
708 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20. NO. 9, SEPTEMBER 1994 

Automated Derivation of Time Bounds 
in Uniprocessor Concurrent S y s terns 
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Abstruct- The successful development of complex real-time 
systems depends on analysis techniques that can accurately assess 
the timing properties of those systems. This paper describes a 
technique for deriving upper and lower bounds on the time 
that can elapse between two given events in an execution of a 
concurrent software system running on a single processor under 
arbitrary scheduling. The technique involves generating linear 
inequalities expressing conditions that must be satisfied by all 
executions of such a system and using integer programming 
methods to find appropriate solutions to the inequalities. The 
technique does not require construction of the state space of 
the system and its feasibility has been demonstrated by using an 
extended version of the constrained expression toolset to analyze 
the timing properties of some concurrent systems with very large 
state spaces. 

Index Terms- Concurrent systems, real-time systems, auto- 
mated analysis, timing analysis, linear inequalities, integer pro- 
gramming, finite state systems. 

I. INTRODUCTION 
S the use of real-time software systems grows, there A is increasing need for analysis methods to accurately 

assess the timing properties of such systems. This is true for 
both “hard” real-time systems, in which inability to produce 
results within specified deadlines is tantamount to failure, 
and “soft” real-time systems, in which inability to produce 
results within specified deadlines is tantamount to failure, and 
“soft” real-time systems, in which the utility of the results 
produced declines as the time required to produce those results 
increases [25]. For instance, even real-time systems relying on 
sophisticated scheduling mechanisms require accurate predic- 
tions (produced either a priori or at run-time) of the timing 
properties of the units of computation that they are attempting 
to schedule. The problem of determining timing properties 
is, however, already a difficult one for sequential software, 
and the introduction of concurrency increases that difficulty 
significantly by greatly increasing the number of possible 
executions that must be considered. 
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One approach has been to study particular algorithms for 
scheduling the execution of different processes, and to try to 
determine whether a given concurrent system can be scheduled 
in a way that meets its timing requirements. If the component 
processes of a concurrent system are periodic (i.e., request 
execution repeatedly at fixed intervals) and do not interact, the 
effects of various pre-emptive scheduling algorithms are well 
understood. If dynamic assignment of priorities to processes 
is possible, then the earliest deadline algorithm is optimal, 
in the sense of providing the best processor utilization [18]. 
For static priority assignments, rate monotonic scheduling, in 
which the processes with shorter periods get higher priorities, 
is an optimal scheduling algorithm in the sense that any set 
of processes that can be scheduled successfully with a static 
priority assignment can be scheduled with the rate monotonic 
algorithm. For both earliest deadline and rate monotonic 
scheduling, there are simple sufficient conditions to determine 
whether a set of processes can be successfully scheduled [18, 
Theorems 5 and 71. When the processes are not periodic and 
interact, the situation is more complex, and the problem of 
determining schedulability is Nf -hard [ 191. For instance, rate 
monotonic scheduling methods can still be applied, but it is 
necessary to recast aperiodic processes as periodic ones (using 
periodic server processes, for example) and to use special 
scheduling to avoid priority inversion problems [22], [23]. 

This paper is concerned with the case in which processes 
in a concurrent system are aperiodic and interact in complex 
ways, and in which the system developer has (or wishes to 
exercise) little control over scheduling beyond that provided by 
the semantics of interprocess communication. Such a situation, 
for instance, would frequently be the case for systems using 
Ada tasking constructs without special runtime support for 
rate monotonic scheduling. In this setting, it may be impor- 
tant to show that the system satisfies certain critical timing 
requirements without establishing full schedulability under a 
particular scheduling algorithm. 

Various approaches to analyzing timing properties have 
been described in the literature. Some (e.g., [I], [8]) have 
relied upon testing or simulation to obtain timing information. 
Of course, testing and simulation can, at best, only provide 
representative samples of timing behavior and hence cannot 
be expected to accurately determine timing properties of 
concurrent systems. 

