
Formally Defining Medical Processes
S. Christov1, B. Chen1, G. S. Avrunin1, L. A. Clarke1, L. J. Osterweil1, D. Brown2, L. Cassells2,
W. Mertens2

1Department of Computer Science, University of Massachusetts at Amherst, Amherst, MA, USA
2D’Amour Center for Cancer Care, Springfield, MA, USA

Summary
Objectives: To demonstrate a technology-based
approach to continuously improving the safety of
medical processes.
Methods: The paper describes the Little-JIL process
definition language, originally developed to support
software engineering, and shows how it can be used to
model medical processes. The paper describes a Little-
JIL model of a chemotherapy process and demonstrates
how this model, and some process analysis technol-
ogies that are also briefly described, can be used to
identify process defects that pose safety risks.
Results: Rigorously modeling medical processes with
Little-JIL and applying automated analysis techniques
to those models helped identify process defects and
vulnerabilities and led to improved processes that were
reanalyzed to show that the original defects were no
longer present.
Conclusions: Creating detailed and precisely defined
models of medical processes that are then used as the
basis for rigorous analyses can lead to improvements in
the safety of these processes.

Keywords
Medical safety, continuous process improvement,
process modeling

Methods Inf Med 2008; 47: 392–398

doi:10.3414/ME9120

1. Introduction: Technologies
for Medical Process
Improvement

Continuous process improvement has been
employed to improve quality in such diverse
areas as manufacturing, software devel-
opment, and business administration. The
work described in this paper outlines how
this approach might be applied to address
quality improvement in the medical domain.
The need for quality improvement in medi-
cal care has become increasingly clear in re-
cent years. Much of the attention to this
problem was catalyzed by the IOM report,
“To Err Is Human” [1], which estimated that
in the United States approximately 98,000
deaths per year were attributable to avoid-
able errors. That report and a subsequent re-
lated IOM report [2] suggest that computer
technologies should be employed to address
the underlying problems and reduce the
incidence of errors that cause needless cost
and suffering. There are many candidate
technologies for doing this. We suggest that
technologies originally developed to sup-
port continuous process improvement for
software systems seem to be particularly
applicable.

Continuous process improvement was
espoused by W. Edwards Deming [3], whose
work was applied successfully by the Japa-
nese auto manufacturing industry. That
early success led to the adoption of the prin-
ciples of continuous process improvement
in wider domains and more countries. The
core of the idea is the so-called PDCA
(Plan-Do-Check-Act) paradigm, often re-
ferred to as the “Deming Cycle” (although
Deming himself refers to it as the “Shewhart
Cycle”, in honor of Walter Shewhart, who
had articulated the ideas previously [4]).

Fundamentally, this cycle posits that there is
a process that is the central focus of im-
provement. In the Plan phase of the PDCA
cycle, improvements to the process are for-
mulated and considered. In the Do phase,
the improvements are installed. In the
Check phase, the proposed improvements
are analyzed and evaluated to see that they
are indeed likely to effect improvements. In
the Act phase, the modified process is ac-
tually deployed. The net effect of this full
cycle should be demonstrable improvement.
The resulting outcome of the cycle is then
the subject of the Plan phase of the next
cycle.

Our efforts to apply the PDCA cycle to
improving quality of medical care have fo-
cused on defining medical processes and
then applying analyses to them. In particu-
lar, we used a process definition language,
Little-JIL, to define medical processes
clearly, precisely, and in detail. In this paper,
we concentrate mainly on this aspect of our
approach – the creation of a precise process
definition. We have also used a property
specification system, PROPEL [5], to de-
fine event sequence properties and then
have demonstrated that analyzers, such as
FLAVERS [6] and SPIN [7], can be used to
determine whether the Little-JIL-defined
processes conform to the PROPEL-spec-
ified properties. We have undertaken sev-
eral case studies to evaluate this approach
and have found that the technologies men-
tioned above are indeed useful in supporting
medical process improvement of the sort ad-
vocated by Shewhart and Deming.

