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1. INTRODUCTION
A glance at the list of the world’s most powerful com-

puting systems (top500.org) reveals that high performance
computing has become practically synonymous with parallel
computing. Yet parallel programs are notoriously difficult
to get right. It is hard enough to verify that an ordinary
sequential program computes what it is intended to com-
pute, and parallelism introduces an entirely new layer of
complexity. Moreover, parallel programs can behave non-
deterministically, in the sense that they can produce differ-
ent results when run with different numbers of processors, or
when run on different platforms, and sometimes even when
run twice on the same platform. Experience has shown that
just to detect or reproduce these problems—let alone to pin-
point their causes and correct them—can be extremely time-
consuming and labor-intensive.

The field of finite-state verification (FSV) offers a variety
of methods for dealing with precisely these issues. But there
are some significant differences between the HPC domain
and those areas where FSV methods have been successfully
applied in the past, so it is not obvious that FSV techniques
can be useful in the HPC world.

In this paper, we discuss some preliminary results in ap-
plying FSV techniques to high performance parallel codes,
with a particular emphasis on scientific programs that em-
ploy the widely-used Message Passing Interface (MPI) [7,
8]. These results suggest that such techniques may have
significant potential for improving both the productivity of
developers of parallel scientific programs and the quality of
those programs. We also briefly sketch some of the research
issues that must be addressed to achieve that potential.

2. SCIENTIFIC COMPUTATION AND MPI
Most parallel scientific programs rely on message-passing

for inter-process communication. The basic ideas of this
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paradigm have been around since the late 1960s, and by
the early 1990s, several different and incompatible message-
passing systems were being used to develop significant appli-
cations. The desire for portability and a recognized standard
led to the creation of MPI [7, 8], which defines the precise
syntax and semantics for a library of functions for writing
message-passing programs in a language such as C or For-
tran. Since that time, a number of high-quality proprietary
and open-source MPI implementations have become avail-
able on a wide variety of platforms, and MPI has become the
de facto standard for parallel scientific software. Yet, while
its adoption has made for the possibility of truly portable
parallel programs, MPI alone cannot completely solve the
problems that are inherent in the very nature of parallel
computation.

Our experience in building scientific software (for exam-
ple, with the ASCI FLASH project, the Argonne Petascale
Computing Applications Group, and most recently the Ap-
plications Working Group of the BlueGene/L Consortium)
has taught us that in real-world scientific applications a
number of serious problems occur with surprising frequency:
(1) deadlock, particularly when porting to new platforms or
rerunning code with OS or system library upgrades; (2) re-
sults that are not independent of the number of processors
used (in cases where there is reason to believe that they
should be); (3) results that can not be reproduced on iden-
tical processor configurations; and (4) performance that is
hampered by unnecessary operations at the application pro-
grammer level, such as redundant barriers or ghost-cell fills.

In all cases the possible causes are well understood: race
conditions, implementation-specific MPI behavior (e.g., code
which is not buffer-safe), and in some cases even bugs in the
MPI implementation. However, tracking down the specific
problem and getting the code to work or give believable re-
sults on the new machine can often be nearly impossible.
We have seen many cases where bugs manifest themselves
only once in every ten or more executions, or only on very
large processor configurations that are difficult to access, or
possibly only after very long and unpredictable integration
times. Practically speaking, if we cannot find a way to re-
produce a problem with regularity, there is little or nothing
we can do with traditional tools and approaches.

Our alternative has been to reason informally about our
parallel algorithms, deliberating questions such as “Is this
algorithm buffer-safe?”, “Is there a race condition?”, or “Is
there any way it can deadlock?”. Unfortunately, this is much
more difficult than it appears at first glance, and nearly im-
possible for relatively complex algorithms. We once spent
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an entire meeting debating whether a single barrier could be
removed. Although we finally agreed its removal was safe,
a year later its absence turned out to be the cause of a race
condition that had manifested itself on a new platform. It
is not uncommon to spend several worker-months on porta-
bility issues of this type.

We have often been forced out of desperation to rewrite
algorithms from scratch, in the blind hope that whatever
was causing the problem will just “disappear.” In a practi-
cal sense this has been successful. Clearly, though, it is not
a reliable or adequate solution. What is desperately needed
is a set of tools that can analyze the software and diagnose
these types of problems a priori and independently of any
execution of the code. This would result in tremendous in-
creases in efficiency in the development of parallel scientific
software, as well as in increased confidence in the correctness
of that software.