Most of the other analysis methods that have been proposed 
have involved the introduction of special logics and proof 
techniques (e.g., [13], [16]) or construction and analysis of 
the state space of the system (e.g., [7], [ I l l ,  [14], [201). The 
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techniques based on proving theorems in special logics have 
typically been difficult to automate, and therefore have limited 
potential for practical application by developers of concurrent 
real-time software. Automation of logic-based techniques, 
such as Modechart [17], SCR [3], and Trio [12], is possible 
if restrictions can be made on the kinds of properties to be 
verified or on the domains of the variables in the logic (i.e., all 
domains, including time, must be finite). In such cases, these 
techniques are similar to those based on state enumeration. 
Although techniques based on analyzing the state space of 
the system are relatively straightforward to automate, the size 
of the state space is, in general, exponential in the number 
of processes in the concurrent system [21], [26]. Hence these 
techniques are computationally infeasible except for special 
classes of systems, and so their potential for practical use is 
also limited. 

In this paper, we describe a technique for assessing timing 
properties of a concurrent software system executing on a 
single processor by deriving upper and lower bounds on the 
time that can elapse between two given events in any execution 
of the system. The technique finds worst-case bounds, under 
arbitrary scheduling, without requiring enumeration of the state 
space of the system. Experiments with the technique, some 
of which are described later in this paper, show that the 
technique can be used efficiently with some examples having 
more than 2500 reachable states, indicating that this technique 
might provide a foundation of practical automated tools for 
developers of real-time software. 

Our technique is based on a formal model in which the 
execution of a concurrent system is treated as a totally ordered 
set of event occurrences, representing the activities in which 
the system engages and the order in which those activi- 
ties occur. Example events might include the synchronous. 
exchange of messages involving two processes, a process 
asynchronously sending (or receiving) a message to (or from) 
another process, a process entering its critical section, a 
process incrementing the value of some variable, etc. Our 
analysis method involves generating a set of linear inequalities 
expressing necessary conditions that must be satisfied by any 
execution of the concurrent system being analyzed. Integer 
programming techniques can then be used to find solutions 
to these inequalities that maximize or minimize an objective 
function reflecting the durations of events in the system. The 
minimum and maximum values of the objective function are 
lower and upper bounds, respectively, on the time that can 
elapse between occurrences of the events of interest. 

Although integer programming is an NP-complete prob- 
lem, the systems of inequalities produced by our method are 
network flows with side constraints and can frequently be 
solved very quickly. We have demonstrated the feasibility 
of our method by implementing it in an extended version 
of our constrained expression toolset [4] and analyzing the 
timing properties of some concurrent systems with large state 
spaces. These experiments provide encouraging evidence for 
the potential usefulness of the technique in real-time software 
development. 

In the next section of this paper, we briefly outline the 
formal model on which our technique is based and then discuss 

our method for generating inequalities. The third section 
explains why the bounds may not be tight and describes two 
extensions to our techqique that can be used to sharpen the 
bounds. Some of our experimental results are described in the 
fourth section, and the final section summarizes the paper and 
discusses some key issues concerning our method and results. 

11. DERIVING BOUNDS 

A. The Model 
Our inequality-based technique for deriving bounds on the 

time that can elapse between Occurrences of a specified pair 
of events in behaviors of a concurrent system requires that 
the system be described as a collection of deterministic finite 
state automata (DFA’s), such as those produced by the front- 
end of our constrained expression toolset. For simplicity, we 
will describe our technique for the case in which processes of 
the concurrent system communicate by synchronous message- 
passing over named channels and only briefly indicate the 
modifications required for other communication mechanisms. 
Each process is represented by a DFA in which each arc is 
labeled with a symbol representing either the communication 
of a message over a particular channel or a computation 
intemal to the process. We will assume that each symbol 
representing a communication event belongs to the alphabets 
of exactly two DFA’s and that each symbol representing a 
computation belongs to the alphabet of exactly one DFA. This 
can easily be achieved by encoding such things as process 
and channel names in the symbols and imposes no additional 
restrictions on the systems that can be modeled (e.g., we can 
still model multiple callers of an Ada entry by using distinct 
symbols for each caller). An example appears in Fig. 1, where 
communication events are represented by capital letters (e.g., 
A) and computation symbols have been omitted. A string over 
the union of the alphabets of the DFA’s corresponds to a trace 
of an execution of the concurrent system if its projection on 
the alphabet of each DFA lies in the language accepted by the 
automaton. 