In the next section, we present the Little-
JIL process definition language and provide
examples of how it is used to define a
chemotherapy process. Section 3 describes
our experiences, and Section 4 overviews
related work. Section 5 suggests some fu-
ture research directions.

392

© 2008 Schattauer GmbH

Methods Inf Med 5/2008



2. An Example:
Chemotherapy Preparation
and Administration
Chemotherapy medications are typically
highly toxic, and thus it is of overriding im-
portance that the right patient receives the
right medications in the right dosages at the
right times. To assure this, elaborate pro-
cesses are carried out that integrate the ef-
forts of such diverse medical personnel as
doctors, nurses, pharmacists, and clerical
workers. Chemotherapy processes aim to
speed the flow of treatment, while assuring
that errors do not occur. Preliminary exami-
nation of these processes suggested that
they are large and complex, and their grow-
ing complexity makes it increasingly dif-
ficult to be sure they provide sufficient pro-
tection against the commission of errors.

We began by defining some example
chemotherapy processes. Earlier work in
defining processes in such other domains as
software development, scientific data pro-
cessing [8], and e-government [9] suggested
that a powerful process definition language
would be needed. We chose to use the Little-
JIL process definition language because our
previous experience suggested that seman-
tic features of this language were likely to be
effective in defining processes in the
chemotherapy domain.

2.1 Principal Features of Little-JIL
Little-JIL [10, 11] was originally developed
to define software development processes.
A Little-JIL process definition has three-
components, an artifact collection, a re-
source repository, and a coordination speci-
fication. The artifact collection contains the
items that are the products of the process.
The resource repository specifies the agents
and capabilities that support performing the
activities. The coordination specification
ties these together, specifying which agents
and supplementary capabilities perform
which activities on which artifacts at which
time(s).

A Little-JIL coordination specification
has a visual representation, but is precisely
defined (using finite-state automata), which

makes it amenable to definitive analyses.
Among the features of Little-JIL that distin-
guish it from most process languages are its
1) use of abstraction to support scalability
and clarity, 2) use of scoping to restrict data
and control flow, 3) facilities for specifying
concurrency, 4) capabilities for dealing with
exceptional conditions, 5) capabilities for
specifying the utilization of resources, and
6) clarity in specifying iteration.

A Little-JIL coordination specification
consists of hierarchically decomposed
steps, where a step represents a task to be
done by an assigned agent. Each black bar in
Figure 1 is an iconic representation of a step
with some of its features. Each step has a
name and a set of badges to represent con-
trol flow among its substeps, its interface
(specifying its input/output artifacts and the
resources it requires), the exceptions it
handles, etc.A step with no substeps is a leaf
step. It represents an activity performed by
an agent, without any process guidance.
Below we present some Little-JIL features.

2.1.1 Resources and Agents

A Little-JIL step interface (represented by a
filled circle above the step name) specifies
the types of resources required to support
execution of the step. Some examples of re-
sources are infusion suites and medical rec-
ords. Each step has one special resource,
called its agent, which has responsibility for
performing the step. Little-JIL agents may
be humans, groups of humans, or automated
devices.

2.1.2 Substep Decomposition

Little-JIL steps may be decomposed into
two kinds of substeps, ordinary substeps
and exception handlers. Ordinary substeps
define how each step is executed and are
connected to their parent by edges annotated
by specifications of the artifacts that flow
between parent and substep. Exception
handlers define how exceptions thrown by
the step’s descendants are handled.

2.1.3 Step Sequencing

A non-leaf step has a sequencing badge (an
icon on the left in the step bar; e.g., the equal

sign on the step chemotherapy process in
Fig. 1) that defines the order of substep
execution. Little-JIL has four step kinds.
The example depicted in Figure 1 uses two,
the sequential step (right arrow), indicating
that substeps execute from left to right and
the parallel step (equal sign), indicating that
substeps execute in any (possibly inter-
leaved) order, although the order may be
constrained by such factors as the lack of
needed resources.

2.1.4 Channels

Channels are named entities that act like
buffers, directly connecting specifically
identified source step(s) with specifically
identified destination step(s).This construct
supports non-parameterized data flow and
helps synchronize concurrently executing
steps.