3. FINITE-STATE VERIFICATION
The most widely used method for checking that a program

meets its requirements is testing, i.e., executing the program
on a set of inputs and examining the results. While testing
is certainly a key part of any software development effort,
it has a number of significant drawbacks. First, it is ex-
tremely expensive. The best estimates indicate that testing
represents at least 50% of the cost of developing typical com-
mercial software, and the percentage is certainly higher for
safety- or mission-critical projects where correctness is vital.
Second, even with the large amount of effort invested in test-
ing, it is usually infeasible to test more than a tiny fraction
of the inputs that a program will encounter in use. Thus,
testing can reveal bugs, but it cannot show that the program
behaves correctly on the inputs that are not tested. Finally,
the behavior of concurrent programs, including most MPI
programs, typically depends on the order in which events
occur in different processes. This order depends in turn on
the load on the processors, the latency of the communica-
tion network, and other such factors. A concurrent program
may thus behave differently on different executions with the
same inputs, so getting the correct result on a test execu-
tion does not even guarantee that the program will behave
correctly on another execution with the same input.

Another approach is to construct a logical theory describ-
ing the program and to use automated theorem-proving tools
such as ACL2 [6, 5] and PVS [10] to attempt to show that
the program behaves correctly on all executions. While tech-
niques based on this approach have achieved some notable
successes, they typically use the automated theorem prover
as a “proof-checker” at least as much as a “proof-finder,”
and require a great deal of effort and guidance by experts
in mathematical logic. In practice, such techniques are far
too expensive to apply routinely in software development
and are reserved for small components of the most safety-
critical systems.

The third main approach involves building a finite model
that represents all possible executions of the program and
using various algorithmic methods to determine whether
particular requirements for the program hold in the model.
For instance, the occurrence of deadlock during an execution
of the program might be represented in the model by the
reachability of certain states from the start state, and algo-
rithmic methods for exploring the states of the model could
determine whether or not deadlock was possible. These

finite-state verification techniques are less powerful but much
more automated than theorem-proving approaches, and, un-
like testing, can give results about all possible executions
of the program. (The term “model checking” is sometimes
used to refer to this class of methods, although in its original
technical meaning it refers to only a subset of them.)

There are two main drawbacks to FSV techniques. The
first is that FSV really obtains results about a model of the
program, rather than the program itself, and the results are
therefore only as good as the model. Constructing good
models that are small enough to be tractable can be very
difficult, although recent research in automatic model ex-
traction is producing useful tools that automatically create
suitable models directly from source code. The second draw-
back is the state-space explosion problem. For concurrent
programs, the number of states the program can reach is, in
general, exponential in the number of processes, and these
states must be represented in the model in some fashion.
Indeed, almost all the questions one would want to answer
about a concurrent program (e.g., does it deadlock, does a
particular communication ever occur, etc.) are known to
be at least NP-hard. Moreover, even toy concurrent pro-
grams can have 10100 reachable states, so that methods
which naively examine each possible state are completely
infeasible. There has, however, been an enormous amount
of research on techniques to combat this problem, including
ways to reduce the number of states that must be examined
to check the property of interest, to manipulate sets of states
at once, to make use of integer linear programming tech-
niques, etc. (Of course, the complexity results make it clear
that no single technique will work in all cases.) A number
of tools have been developed that take advantage of these
techniques. The range of applicability of FSV techniques is
thus steadily increasing, and we believe it has reached the
point where FSV techniques can be successfully applied to
complex scientific parallel software systems.