The representation of a concurrent system as a collection of 
DFA’s suffices for analysis of logical properties and is, in fact, 
essentially the intemal representation used by our constrained 
expression toolset, which was originally developed for such 
logical analysis. To perform timing analysis, however, this 
representation must first be extended to account for time. 
This can be done straightforwardly by assigning a duration 
to each event’ and regarding the time required for a sequence 
of events to be the sum of the durations of the individual 
events in the sequence. Of course, such an interpretation only 
makes sense when the events are non-overlapping, as would 
be the case if the concurrent system being analyzed were to 
be run on a single processor. We adopt this straightforward 
extension to the DFA representation of a concurrent system, 
and the corresponding limitation on the class of concurrent 

’ Our technique could be used equally well with a model that viewed events 
as instantaneous and assigned durations to the intervals between events, simply 
by mapping events to the nodes of appropriate DFA’s and intervals to the 
arcs connecting nodes. However, the approach taken in this paper was more 
convenient with our existing toolset. 
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Fig. I .  A simple example. 
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systems whose timing properties we can analyze, as a first 
step toward applying our inequality-based techniques to the 
analysis of real-time systems. (It should be noted that upper 
bounds obtained under the assumption that events do not 
overlap remain valid in general. Of course, such bounds will 
not be very tight in cases where execution on a multiprocessor 
results in significant performance improvements.) 

Other communication mechanisms, in addition to the syn- 
chronous message-passing discussed above, can be described 
by augmenting the DFA’s representing sequential processes 
with a set of languages over subsets of the union of the DFA 
alphabets, as in the constrained expression formalism [4], [9] 
where these languages are generated using regular expression 
operators and a single additional operator. (The constrained 
expression formalism is capable of describing all recursively 
enumerable languages.) The additional languages, called con- 
straints, express restrictions on traces that are imposed by 
the communication (or other synchronization) primitives. For 
systems in which communication is by asynchronous buffered 
message-passing, for example, constraints over symbols that 
denote matching send and receive events require that each 
receive event is preceded by a coresponding send event so 
that no messages are received before they are sent but several 
messages can be sent before any are received. A detailed 
description of one such case can be found in [9], for example. 
The inequality-based analysis method described below is eas- 
ily adapted for use with this more general representation for 
a concurrent system. 

Clearly our model cannot represent all real-time systems. 
The most important restrictions are the following: 

Requires Bounds on Execution Time of Sequential Code: We 
assume that a technique like that of Shaw [24] can be used to 
derive upper and lower bounds on the execution time of se- 
quential code regions between communications. This is already 
a difficult problem for sequential programs since obtaining 
good bounds may require knowledge of the program’s input 
as well as its structure. We require such bounds in order to 
assign a duration to each event. 

Finite State Processes: With DFA’s, we cannot model vari- 
ables with infinite ranges, unbounded recursion, or unbounded 
heap allocation. We can model the effect of local variables on 
control flow by encoding the values of variables into the states 
of the DFA’s, although we note that encoding the values of 
variables with large ranges may lead to a state explosion that 
makes our analysis infeasible in practice. 

No Dynamic Task Creation: We cannot directly model dy- 
namic task creation, although the creation of a bounded 
number of tasks can be modeled using communication, as will 
be shown in Section IV. 

All Events are Busy: We cannot model events, such as 
timeouts or delays, that take some amount of real time to 
occur, but do not consume CPU time. 

No Scheduling Policy: Our model does not incorporate any 
specific scheduling policy. This makes the model more widely 
applicable, but may render it incapable of verifying systems 
in which the scheduling policy is essential to the corectness. 