2.1.5 Exception Handling

A Little-JIL step can throw an exception
when some aspect of its execution fails.This
triggers execution of a matching exception
handler defined at an ancestor step of the
step throwing the exception. Figure 1 shows
an exception handler consider alternative
treatment (connected to the X in the root
step bar), which is triggered when one of the
children of the root step throws a matching
exception.

2.2 An Example Using Little-JIL to
Define a Chemotherapy Process
Figures 1, 2, and 3 depict part of a Little-JIL
definition of a chemotherapy process. Fig-
ure 1 is the top-level diagram of the process
and thus represents it at a high level of ab-
straction. The entire Little-JIL process defi-
nition has more than 250 steps. The part of
the process definition that is depicted here is
concise but representative of many interest-
ing issues that arise in defining the full pro-
cess.

A diagram is created using the Little-JIL
visual editor, which allows the developer to
suppress visualization of process details for
the sake of clarity. Thus, Figures 1, 2 and 3
do not display full details of the resources

393

The Little-JIL Process Definition Language

Methods Inf Med 5/2008



and artifacts declarations in each step but
represent them iconically by the step’s inter-
face circle.

Figure 1 indicates that the process defini-
tion is decomposed into two substeps that
can be executed in parallel (note the equal
sign in the step bar). In the full process defi-
nition, each substep is further decomposed
down to the level of leaf steps for which the
process definer is unable to provide, or un-
interested in providing, process detail. As
noted above, Figure 1 also shows that the
root step chemotherapy process has a sub-
step consider alternative treatment that is as
an exception handler (note the “X” sign on
the chemotherapy process step bar to which
the step consider alternative treatment is
connected).

The first substep, prepare for and admin-
ister first cycle of chemotherapy, of the root
step chemotherapy process is decomposed
into six substeps to be executed in sequence
(note the right arrow in the step bar). The six
substeps of prepare for and administer first
cycle of chemotherapy are the major stages
of the chemotherapy process. Although the
agent assignments are not shown in this dia-

gram, perform consultation and assessment
is done by a medical doctor (MD); perform
initial review of patient records by a practice
registered nurse (RN) and a triage medical
assistant; perform pharmacy task by a phar-
macist; perform patient teaching by a nurse
practitioner; perform final tasks (day before
chemo) by a pharmacist and a clinic RN; and
the first day of chemo is done again by a
pharmacist and a clinic RN.

In this example, a channel is used to
specify that an MD cannot dictate the con-
sult note before evaluating the patient’s con-
dition. But, since the consult note is pri-
marily used for billing and does not directly
affect the patient’s treatment, the doctor may
choose to dictate the consult note right after
evaluating the patient or later, while the
tasks in prepare for and administer first
cycle of chemotherapy are underway. This
step sequencing flexibility is captured by
the diagram in Figure 1, which shows that
the dictate consult note step can potentially
execute in parallel with the step prepare for
and administer first cycle of chemotherapy.
At the same time, the “consultation chan-
nel” imposes the additional restriction that

the MD cannot dictate the consult note be-
fore evaluating the patient’s condition – the
step dictate consult note takes a parameter
from the “consultation channel” (declared
at the root step so that it is visible, hence us-
able, by all of its descendants) and thus can-
not start until perform patient consultation
(shown in Fig. 2), which is a substep of
perform consultation and assessment, com-
pletes and writes a parameter to the “consul-
tation channel”.

Figure 2 shows the decomposition of the
step perform consultation and assessment
from Figure 1. Since perform consultation
and assessment is a sequential step (right
arrow in the step bar), its substeps need to
execute in the order specified in the dia-
gram. Thus, first the patient has to fill out
medical history forms, then a medical as-
sistant (MA) has to measure height and
weight, record them, and check the vital
signs of the patient. After that, the medical
doctor (MD) has to examine the patient, per-
form reviews, consult the patient, create a
treatment plan, and enter orders in the sys-
tem.

Fig. 1 A coordination diagram of Little-JIL chemotherapy process

Methods Inf Med 5/2008

394

Christov et al.



