq u en c in g B a d g es :

S eq u en tia l
P a ra lle l
C h o ice
T ry

E x cep tio n B a d g es:
R eth ro w
C o n tin u e
C o m p lete
R esta rt

E x cep tio n B a d g es:
R eth ro w
C o n tin u e
C o m p lete
R esta rt

352 L.A. Clarke et al.

Product Tag Matched to Product Label, Check Product Expiration Date & Time, Verify
Product Tag Matched to Patient Armband, and Verify Product Type Matched to Patient
Record. Since these verification steps are independent of each other, they can be done in
any order, as indicated by the parallel sequencing badge. If any of these substeps finds a
discrepancy, a FailedProductVerification exception is thrown. This exception is re-
thrown to the handler HandleFailed Product Verification associated with the parent of
Product Verification, step Bedside Checks. This exception handler, although not shown
here, would handle this discrepancy according to hospital policy.

Fig. 4. Single-Unit Transfusion Process

Fig. 5. Product Verification Process

4 Analyzing Processes

Although we have only shown a small part of the in-patient blood transfusion process,
it is easy to see that it quickly becomes quite complex. The Little-JIL definition
tersely describes complex control flow. This is both a strength and a weakness. It is a
strength because medical professionals can understand the process definitions and
help to describe them and develop improvements to them. Moreover, the process
definition can easily be decomposed into subprocesses (e.g., diagrams) so that one’s
focus can be directed to relatively small, coherent aspects of the process. This terse-

Process Programming to Support Medical Safety: A Case Study on Blood Transfusion 353

ness is a weakness, however, because it is easy for humans to overlook or misunder-
stand some of the complex flows through the system or among subprocesses. This is
particularly true when exceptions or parallel execution can occur [2].

One way to help validate a process is to use analysis techniques to verify that im-
portant policies are not violated by the process definition. These policies can be repre-
sented as formal properties stated in terms of the states of the steps. We then apply fi-
nite-state verification techniques to determine if these properties will always hold on
all possible traces through the process. For example, for the transfusion process, pa-
tient identification on the patient’s armband must match the patient information on the
tag affixed to the blood product before that unit of blood product is transfused. If this
property does not hold for the process definition, the finite-state verification tool will
provide a counterexample trace through the system showing where at least one such
violation occurs. We can use this trace to identify and correct the error in the process
and then try to reverify the revised process definition.

In this section we first describe some of the properties that need to be verified for
the blood transfusion process and how we represented those properties and then de-
scribe what techniques we used to verify these properties.

4.1 Representing Properties

It is a surprisingly difficult task to determine the properties that should be verified. In
the medical field, policies often exist that are a starting point for these properties. Be-
low are some example policies often associated with the in-patient blood transfusion
process:

• The patient’s informed consent must be confirmed prior to carrying out a physi-

cian’s order for a blood transfusion.
• The patient’s identification must be verified immediately before obtaining each

blood specimen.
• The patient’s identification must be verified prior to administering each unit of

blood product.
• Verifying that the patient’s identification on the armband matches the patient’s

information on the tag affixed to the unit of blood product must precede adminis-
tering that unit of blood product.

• The information for the unit of blood product must be verified by two healthcare
professionals prior to administering the unit of blood product.

• The expiration date and time for the unit of blood product must be checked be-
fore starting to administer that unit of blood product.

• The patient’s status must be assessed immediately before administering each unit
of blood product.

• The patient’s status must be assessed immediately after administering each unit
of blood product.

• If a transfusion reaction is suspected, the transfusion must be stopped immediately.
• If a transfusion reaction is suspected, the physician and the blood bank must be

notified.
• If a transfusion reaction is suspected, the the patient’s information and the infor-

mation for the unit of blood product must both be re-verified.

354 L.A. Clarke et al.

Such policies are often vague, however, and need to be translated into a precise in-
stantiation based on the process that is actually being applied. For example, “confirm
patient consent” must be represented in terms of the consent form that is actually used
at the hospital where the process is being applied. Moreover, who is to do this confir-
mation and how is this confirmation documented?

Beyond that, finite-state verification requires a rigorous representation of each prop-
erty. It is rare for English descriptions to describe accurately and unambiguously all the
situations that need to be considered. The Propel system [10] is designed to help users
consider all the situations associated with formulating a property. Propel provides a ques-
tion tree that guides the user through the options that should be considered. Figure 6
shows an example of the question tree. After making some initial selections in this ques-
tion tree, the user can continue to select options from the question tree or can choose in-
stead to select options from a template of English phrases, called disciplined natural lan-
guage (DNL), or from a finite-state automaton (FSA) template. Figure 7 shows the
Propel GUI when formulating the DNL and FSA representation of the resulting property.

Fig. 6. Propel Question Tree

Process Programming to Support Medical Safety: A Case Study on Blood Transfusion 355

Fig. 7. Propel DNL and FSA representations

Thus, after using Propel, the first policy:

“The patient’s informed consent must be confirmed prior to carrying out a physi-
cian’s order for a blood transfusion.”

would be represented by the following disciplined natural language:

Carry_Out_Physician_Order_for_Transfusion_STARTED cannot occur
unless Confirm_Patient_Consent_COMPLETED has already occurred.