B .  Inequality Generation 

Whereas analysis of logical properties of concurrent systems 
primarily involves answering questions such as “Does any 
behavior of the system, starting from its initial state, produce 
a deadlock?”, analysis of timing properties requires answering 
questions such as “What is the longest (or shortest) time 
that can elapse between an occurrence of event A and an 
occurrence of event B?” It is sometimes desirable to further 
restrict attention to only those parts of behaviors that do, or 
do not, contain certain other events, that is, to ask questions 
such as “What is the longest (or shortest) time that can elapse 
between an occurrence of event A and an occurrence of event 
B,  when there are at least two intervening C events and no 
intervening D events?” In fact, we always implicitly impose 
the restriction that no other A or B events occur in the part 
of the behavior starting with A and ending with B. This 
restriction, while not necessary, simplifies the statement of 
timing questions and improves the results obtained from the 
marking algorithm described in Section 111-A. 

In general, therefore, analysis of timing properties focuses 
on various subsequences of events, which we refer to as partial 
behaviors, that might occur within the full sequences that cor- 
respond to complete system behaviors. Of course, sometimes 
the subsequence of interest is the full sequence.) Our approach 
is to generate a system of inequalities representing necessary 
conditions that must be satisfied by all such subsequences. 

Suppose that we wish to generate the set of inequalities 
needed to find an upper or lower bound on the time that can 
elapse between two events corresponding to arc labels in a 
DFA representation of a concurrent program, such as the ex- 
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Fig. 2. Example of Fig. 1 with start, halt, and transition variables. 

ample appearing in Fig. 1. We first assign a transition variable 
x, to each arc a, which will represent the number of times that 
arc a is crossed in a partial behavior. Any partial behavior will 
correspond to some assignment of nonnegative integer values 
to these variables. We then assign a start variable si to each 
state i, which will be one if the process containing state i 
is in state i at the beginning of the partial behavior and zero 
otherwise. Similarly, we assign a halt variable hj to each state 
j, which will be one if the process containing state j is in state 
j at the end of the partial behavior and zero otherwise. When 
seeking partial behaviors from A to B (inclusive), we can, in 
the processes in which A appears, omit start variables from 
any states not having an outbound arc labeled A. Similarly. in 
the processes in which B appears, we can omit halt variables 
from any states not having an inbound arc labeled B. Fig. 2 
illustrates the result of applying this procedure to the DFA's 
of Fig. 1 when we are interested in partial behaviors starting 
with event A and ending with event B. 

We next write a set of flow equations over these variables. 
The flow equations require that the flow into each state equal 
the flow out (i.e., the number of times a state is entered during 
a partial behavior equals the number of times it is exited). 
Starting is counted as flow in and halting is counted as flow 
out. For the example in Fig. 2 the following equations can be 
generated in this way (the equation number is the number of 
the state from which the equation comes): 

25 = 2 7  (6) 
(7) 
(8) 
(9) 

2 1 0  = X l l  (10) 
X l l  + 2 1 2  = 2 1 2  (1 1) 

312 = 2 1 3  + h12 (12) 

5 1 3  + s 1 3  2 1 4  + h 1 3  (13) 
2 1 4  + 814 2 1 5  + h 1 4  (14) 
2 1 5  + 515 = h15 (15) 

$16 f 316 2 1 6  + h16 (16) 
s 1 7  = x 1 7  (17) 
5 1 7  = 5 1 8  (18) 

(19) 
x 1 g  = 0. (20) 

2 6  = 5 8  

x 7  + 2 8  = xg 

~g + s g  = 2 1 0  + h g  

5 1 8  + s i 9  = x i 9  + h i 9  

We also want the partial behavior to start in exactly one place 
in each process and halt in exactly one place in each process, 
so we generate an equation for each process stating that the 
sum of the start variables equals one. Given the flow equations. 
this is sufficient to force exactly one of the halt variables in 
each process to equal one. 

(21) 
(22) 

816 = 1 (23) 
(24) 

Finally, we equate the sums of transition variables on arcs 
representing the same communication event in different pro- 
cesses. 