4. EXPLORING THE APPLICABILITY OF
FSV TO MPI PROGRAMS

The domain of high-performance MPI programs differs in
significant ways from the domains to which FSV techniques
have traditionally been applied. Moreover, many features
specific to the MPI domain appear to pose deep challenges to
finite-state approaches. For example, typical MPI programs
manipulate enormous amounts of floating point data, which
makes the construction of appropriate finite-state models
particularly difficult. In addition, the MPI Standard itself
leaves open many choices to the MPI implementation. In
order to verify that an MPI program performs correctly un-
der any legal implementation, all allowable behaviors of the
implementation must somehow be represented in the model.
This can be a significant source of state-explosion above and
beyond the usual ones that arise in the verification of concur-
rent programs. A third issue is the nature of the properties
that one wishes to verify. Freedom from deadlock is certainly
a desirable property of an MPI program, and has also been
studied extensively in the FSV literature in other domains.
However, other properties that developers of scientific soft-
ware would likely want to verify, such as the correctness of
floating point calculations, are quite different from the kinds
of properties that FSV techniques have typically been called
upon to check.
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These are just some of the reasons why it is not clear,
a priori, that FSV techniques can be successfully employed
in the MPI domain. Because of this, we have carried out
several preliminary investigations of these issues, some of
which we summarize below. The results of these investiga-
tions have led us to conclude that, in fact, FSV techniques
have enormous potential to help solve many problems in the
MPI domain, though significant work will be required to
adapt the techniques to that domain.

4.1 A test case
Our initial exploration of the applicability of FSV to MPI

programs involved a detailed study of a small scientific test
program called Diffusion2d. Diffusion2d is a parallel pro-
gram that simulates the evolution in time of a discretized
function u defined on a 2-dimensional domain and governed
by the Diffusion Equation. It is the “teacher’s solution” to
a programming project for a course in parallel programming
(taught by A. Siegel at the University of Chicago). Though
quite simple, Diffusion2d has many features common in sci-
entific simulation programs: the physical domain is divided
into a “grid” in which one processor is responsible for each
section; each processor maintains a number of “ghost-cells”
that mirror the contents of cells on neighboring processors;
and there is a somewhat complicated routine to coordinate
the writing of the data to disk, in order to ensure that the
cells are written in the proper order.

We first formulated several properties that we expected to
hold for all executions of Diffusion2d. In addition to freedom
from deadlock, these included several claims concerning the
order of occurrence of certain events during the execution of
the program. For example, the value u(x, n) of the evolving
function u at a grid point x and time n depends on the
values of u(y, n− 1) for certain grid points y. It is therefore
essential to the correctness of the program that when u(x, n)
is calculated, the values used in the calculation are those of
u at time n − 1, and not, say, at time n or n − 2. The
programmer was confident that this was ensured because
the program satisfied the following lockstep property: no
u(x, n) is calculated until all u(y, n − 1) (for all grid points
y) have been.

We applied two FSV tools, Spin [4] and INCA [1, 12],
that use quite different approaches. For both tools, we had
to create the finite-state model of the program by hand, as
there are currently no automated tools for creating models
of MPI programs. This required a close reading of the code
and discussions with its author. In creating the model, we
dealt with the floating point problem by simply abstract-
ing away the floating point data altogether, as we realized
that the properties we intended to check did not depend
in any way on the actual values of that data. Moreover,
these models had to represent not only all possible behav-
iors of Diffusion2d, but also of the MPI implementation. For
example, the MPI Standard states that for each MPI_Send

statement encountered during execution, the implementa-
tion may choose whether to execute the send synchronously
or asynchronously. In our Spin model, for instance, this was
represented by a non-deterministic choice made each time a
send takes place.

We were able to verify all the properties for a number
of different configurations of Diffusion2d until we reached
the lockstep property described above with a configuration
involving a 1 × 4 grid, for which the tools spelled out an

execution in which one processor had begun calculation of
u at time 2, while another had not yet begun the calcula-
tion for time 1. Further exploration showed that the longer
the grid, the further apart in time two processors could be-
come. It turned out that this violation did not mean the
program was incorrect, because all that was really required
for correctness was that the calculation on neighboring pro-
cesses had been completed, and this weaker property was
indeed verified by the tools. Nevertheless, the violation of
the stronger property was a surprise to the programmer,
which highlights the fact that even simple parallel programs
are extremely difficult to reason about informally.

The limitations due to state-explosion were already clear
with this simple program. INCA could verify freedom from
deadlock in configurations up to 8 × 8 under the assump-
tion that all communication was synchronous. This was
significantly larger than the largest grid Spin could handle
(4 × 3), even under the same assumption. (As we will ex-
plain below, the verification under this assumption implies
the general case.) The lockstep properties were checked in
configurations up to 11 × 11 (under no additional assump-
tions). These grid sizes are still much smaller than those
of real programs, but evidence from the application of FSV
techniques to other kinds of software suggests that prob-
lems are usually exposed by verification of relatively small
configurations. (This is quite different from the case with
testing, where the small size may make it difficult to trig-
ger particular pathological patterns of behavior. The key is
that FSV takes into account all possible executions of the
system.) A more detailed discussion of these results can be
found in [15].