Figure 2 illustrates the ability of Little-
JIL to capture information about the agents
(represented as annotations in this figure)
who execute the tasks in a process. Figure 2
also demonstrates the use of exceptions to
model non-standard scenarios in medical
processes – if the MD discovers that the
pathology report does not indicate cancer,
the step review pathology report, scans and
tests throws an exception and control is
transferred to the matching exception
handler consider alternative treatment,
which was discussed in the context of Fig-
ure 1. Finally, Figure 2 shows the use of
channels to provide synchronization among
steps in a Little-JIL process definition. The
step perform patient consultation writes a
parameter to the “consultation channel” and
thus it needs to execute before the step dic-
tate consult note (in Fig. 1), which reads
from the “consultation channel”, can start
execution.

Figure 3 decomposes the substep tran-
scribe and place consult note in patient’s
record of the root step chemo process. Note
that the process shown in this diagram pro-
vides further details of the handling of the
consult note. Figure 1 specifies that tran-
scribe and place consult note in patient’s
record is the second substep of the sequen-
tial step create and process consult note.
This, means that transcribe and place con-
sult note in patient’s record cannot start until

the step dictate consult note has completed.
This sequencing mechanism is a faithful
representation of the real world situation. In
this process, the doctor dictates the consult
note on the phone. The doctor’s message is
recorded and triggers the tasks of the tran-
scriber, who is external to the clinic. The
transcriber listens to the message, tran-
scribes the consult note, emails it to the doc-
tor’s secretary, and so on. Except for need-
ing to wait for the availability of the consult
note, this can happen in parallel with the
tasks in prepare for and administer first
cycle of chemotherapy.

3. Experience
The very task of eliciting details from the
medical professionals about the chemother-
apy process and capturing those details for-
mally in Little-JIL led to the discovery of
several defects in the process. Applying
analysis techniques also helped us detect de-
fects. Finite-state verification, for example,
was used to determine if specified goals, or
properties, are always satisfied on all possi-
ble execution paths through the process
definition. One of the properties required to
hold in the chemotherapy process stated
“Before Chemotherapy Can Be Adminis-
tered to a Patient, that Patient’s Consult Note

Needs to Be Put in that Patient’s Record”.
This means that the step administer chemo
drug (which is part of the step first day of
chemo in Fig. 1) cannot be performed until
the step file consult note in patient’s record
(shown in Fig. 3) has been completed. We
modeled this property as a finite-state au-
tomaton using the PROPEL system [5] and
then used the FLAVERS finite-state verifier
[6] to check whether the process satisfies
this property. Although a channel imposes
some synchronization between the parallel
activities in the chemotherapy process,
FLAVERS detected that concurrent execu-
tion can allow at least one execution se-
quence that leads to a property violation, i.e.
administer chemo drug occurs before file
consult note in patient’s record completes.
Detailed discussion about analyzing Little-
JIL definitions of medical processes is
beyond the scope of this paper, but a more
comprehensive treatment of the subject is
presented in [12].

The discovery of defects led to changes
in the chemotherapy process definition to
eliminate those defects. For example, we
found that some traces through the process
definition could bypass a check to see if the
patient’s height or weight, on which the
chemotherapy dose is based, are sufficiently
up-to-date. After careful scrutiny it was de-
termined that this defect was not merely a
process definition error, but an actual error

Fig. 2 The task decomposition of perform consultation and assessment

395

The Little-JIL Process Definition Language

Methods Inf Med 5/2008



in the process. The medical professionals
then proposed changes in the process defi-
nition. The modified process definition was
then reanalyzed with respect to all the prop-
erties, not just the one that caused this de-
fect. The process and its process definition
were subsequently improved so this check
always occurred on all possible traces be-
fore chemotherapy could be administered.
The medical professionals involved in the
project found benefit in this process im-
provement cycle.

One of the observations that became ap-
parent during the early interviews with the
medical professionals was that the termi-
nology used to describe the chemotherapy
process was sometimes inconsistent. For
example, words like “verify”, “confirm”,
and “check” were used loosely. The same
word used at different times or in different
contexts often had different meanings, even
when used by the same individual. Since
many of the critical errors that may occur in
a medical process may arise from neglecting
small details, we developed a glossary that
disambiguated the use of different terms.
Thus, our experience suggests that the effort
of defining and analyzing complex medical
processes can benefit if such a glossary is
employed.