(25) 

x 9  = X l 8  (26) 
(27) 
(28) 
(29) 

The system of equations produced by the above steps repre- 
sents a set of conditions that must be satisfied by a partial 
behavior beginning with a designated event (e.g., a com- 
munication corresponding to symbol A in our example) and 
ending with another designated event (e.g., a communication 
corresponding to symbol B in our example). To further restrict 
attention to partial behaviors that do, or do not contain 
certain other symbols, additional inequalities expressing those 
restrictions would be added. For example, to restrict attention 
in our example to only those partial behaviors beginning with 
A and ending with B, having atleast two intervening C events 
and no intervening D events, we could add the following: 

2 1  + 2 6  + 2 1 1  2 2 (30) 
5 1 3  + 2 1 5  2 2 (31) 

2 2  + x5 + 2 1 2  = 0 (32) 

2 1 6  = 0.. - ( 3 3 )  

82 + s3 + s g  = 1 
312 + S I 3  + 814 + 815 = 1 

317 f 319 = 1. 

2 3  + 2 4  + XI0 = 2 1 7  + 5 1 9  

x 1  + 2 6  + 5 1 1  = 2 1 3  + 215 
2 2  + 2 5  + 2 1 2  = 2 1 6  

5 7  + 5 8  = 2 1 4 .  
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Note that only (30) and (32) would actually need to be added 
since the other two are redundant given equations (27) and 
(28). Note further that the additional restrictions on C and 
D events make it impossible to find any conforming partial 
behaviors since there are no executions in which C occurs 
twice between an A and a B. Therefore, in the remainder of 
our discussion of this example we will ignore these restrictions 
and the corresponding inequalities (30)-( 33). 

Given a system of inequalities representing the set of condit- 
tions that must be satisfied by partial behaviors beginning and 
ending with some designated events, a nonnegative integral 
solution to this system indicates that these conditions are 
simultaneously satisfiable, and hence that a partial behaviour 
having the specified properties could exist. (Reasons that such 
a behavior might not exist, despite the existence of a solution 
to the set of inequalities, are discussed in Section 11). If such a 
partial behavior did exist, in each process it would start at the 
state whose start variable is one and end at the state whose 
halt variable is one in the solution to the inequalities. The 
flow equations guarantee that, in each process, it is possible to 
traverse some set of arcs connecting the start and halt states 
for the process, while (25)-(29) guarantee that the arcs in 
different DFA’s that represent the same communication event 
are traversed the same number of times. Let ti be the duration 
associated with the communication or computation symbol on 
the arc with transition variable 5, (for simplicity, we divide the 
time required for synchronous communication evenly between 
the participating processes). The duration ti is either the 
upper or lower bound for executing the corresponding code, 
depending on whether we seek an upper or lower bound in the 
analysis. Then we define the integer programming objective 
function to be 

t g ; .  
i 

Standard integer programming techniques can then be used 
to find a solution to the system of inequalities that gives the 
maximum or minimum value for the objective function. (The 
maximum value of the objective function could, of course, 
be unbounded. In practice, for reasons discussed below, we 
usually impose some relatively large upper bound on the 
variables, thus ensuring that there is an upper bound on the 
total duration of the subsequences we are considering. Since all 
our variables represent counts, and are therefore assumed to be 
nonnegative, the minimum value is always bounded by zero). 

To apply the method to systems with other communication 
primitives, we need only replace the equations enforcing 
synchronous communication. For systems communicating by 
buffered asynchronous message-passing, for example, instead 
of equating the sums of transition variables on arcs repre- 
senting the same communication event in different processes, 
we would introduce inequalities on the numbers of send and 
receive events reflecting the fact that messages must be sent 
before they can be received. (The method discussed in Section 
III-B can be used to deal with the fact that some message 
might have been sent before the beginning of the subsequence 
of interest). 

111. TIGHTENING THE BOUNDS 
The procedure described above produces upper and lower 

bounds on the duration of partial behaviors starting and ending 
with designated events. As noted above, however, in some 
cases solutions to the generated system of inequalities may 
not actually correspond to subsequences of behaviors. Hence, 
while the bound found by the integer programming system is 
an upper or lower bound, depending on whether we maximized 
or minimized the total duration, it is not necessarily the least 
upper bound or greatest lower bound for the duration of 
the partial behaviors in question. There are two reasons that 
solutions to the system of inequalities may not correspond to 
actual partial behaviors. 