4.2 Theoretical results
Through our work on Diffusion2d it became clear that the

asynchronous aspect of MPI message passing was going to be
a major problem for FSV techniques. As mentioned above,
the MPI implementation may choose between synchronous
or asynchronous transmission of messages each time it en-
counters a send. This can be a major source of state ex-
plosion for two reasons: first, because of the need to model
all the binary choices (synchronous vs. asynchronous), and
second, because of the need to model all possible states of
the message queues resulting from asynchronous sends. As
an example of the impact this can have, in verifying freedom
from deadlock for a Diffusion2d configuration with a 3 × 2
grid, Spin required 185 MB of memory. The same verifica-
tion, when restricted to purely synchronous communication,
required only 2 MB.

Unfortunately, it is not in general true that a property
that holds on all synchronous executions of an MPI program
must also hold for all executions of that program. However,
it seemed reasonable to us that for certain properties and for
certain classes of MPI programs, such a restriction might be
justified. Theoretical results that justified such a restriction
could be enormously valuable in reducing the work required
to verify MPI programs, for the reasons given in the para-
graph above, and so we undertook a theoretical investigation
along these lines.

The results of that investigation [13, 14] revealed that
there are in fact many ways to ameliorate (and sometimes to
eliminate altogether) the state-explosion problem for certain
classes of MPI programs and properties. The main assump-
tion on the programs is that they contain no wildcard re-
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ceives, i.e., no use of MPI_ANY_SOURCE or MPI_ANY_TAG.
For this class of programs (which includes Diffusion2d), we
showed, for example, that if the program is deadlock-free
for all synchronous executions then it must necessarily be
deadlock-free for all executions. This theorem confirms the
intuition behind the practice, popular among MPI program-
mers, of checking a program for deadlocks by substituting
synchronized sends for every standard send in the program
code. It also justified our verification of freedom from dead-
lock for Diffusion2d under the assumption that all commu-
nication was synchronous.

Another result from our theoretical investigation answers
a question about determinism for a large class of wildcard-
free MPI programs (which again includes Diffusion2d). This
theorem implies that any program in the class must always
obtain the same result from a given input, no matter what
choices are made by the MPI implementation. As we have
noted, this is a very important property in the scientific com-
putation domain. Indeed, our results about determinism
have already been applied to a component from the FLASH
project. The code in question implements a block redis-
tribution algorithm for an adaptively refined mesh, which
requires that blocks of data be redistributed periodically
among the processes according to a complex communica-
tion pattern. The original redistribution routine, which was
known to deadlock in some scenarios, was replaced with a
routine written entirely in our restricted subset of MPI. Our
results then made it relatively easy to establish freedom from
deadlock for the new version.

Other theorems on wildcard-free MPI programs, such as
one concerned with the impact of removing barriers, are
discussed, with examples, in [14].

4.3 MPI-optimized verification
The theoretical results discussed above apply only to wild-

card-free MPI programs. However, there are many parallel
algorithms that depend in an integral way on the use of
wildcards (e.g., a program employing a master-slave archi-
tecture in which the master uses a wildcard receive to receive
a result from whatever slave has finished its task). Methods
that could not be efficiently applied to such programs would
have only a very limited usefulness.

In [11], we introduced an efficient method, called the Ur-
gent algorithm, for verifying certain properties of MPI pro-
grams that may contain wildcard receives. The properties
include freedom from deadlock, as well as any other asser-
tion on the state of the program at termination.

The Urgent algorithm improves upon the methods de-
scribed in §4.1 in two ways. First, it does not require ex-
plicitly modeling all possible synchronous vs. asynchronous
choices made by the MPI implementation. Second, it uses
a “partial order reduction” technique that has been tailor-
made to take advantage of the MPI semantics to drastically
reduce the number of states that need to be explored.

Interestingly, Spin also implements a partial order reduc-
tion strategy, but in all of the examples we have studied that
strategy made no reduction at all in the number of states
explored by Spin. The reason is that’s Spin’s generic algo-
rithm knows nothing about the semantics of MPI, and so
does not have the knowledge to take advantage of the MPI-
specific features that the Urgent algorithm exploits. This
provides yet another example of the need for FSV techniques
that are “tailor-made” for MPI programs.