We also found that process guidelines
usually contain adequate details when de-

scribing common, standard scenarios, but
do not provide enough details, or often any
details, for handling many exceptional
cases. For example, there were places in the
guidelines where an agent is to confirm the
correctness of some information and, if the
confirmation succeeds, the agent is to con-
tinue with the rest of the defined tasks. If the
confirmation fails, then the guidelines often
lack specific instructions detailing how the
agent should proceed. In some cases, we ob-
served that different agents were handling
the exceptional cases differently. While
modeling the process with Little-JIL, the
rich exception handling semantics of the
language encouraged us to think about
exceptional scenarios and to ask specific
questions about the process to be executed
following the occurrence of an exception,
the agents involved in resolving that ex-
ception, and the place in the process where
control is transferred once the exception has
been handled. Questions like “What do you
do when the check fails?” and “Which task
do you proceed with and which tasks do you
need to redo when you have resolved the
problem?” typically triggered discussions
among the medical professionals that re-
sulted in more complete and rigorous
specification of how to deal with these
exceptional cases, thus improving the pro-
cess.

The resource and artifact modeling capa-
bilities of Little-JIL also led to interesting
questions during the interviewing stage that
exposed some deficiencies in the process.
For example, the chemotherapy process
relies heavily on a paper copy of a treatment
plan, which is an artifact created at the ear-
lier stages of the process and then verified
independently and signed by medical pro-
fessionals. Doctors, however, enter changes
to a treatment plan electronically, which
sometimes leads to inconsistencies between
the current electronic version and the paper
copy that circulates among the medical pro-
fessionals. The artifact model of Little-JIL
and the need to precisely distinguish be-
tween paper and electronic records led to the
discovery of such issues.

Overall, we found that the rich semantics
of Little-JIL proved useful for defining the
chemotherapy process. The exception han-
dling mechanisms enabled the process defi-
nition to reflect the real world process more
accurately. Modeling resources (both agent
and non-agent) and artifacts were an im-
portant part of the specification of the pro-
cess. The channel synchronization mecha-
nism for specifying direct communication
and synchronization among steps was also
useful. Hierarchy and abstraction were
beneficial in helping to reduce the size of
the process definition and in allowing the

Fig. 3 The task decomposition of transcribe and place consult note in patient’s record

Methods Inf Med 5/2008

396

Christov et al.



process to be defined at different levels of
abstraction.

Elicitation of the process required almost
two semesters of weekly meetings between
process developers and medical profes-
sionals. In these meetings usually there were
two graduate students and at least one fac-
ulty member along with two or three medi-
cal professionals. The medical profes-
sionals comprised different combinations of
physicians, pharmacists, nurses, and medi-
cal assistants. The graphical notations, as
well as the language’s constructs supporting
abstraction and exception handling, facili-
tated the communication of computer
science concepts to the medical profes-
sionals. We usually presented the process to
the medical professionals in textual, natural
language form, but we were often asked to
show the Little-JIL diagrams. Although we
believe that it is most likely that the Little-
JIL definitions will be written by computer
scientists or medical informatics specialists,
our experiences suggest that medical pro-
fessionals, with a little training, can become
comfortable reading Little-JIL process defi-
nitions.

4. Related Work
The medical informatics community has de-
veloped several languages for specifying
medical processes (e.g. Asbru [13], EON
[14], Glare [15], GLIF [16], PROforma
[17]). Similarly to Little-JIL, these lan-
guages model medical processes as a collec-
tion of tasks and provide support for hier-
archical decomposition, decisions, goals,
concurrency, and exception handling. Some
languages, however, support certain fea-
tures better than others. For example, Little-
JIL separates normal flow from exceptional
flow, provides a means to pass information
about the exception and its context to excep-
tion handlers, and provides various continu-
ation options after an exception has been
handled. We found that these language fea-
tures, intended for specific and articulate
support of exception handling, are ex-
tremely important when modeling medical
processes, since exceptions frequently arise,
and their representation in a process defini-

tion should be made particularly clear and
accessible to medical professionals who are
counted upon to validate definitions of their
processes. Similarly, Little-JIL also sup-
ports abstraction well by supporting
parameterized procedure invocation. This
language feature likewise adds to the clarity
of Little-JIL process definitions, facilitating
their comprehensibility. The other lan-
guages mentioned above do not seem to pro-
vide equivalent semantic richness to facili-
tate process definition comprehensibility.