The first reason is that these inequalities reflect most, but 
not all, of the semantics of the synchronously communicating 
DFA’s. In particular, they do not guarantee that communication 
events in different processes will occur in a consistent order. 
In the example of Fig. 1, for instance, there is a solution to 
the system of (1)-(29) that corresponds to the partial behavior 
denoted by the set of state sequences 

That is, in this solution the start variables associated with states 
3, 12, 16, and 17, the halt variables associated with states 9, 
14, 16, and 19, and the transition variables associated with 
arcs between states 3 and 5 ,  5 and 7, etc., all have the value 
one, and all other variables have the value zero. There is also 
another solution to the system (1)-(29) that corresponds to the 
“partial behavior” denoted by the set of state sequences 

{ ( 3 , 5 , 7 , 8 , 9 ) ,  (13,14,15),  (161, (17,18.19)) .  

The former in fact represents a possible behavior subsequence, 
but the latter does not, since it involves an inconsistent 
ordering of the Occurrences of events C and E in the first and 
second processes (C occurring before E in the first process 
and E occurring before C in the second). 

Another way in which the generated system of inequalities 
does not reflect all the semantics of the DFA’s is that it does 
not adequately restrict the numbers of occurrences of events 
labeling arcs that form a cycle in a process DFA. As a result, 
cycles in the DFA’s can lead to solutions to the system of 
inequalities corresponding to “partial behaviors” that contain 
“extra” events not actually in the behavior subsequence. An 
example of this latter problem can be seen by examining 
( l l ) ,  (16), and (28) above, which are the only equations 
containing the transition variables 2 1 2  and 216 associated 
with the arcs in the cycles of the example in Fig. 2. These 
equations can be satisfied by choosing any value of, say, 2 1 2 ,  

and taking 216 = xz + 25 + 2 1 2  as required by equation (28). 
These variables can thus be assigned arbitrarily large values 
in solutions found by the integer programming package. The 
communication equations add enough additional restrictions to 
eliminate such solutions in many, but not all, cases. 

The nonzero variables in an optimal solution to the system 
of inequalities determine a path in each DFA from a starting 
state to a halting state, possibly together with some cycles 
not connected to that path and having transition variables 
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with nonzero values. This problem with unconstrained cycles 
affects the sharpness of an upper bound on duration much 
more severely than that of a lower bound, since a solution 
minimizing the total duration will tend to set unconstrained 
variables to zero. If a large upper bound for all variables 
is introduced into the integer programming problem, the 
variables corresponding to such “disconnected” cycles will all 
take values near that upper bound in a solution maximizing 
the total duration and can be easily detected by inspection of 
the solution. Since such “disconnected” cycles cannot actually 
occur in an execution, it might seem that a valid upper bound 
could be obtained by simply subtracting those variables from 
the solution. This is not the case, however, since the cycle 
may contain an event that occurs in the subsequence attaining 
the true maximum duration and eliminating the events in the 
cycle would eliminate this subsequence, possibly leading to an 
incorrect bound. For instance, suppose that in our example the 
communication corresponding to symbol D takes more time 
than the communication corresponding to symbol C,  and that 
both take a nonzero amount of time. Let U be the (analyst- 
specified) maximum value for all variables in the integer 
programming problem, and let tn denote the time taken by 
a communcation corresponding to symbol R. (For simplicity, 
we will assume that all instances of the communication 
corresponding to R take the same amount of time). Then the 
partial behavior having the maximum duration is 

{(2,4,6,8,9) ,  (13.14), (16, IS), (17.18,19)}. 

but the solution to our system of equations that maximizes the 
durations corresponds to the set of state sequences 

{(3,5,7,8,9). (llu), (12. 13.14). (16”), (17.18.19)).  

(The state sequence (11“) in this represents the fact that the 
variables associated with the arc forming a cycle at state 1 1  
has the value U in the solution. Note, however, that there are 
no start or halt variables associated with state 1 1  and that 
the variable associated with the arc between states 10 and 1 I 
has the value zero in this solution.) The maximum value of 
the objective function is thus t~ + f g  + tc +  ut^ + f , E .  We 
see that the cycles at states 1 1  and 16 are taken an “extra” 
%L times here. If we simply subtract U ~ D  from this value, we 
have t-4 + t g  + tc + t ~ .  However, the partial behavior with 
maximum duration has duration t 4  + t~ + t~ + t ~ ,  which 
is larger since t~ > tc. Thus, subtracting the events in the 
cycle from a solution maximizing the objective function leads 
to an incorrect bound. 