5. RESEARCH DIRECTIONS
In conclusion, there is now a growing body of evidence

that suggests that FSV techniques can be used to answer a
variety of important questions about MPI programs. How-
ever, significant modifications of the generic FSV algorithms
must be studied and developed in order for those algorithms
to be effective in the MPI domain. Furthermore, novel finite-
state techniques will need to be explored in order to deal
with the kinds of properties that are likely to be of interest
to computational scientists.

While our initial explorations have shown the promise
of applying FSV to scientific software, they have barely
scratched the surface of what is possible. There are many
more FSV tools and techniques to be explored, and much
work to be done to adapt these to the scientific domain.
We sketch here some directions for research that would help
bring the benefits of FSV to developers of large-scale scien-
tific software.

5.1 Model extraction and construction
In order to apply FSV techniques to a program, it is first

necessary to construct an appropriate finite model of the
program that captures all possible executions. Our work
to date has been based on manually constructed models.
Constructing these models requires a deep understanding of
the system being modeled and the modeling notation be-
ing used, and is both labor-intensive and error-prone. So
investigating the special problems of model extraction and
construction for MPI-based codes is an important prerequi-
site for the application of FSV techniques. Some particular
research problems include the following:

• Exploration of different translations. There are
various ways to represent the MPI primitives in a finite-
state model, and previous research has shown that the
performance of an FSV tool can be extremely sensitive
to the exact way in which the program code is trans-
lated into a model. Often, apparently small changes
in the translation result in enormous improvements in
tool performance. For each tool, we must therefore try
various translations to determine which work best.

• Development of an automatic MPI model ex-
tractor. There has been a considerable amount of
recent research into automatic model extraction for
concurrent software, especially for programs written
in languages like C and Java, and much of it should
carry over to MPI programs.

• Explore the use of abstraction and related tech-
niques. Abstraction is one of the strongest weapons
in the fight against state-explosion. As an example,
suppose we have two floating point variables x and y

in a program. Simply to represent all possible pairs
of values of these variables would require an astro-
nomical number of states (2128 states, to be precise,
assuming 64 bits are required to represent a float-
ing point variable). In our model, we might instead
replace them with variables that take values in the
set {POS, NEG, ZERO} and thereby keep track only of
whether the original variables were, respectively, pos-
itive, negative, or zero. To represent all possible pairs
of values of the abstracted variables takes only 9 states.
Of course, this model will contain less information than
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the original program, but for a particular property this
might be all the information that is needed for verifica-
tion. The art of abstraction is to find the appropriate
abstractions for a given program and property. The
abstractions must result in a model small enough to
make verification tractable, but with enough informa-
tion to allow the verification algorithm to arrive at
a conclusive result. Finding appropriate abstractions
will be particularly important for scientific programs,
which generally deal with enormous amounts of data.

5.2 FSV techniques for MPI programs
As we have described above, the practical application of

FSV techniques to significant MPI programs will require
adaptation and development of existing FSV approaches.
Some of the directions that we believe should be explored
include:

• Explore different FSV tools. We have experiment-
ed with Spin and INCA, but there are a number of
other FSV tools based on different approaches. More-
over, the development of FSV tools continues rapidly,
and only experimentation will tell, for example, how
effective a new approach like the heuristic search im-
plemented in HSF-SPIN[3] will be on scientific/MPI
programs, or whether a particular tool is especially
well-suited for checking a particular class of proper-
ties. It is therefore important to explore the applica-
tion of a variety of existing and new FSV tools to MPI
programs.

• Extend the theoretical results. The results of
our theoretical investigation have already proven ex-
tremely useful. However, they currently cover only
the basic blocking point-to-point MPI functions and
the MPI collective functions. Extending these results
to the non-blocking functions will be necessary if FSV
tools are to be applied to realistic scientific programs.

• Explore new and improved FSV techniques. We
expect that typical features of MPI-based scientific
programs will allow us to take advantage of special-
purpose FSV techniques, or optimizations of existing
techniques. For instance, as described in the previous
section, use of a particular subset of the MPI primi-
tives allows the FSV tool to ignore buffering in check-
ing some important properties like absence of dead-
lock, and the Urgent algorithm also takes advantage
of particular features of the MPI communication con-
structs. It is important to look for additional FSV
techniques that can take advantage of domain-specific
features.
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