Confirm_Patient_Consent_COMPLETED is not required to occur, how-
ever, and if it does not occur,
Carry_Out_Physician_Order_for_Transfusion_STARTED can never occur. Even
if Confirm_Patient_Consent_COMPLETED does occur,
Carry_Out_Physician_Order_for_Transfusion_STARTED is not required to oc-
cur.

Before the first Confirm_Patient_Consent_COMPLETED occurs (or the
scope interval ends), the events in the alphabet of this property, other than
Carry_Out_Physician_Order_for_Transfusion_STARTED, can occur any num-
ber of times.

356 L.A. Clarke et al.

After Confirm_Patient_Consent_COMPLETED occurs and before the first
subsequent Carry_Out_Physician_Order_for_Transfusion_STARTED occurs (or
the scope interval ends), the events in the alphabet of this property, including
Confirm_Patient_Consent_COMPLETED but not
Carry_Out_Physician_Order_for_Transfusion_STARTED, can occur any num-
ber of times.

After the first subsequent
Carry_Out_Physician_Order_for_Transfusion_STARTED occurs:

• the events in the alphabet of this property, other than Con-
firm_Patient_Consent_COMPLETED or
Carry_Out_Physician_Order_for_Transfusion_STARTED, could occur
any number of times;

• Carry_Out_Physician_Order_for_Transfusion_STARTED cannot occur
again until after another Confirm_Patient_Consent_COMPLETED oc-
curs;

• Confirm_Patient_Consent_COMPLETED can occur and if it does, then
the situation should be regarded as exactly the same as when the first Con-
firm_Patient_Consent_COMPLETED occurred, meaning that all restric-
tions described on the events would again apply.

The reader might be surprised at how long and detailed the resulting disciplined
natural language is for this one relatively simple property. A careful examination of
Figures 6 and 7, however, shows the number of issues that must be addressed in pre-
cisely specifying such a property. The resulting FSA would be the basis for verifying
the process definition. Some finite-state verification systems, such as FLAVERS, ac-
cept a property represented as a FSA. For others, the FSA would need to be translated
into their property representation. For example, for SPIN, the FSA must first be trans-
lated into linear time temporal logic.

4.2 Process Verification

There are several finite-state verification tools that could be used to determine if the
process definition is consistent with a property. To date, we have investigated using
three such tools: SPIN, FLAVERS, and LTSA. To facilitate using different tools, we
first translate the Little-JIL process into an intermediate representation, called the
Bandera Intermediate Representation (BIR). BIR was specifically designed to support
finite-state verification and thus was a natural choice [3]. Once we have the BIR rep-
resentation, we translate BIR to the internal form required for the particular verifier.
Figure 8 depicts this two-state translation process.

A common problem with finite-state verification is that the size of the state space
that must be explored grows too large. Direct translation of a process usually results
in a model that is too large to be verified. Therefore, we use several optimizations and
abstractions to reduce the size of the model generated. Some of these transformations
have been previously reported [2, 8] and some are currently being investigated. All
the transformations that are used must be shown to be conservative for the property
and process definition. This means that a process will not be reported to be consistent
with a property unless that is indeed the case for the unoptimized version as well.

Process Programming to Support Medical Safety: A Case Study on Blood Transfusion 357

False positives, violations that do not correspond to any real trace through the system,
can be a problem but are less likely to occur for process descriptions than for detailed
designs or source code.

All the verifiers that we have used have been able to find (the same) errors in the
process and to prove interesting properties about the in-patient blood transfusion
process. All of them have some limitations and their translation and optimization
process is being improved to address these concerns. FLAVERS is currently best able
to handle the larger problems, but requires more insight about the constraints that
must be introduced to eliminate false positives.

Bir File

Property

Little-JIL Process

FSV
Tools

Translator

Verification
ResultsBir File

Property

Little-JIL Process

FSV
Tools

Translator

Verification
Results

Fig. 8. The Little-JIL translation to BIR and then the BIR translation to the expected input for
the selected Finite-State Verification (FSV) tool

5 Conclusions and Future Work

We have successfully used Little-JIL to specify a real-world, non-trivial in-patient
blood transfusion process and verified that the process satisfies some important safety
properties. We have also learned a considerable amount about the strengths and
weaknesses in the technology that we are using.

The Little-JIL process language has been extremely useful in representing the in-
patient blood transfusion process. Surprisingly, the medical professionals have be-
come very adept at understanding the Little-JIL processes. It has turned out to be an
excellent medium for describing the in-patient blood transfusion process and discuss-
ing alternative processes. The medical professionals have shied away from actually
creating the process definitions. Instead they rely on the computer scientists to create
the process definitions, although they are quick to point out problems or suggest im-
provement. As noted, there is also a tension between the expressiveness of the process
language and the analyzability of the resulting processes. Humans like flexible proc-
esses, but such processes are much more difficult to analyze since they result in more
choices and thus more cases to consider.