As we have just described, one reason that a solution to the 
inequalities may not correspond to an actual partial behavior 
is that the inequalities do not reflect all of the semantics of 
the DFA’s from which they are generated. The second reason 
is that is may not be possible to reach all of the start states 
corresponding to that solution at the same time in an actual 
behavior of the system. For instance, in; the example of Fig. I 
it is possible to reach all the start states of the partial behavior 

{(3,5,7,8,9). (12.13.14), (16). (17,18. 19)) 

simultaneously in an actual behavior (via the initial partial 
behavior {1,3), ( la ) ,  (16,16). (17))). On the other hand, it is 

not possible to simultaneously reach all the start states of the 
“partial behavior” 

{(3 ,5 ,7 ,8 ,9) ,  (13,14,15), (16), (17,18,19)} 

in any actual behavior. 
In some cases it is possible to tighten the bound obtained by 

integer programming through procedures that overcome some 
of the problems introduced by cycles and eliminate some “par- 
tial behaviors” whose initial states are not all simultaneously 
reachable. We now present a marking algorithm that reduces 
the problems arising due to cycles in the DFA’s, and then 
describe an approach that reduces the problem of spurious 
solutions due to unreachable initial states. 

A. Eliminating Unreachable Cjdes 

In order to prevent cycles from intefering with the integer 
programming system’s computation of the upper bound, we 
wish to remove as many of them as possible from the DFA’s 
before inequalities are generated. We use a straightforward 
marking algorithm to identify arcs that can be removed from 
DFA’s without leading to an incorect bound. thereby breaking 
or removing cycles that cannot be reached. The marking 
algorithm accepts as input a set of start events, a set of 
stop events (but not more than one start and one stop event 
per DFA), a set of required events, and a set of forbidden 
events. The last two inputs are optional, but may be used 
by the analyst for various purposes such as to remove cycles, 
block consideration of “partial behaviors” that are known to be 
infeasible or further restrict the set of partial behaviors being 
considered. For instance, an analyst interested in the time that 
can elapse between events -4 and B when C also occurs and 
D does not could specify G as a required event and D as a 
forbidden event. In our prototype implementation, the analyst 
may specify required and forbidden events when giving the 
interval for which bounds are sought. 

The marking algorithm is based on the observation that there 
are two condition\ under which it  is clear that an arc cannot 
actually be reached in a partial behavior starting at A and 
ending at B,  and hence can be eliminated: 

I )  The arc is in one of the DFA’s containing A or B and 
does not lie along any path starting with A, ending with 
B,  or both. For example, the cycle labeled D in Process 
1 of Fig. 1 does not lie along any path ending with B, 
and so cannot be reached along any path that is part of 
a partial behavior starting at A and ending at B. 

2) The arc is in a DFA with a required event and every 
path from the required event to the arc passes through a 
forbidden event. The start and stop events A and B are 
required, in addition to those events the analyst specifies 
as required. Initially, the forbidden events are those . 
specified as forbidden by the analyst. A communication 
event in a DFA can also become forbidden if all of its 
matching events in other DFA’s are removed. 

An example of the use of these conditions is given in Fig. 
3. The marking algorithm would remove the arc labeled C 
in Process 1 due to the first condition (recall that we are not 
allowing a partial behavior starting at A and ending at B to 
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Process 1 Process 2 Process 3 Process 4 Process I Process 2 Process 3 Process 4 1 D 

D & D 

Fig. 3. Example of a cycle that can be removed. 

Input: A DFA Mj 
A set of start events S such that ISn alphabet(Mj)l 5 1 
A set of halt events H such that IHn alphabet(Mj)l 5 1 
A set of required events R such that R 2 S U H 
A set of forbidden events F 
DFA M,! = Mj with unreachable ares removed 
An updated set of forbidden events F 

Output: 

Mark all transition arca C E tmns(Mj) with the empty set 0. 
For each required event e E R 

If e @ H then 
For each transition k E tmns(Mj) where label(k) = e: 

Search forward from k to all are8 reachable without 
crossing an arc laheled with a forbidden event, or 
continuing past an arc labeled with a halt event. 
Add e to  the set marking each arc crossed. 