Little-JIL and PROforma are general-
purpose process modeling languages,
whereas, EON and GLIF are designed spe-
cifically to model processes from the medi-
cal domain. These domain-specific lan-
guages also provide support for drawing
upon domain ontologies. This would be an
interesting feature to consider adding to
Little-JIL to encourage the consistent use of
terminology. In addition, Little-JIL’s sup-
port for timing is not as strong as that pro-
vided by the above languages.

Some of these languages have also been
used as the basis for formal analysis. For
example, as part of the Protocure II project
[18], Asbru [19, 20] has been used with the
KIV theorem prover [21] and with the SMV
model checker [22]. Glare has been used
with SPIN [7]. The rigorous semantics of
Little-JIL allow for fully automated trans-
lation of Little-JIL process definitions to
input languages of formal verifiers. We have
built tools that automatically translate
Little-JIL process definitions to the input
representations of FLAVERS [6] and SPIN.
These tools have helped us avoid manual
translation, which is time-consuming and
error-prone. There also is automated sup-
port for translating Asbru into the internal
representation used by SMV and KIV. We
have also developed and used PROPEL [5],
which provides natural language support for
specifying mathematical properties. Using
PROPEL, FLAVERS, and SPIN, we have
verified Little-JIL process definitions and
discovered errors in real medical processes
[12].

Much of the related work in the medical
informatics domain has focused on model-
ing medical guidelines that describe the
treatment of a single patient with a particu-
lar diagnosis. Risks to patient safety, how-

ever, arise not only from errors in such
guidelines, but from problems in the pro-
cesses through which health-care providers
actually deliver these treatments by interac-
ting with each other, the patient, and the re-
sources required for care [1]. Our work has
largely been concerned with modeling and
analyzing these organizational, or system,
processes, and Little-JIL’s support for ab-
straction and facilities for specifying agent
types, resources, and exceptional behavior
have been correspondingly important.

Noumeir has also pursued similar goals
using a UML-like notation to define pro-
cesses [23]. Others (e.g. [24]) have viewed
medical processes as workflows and have
used workflow-like languages to define pro-
cesses and drive their execution.The models
created by these projects seem to be less
amenable to formal analysis.

Other approaches to improving medical
safety have targeted quality control
measures [25], error reporting systems [26],
and process automation in laboratory set-
tings [27]. In other work, Bayesian belief
networks have been used as the basis for
discrete event simulations and to guide
treatment planning (e.g. [28]).

5. Conclusion
This paper presents some of the benefits
that arise from the use of a process defini-
tion language to describe medical pro-
cesses. The Little-JIL process definition
language provides a rich set of semantic fea-
tures. We overviewed some of those features
and demonstrated how they could be used in
an example chemotherapy administration
process. While developing the process defi-
nition, a number of serious potential defects
in the actual process were detected. This re-
sulted in the process definition being modi-
fied and, after careful scrutiny, the cor-
responding process updated to remove those
defects.

Since the process definitions can be-
come quite large and complex, manually re-
viewing these definitions is not sufficient.
Instead, we advocate the use of automated
analysis techniques that can help detect de-
fects. We briefly indicated how finite-state

397

The Little-JIL Process Definition Language

Methods Inf Med 5/2008



verification helped detect process defects in
the process definition and in the actual pro-
cesses.