As might be expected, simply rigorously defining a process uncovers problems
with that process. Often there were disagreements among the medical professionals
about the process definitions. Sometimes this could be attributed to the different roles

358 L.A. Clarke et al.

that medical professionals have (e.g., the nurse’s view versus the doctor’s view), but
sometimes these disagreements revealed a real problem in the underlying process and
an opportunity for a medical error to occur. In the future we are interested in explor-
ing how best to decompose (and then compose) the process definitions according to
the different roles.

Property specification also helped improve the process definitions. In considering a
property, it often became clear that the process definition omitted important details.
The medical policies that we had available before trying to define the process were
useful, but the extra detail required to formulate a property resulted in a deeper under-
standing of the problem that eventually was reflected in the process definition. For
example, thinking about how patient consent is required before an in-patient blood
transfusion revealed that we needed to consider how long a delay could exist between
the initial consent and the transfusion, how many transfusions could occur with one
consent, and what would happen if the patient rescinds consent.

The verification of the process definition did indeed reveal errors in the process.
Some were problems that appeared obvious once they were revealed. The more inter-
esting errors involved exceptions and concurrent behavior that lead to unexpected
event orderings. We found the verification useful in helping us debug the process
definitions (and the translators). The medical process definitions are ripe for detecting
event-ordering problems. Medical professionals are often involved in multiple parallel
activities and dealing with exceptional conditions upon exceptional conditions. It is a
problem domain that appears well matched with the technology we are applying.

There are many areas of future investigation. This case study has revealed limita-
tions in the process language, the property specification approach, and the verification
tools. For example, all three technologies need to be extended to have better support
for timing constraints. The process language needs better support for visualizing the
process. The property specification framework is still awkward to use, and the verifi-
cation tools need much improved, process-specific optimization techniques. The Lit-
tle-JIL to BIR translator currently does not support recursion. To handle recursion, we
simply unroll the recursive step up to a given bound, but this might make the verifica-
tion unsound.

The medical professionals are very interested in evaluating different kinds of medi-
cal processes, not just in-patient blood transfusion processes. In addition to improving
safety, they are interested in improving efficiency with respect to turnaround and
throughput. They would like to see how efficiency is affected by different symptom
mixes (e.g. ankle sprains versus cardiac pain), different resources, different resource
allocation strategies, and different processes. Such evaluations will depend on doing
extensive simulations using real event histories. Finally, in the long term it would be
desirable to actually execute carefully evaluated processes in the clinical setting.
These processes could help medical professionals track and prioritize their numerous
tasks.

Acknowledgments

We would like to thank Stephen Siegel, Jamieson Cobleigh, Sandy Wise, Ethan Katz-
Bassett, and Barbara Staudt Lerner for their many helpful suggestions with this work.

Process Programming to Support Medical Safety: A Case Study on Blood Transfusion 359

This material is based upon work supported by the National Science Foundation
under Award No. CCF-0427071, the U. S. Army Research Office under Award No.
DAAD19-01-1-0564, and the U. S. Department of Defense/Army Research Office
under Award No. DAAD19-03-1-0133.

Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation, the U. S. Army Research Office, or the U. S. Depart-
ment of Defense/Army Research Office.

References

1. Cheung, S.C., Giannakopoulou, D., Kramer, J.: Verification of liveness properties using
compositional reachability analysis. In: Sixth European Software Engineering Conference
and Fifth ACM SIGSOFT Symposium on the Foundations of Software Engineering, Zu-
rich, Switzerland (1997) 227-243

2. Cobleigh, J.M., Clarke, L.A., Osterweil, L.J.: Verifying properties of process definitions.
In: ACM SIGSOFT International Symposium on Software Testing and Analysis, Portland,
OR (2000) 96-101

3. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Robby: Bandera: A source-level interface for
model checking Java programs. In: 22nd International Conference on Software Engineer-
ing, Limerick, Ireland (2000) 762-765

4. Dwyer, M.B., Clarke, L.A., Cobleigh, J.M., Naumovich, G.: Flow analysis for verifying
properties of concurrent software systems. ACM Transactions on Software Engineering
and Methodology 14(3) (2004) 359-430

5. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engineering
23(5) (1997) 279-294

6. Institute of Medicine: Crossing the Quality Chasm: A New Health System for the 21st
Century. The National Academies Press, Washington DC (2001) 23-38

7. Kohn, L.T., Corrigan, J.M., Donaldson, M.S., (eds.): To Err is Human: Building a Safer
Health System. National Academy Press, Washington DC (1999)

8. Lerner, B.S.: Verifying process models built using parameterized state machines. In: ACM
SIGSOFT International Symposium on Software Testing and Analysis, Boston, MA
(2004) 274-284

9. Magee, J., Kramer, J.: Concurrency: State Models & Java Programs. John Wiley & Sons
(1999)

10. Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: PROPEL: An approach support-
ing property elucidation. In: 24th International Conference on Software Engineering, Or-
lando, FL (2002) 11-21

11. Wise, A.: Little-JIL 1.0 language report. Technical report (UM-CS-1998-024), Department
of Computer Science, University of Massachusetts, Amherst, MA (1998)

	Introduction
	Little-JIL Features
	In-Patient Blood Transfusion Example
	Analyzing Processes
	Representing Properties
	Process Verification

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