Finite-state verification supports check-
ing whether a process satisfies certain prop-
erties, but it assumes that all agents involved
in the process perform their tasks without
errors. Other types of analysis, such as fault
tree analysis [29], consider what happens if
tasks are not done correctly. We have ex-
plored automatically generating a fault tree
from a Little-JIL process definition and
then using the fault tree to identify single
points of failure and other vulnerabilities
[30]. Our studies of delays in a hospital
emergency department have underscored
the potential for resource management and
discrete event simulation to improve effi-
ciency in medical processes [31].

This work has shown considerable prom-
ise and has suggested extensions in several
directions. Further research should provide
insights into how process definition and
analysis technology can be used to improve
medical processes.

Acknowledgments
This research was funded by the US National Science
Foundation under Award No. CCF-0427071 and by
the U.S. Department of Defense/Army Research
Office under Awards No. DAAD19-03-1-0133 and
DAAD19-01-1-0564. The U.S. Government is
authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copy-
right annotation thereon. The views and conclusions
contained herein are those of the authors and should
not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or im-
plied, of the U.S. NSF, U.S. DOD/Army Research Of-
fice, or the U.S. Government.
We gratefully acknowledge the contributions of
Sandy Wise, Barbara Lerner, and Aaron Cass, who
worked on the development of Little-JIL, of Rachel
Cobleigh and Irene Ros, who helped elicit the chemo-
therapy process and properties, and of Ann Garbecki,
Gina Parisi, Sally Irelan, Gary Bessette and other
members of the staff of the D’Amour Center for
Cancer Care, who graciously donated their time and
expertise.

References
1. Kohn LT, Corrigan JM, Donaldson MS, editors.

To Err is Human: Building a Safer Health System.
Washington, DC: National Academies Press;
1999.

2. Institute of Medicine. Crossing the Quality Chasm:
A New Health System for the 21st Century. Wash-
ington, DC: National Academies Press; 2001.

3. Deming WE. Out of the Crisis. Cambridge: MIT
Press; 1982.

4. Shewhart WA. Economic Control of Quality of
Manufactured Product. D. Van Nostrand Co.;
1931.

5. Cobleigh RL, Avrunin GS, Clarke LA. User Guid-
ance for Creating Precise and Accessible Property
Specifications. ACM Symp on the Foundations of
Software Engineering; 2006; Portland, OR, 2006.
pp 208-218.

6. Dwyer MB, Clarke LA, Cobleigh JM, Naumovich
G. Flow Analysis for Verifying Properties of Con-
current Software Systems. ACM Trans on Soft-
ware Engineering and Methodology 2004; 13 (4):
359-430.

7. Holzmann GJ. The SPIN Model Checker. Ad-
dison-Wesley; 2004.

8. Boose ER, Ellison AM, Osterweil LJ, Clarke L,
Podorozhny R, Hadley JL, et al. Ensuring Reliable
Datasets for Environmental Models and Fore-
casts. Ecological Informatics 2007; 2: 237-247.

9. Schweik CM, Osterweil LJ, Sondheimer N, Tho-
mas C. Analyzing Processes for E-Government
Development: The Emergence of Process Model-
ing Languages. J of E-Government 2004; 1 (4):
63-89.

10. Cass AG, Lerner BS, McCall EK, Osterweil LJ,
Stanley M, Sutton J, Wise A. Little-JIL/Juliette: A
Process Definition Language and Interpreter. Intl
Conf on Software Engineering; 2000; Limerick,
Ireland; 2000. pp 754-758.

11. Wise A. Little-JIL 1.5 Language Report. Depart-
ment of Computer Science, University of Mas-
sachusetts, Amherst (UM-CS-2006–51); 2006.

12. Chen B, Avrunin GS, Henneman EA, Clarke LA,
Osterweil LJ, Henneman PL. Analyzing Medical
Processes. Intl Conf on Software Engineering;
2008; Leipzig, Germany; 2008. pp 623-632.

13. Shahar Y, Miksch S, Johnson P. The Asgaard
Project: A Task-Specific Framework for the Ap-
plication and Critiquing of Time-Oriented Clini-
cal Guidelines. Artif Intel in Medicine 1998:
29-51.

14. Tu SW, Musen MA. A Flexible Approach to
Guideline Modeling. Am Medical Informatics
Assoc Symp; 1999. pp 420-424.

15. Molino G, Terenziani P, Montani S, Bottrighi A,
Torchio. M. Glare: A Domain-Independent Sys-
tem for Acquiring, Representing and Executing
Clinical Guidelines. Am Medical Informatics As-
sociation Symp Supplement; 2006.

16. Peleg M, Boxwala A, Ogunyemi O, Zeng Q, Tu S,
Lacson R, et al. GLIF3: The Evolution of a Guide-
line Representation Format. Am Medical In-
formatics Association Symp; 2000. pp 645-649.

17. Sutton DR, Fox J. The Syntax and Semantics of
the PROforma Guideline Modeling Language. J
of Am Medical Informatics Association 2003: 10
(5): 433-443.

18. Protocure II. 2006 [cited; Available from:
http://www.protocure.org]

19 . ten Teije A, Marcos M, Balser M, van Croonen-
borg J, Duelli C, van Harmelen F, et al. Improving
Medical Protocols by Formal Methods. Artif Intel
in Medicine 2006; 36 (3): 193-209.

20. Baumler S, Balser M, DunetsA, Reif W, Schmitt J.
Verification of Medical Guidelines by Model
Checking – A Case Study. SPIN 2006, Springer-
Verlag LNCS. 2006; p 3925.

21. Balser M, Reif W, Schellhorn G, Stenzel K,
Thums A. Formal System Development with KIV.
Fundamental Approaches to Software Engineer-
ing. Springer-Verlag LNCS; 2000. pp 363-366.

22. CimattiA, Clarke E, Giunchiglia E, Giunchiglia F,
Pistore M, Roveri M, et al. NuSMV Version 2: An
OpenSource Tool for Symbolic Model Checking.
Computer Aided Verification, Springer-Verlag
LNCS. 2002; 2404: 359-365.

23. Noumeir R. Radiology Interpretation Process
Modeling. J of Biomedical Informatics 2006; 39
(2): 103-114.

24. Ruffolo M, Curio R, Gallucci L. Process Manage-
ment in Health Care: A System for Preventing
Risks and Medical Errors. Business Process
Mgmt; 2005. pp 334-343.

25. Voak D, Chapman JF, Phillips P. Quality of Trans-
fusion Practice Beyond the Blood Transfusion
Laboratory Is Essential to Prevent ABO-Incom-
patible Death. Transfusion Medicine 2000; 10:
95-96.

26. Battles JB, Kaplan HS, van der Schaaf TW,
Shea CE. The Attributes of Medical Event Re-
porting Systems for Transfusion Medicine. Arch
Pathology Laboratory Medicine 1998; 122:
231-238.

27. Galel SA, Richards CA. Practical Approaches to
Improve Laboratory Performance and Trans-
fusion Safety. Am J of Clinical Pathology 1997;
107 (Suppl 1): S43-S9.

28. van der Gaag LC, Renooji S, Witteman CLM,
Aleman BMP, Taal BG. Probabilities for a Proba-
bilistic Network: A Case-Study in Oesophageal
Cancer. Artif Intel in Medicine 2002; 25 (2):
123-148.

29. Vesely W, Goldberg F, Roberts N, Haasl D. Fault
Tree Handbook. Washington, DC: U.S. Nuclear
Regulatory Commission; 1981 (January).

30. Chen B, Avrunin GS, Clarke LA, Osterweil LJ.
Automatic Fault Tree Derivation from Little-JIL
Process Definitions. 2006 Software Process
Workshop and 2006 Process Simulation Work-
shop; May 20-22, 2006, Shanghai, China.
Springer-Verlag LNCS; 2006. pp 150-158.

31. Raunak MS, Osterweil LJ. Effective Resource Al-
location for Process Simulation: A Position Paper.
Intl Workshop on Software Process Simulation
and Modeling; May 14-15, 2005. St. Louis, MO;
2005.

Correspondence to:
Stefan Christov
316 Department of Computer Science
University of Massachusetts at Amherst
Amherst, MA 01003
USA
E-mail: christov@cs.umass.edu

Methods Inf Med 5/2008

398

Christov et al.