If e @ S then 
For each transition C E fmns(Mj) where l ak l (k )  =e: 

Search backward from C to all arcs reachable without 
crossing an arc labeled with a forbidden event, or 
continuing past an arc labeled with a start event. 
Add e to the set marking each arc crossed. 

Set M,! = Mj less all transition are8 not marked with the set alphabet(Mj) fl R.  
For each communication symbol c in aIphabet(Mj): 

alpAabet(Mj), then F := F U { c )  If c 

Fig. 4. Algorithm MARK-DFA. 

contain any intervening A’s or B’s). This makes the event G 
in Process 2 forbidden. We then know that the D cycle in 
Process 2 cannot be reached since there is no path from the 
A event in that process, which must occur, to the cycle that 
does not pass through a forbidden event. 

The marking algorithm uses conditions 1 and 2 to remove all 
arcs meeting either of these criteria from the DFA’s, thereby 
eliminating solutions with positive flow through cycles not 
connected to the path from the starting event to the ending 
event. The algorithm to mark one DFA, embodied in the 
procedure MARK-DFA, is shown in Fig. 4, where trans(hf , )  
is the set of transitions in the DFA M I ,  /ahel(k) is the symbol 
labeling transition k ,  and alphahet(MJ) = {fuhel(k)  1 k E 

Essentially, we mark only those arcs in the DFA that can 
be reached from all required events without crossing any 
forbidden events. Any remaining unmarked arcs cannot appear 
in any partial behavior containing all required events and can 
thus be removed. The complete marking algorithm proceeds 

trans(A4,)). 

(11 (E) c 1 1  
(el B 

Fig. 5.  Example of DFA marking. 

a5 follows. First the DFA’s are placed in a list of DFA’s to 
process. Then the MARK-DFA procedure is applied to each of 
the DFA’s from this list in tum. If an event that is still present 
in some DFA that has already been processed is subsequently 
marked fobidden by MARK-DFA, then more of the events 
in the already-processed DFA may need to be removed, and 
the DFA is placed back on the list of DFA‘s to process. 
The processing of DFA’s continues until the list of DFA’s 
to process is empty. To minimize the number of times each 
DFA is processed, it is advantageous to place the DFA’s with 
the most start and stop events first on the list, since these 
events have the greatest potential to mark parts of the DFA 
unreachable and cause other events occurring only in those 
parts to be marked forbidden. Given a set of DFA’s with a 
total of 71 arcs, the time complexity of MARK-DFA is clearly 
O(n). Since each arc may cause MARK-DFA to be called at 
most one additional time, the overall time complexity of the 
marking procedure is O(n2) .  

Applying this algorithm to the example of Fig. 3, we 
first place the DFA’s on the list in the order 1, 2, 3, 4. 
Process 1 comes first because it has two distinct start/stop 
events ( A  and B). Processes 2 and 3 come next since they 
have one start/stop event each. Finally, Process 4 has no 
start/stop events. Applying MARK-DFA to Process 1 will 
produce the marked DFA shown in Fig. 5. Removing the two 
arcs not marked { A ,  B }  removes all communication events 
corresponding to the C in Process 2, thereby making that event 
forbidden. In Process 2, MARK-DFA now stops at C ,  causing 
the D cycle to be removed. (Note that the presence of the 
first D in Process 2 prevents D from being forbidden.) Next, 
in Process 3, MARK-DFA removes the lower D cycle, but 
it cannot remove the upper one, since that can be reached 
backwards from the second B. Since the cycle in Process 
2 has been removed, however, the remaining D in Process 
3 cannot occur an unbounded number of times. MARK-DFA 
removes nothing from Process 4. The final DFA’s, from which 
inequalities would be generated, are shown in Fig. 6. 

The marking algorithm may not eliminate all cycles from 
the DFA’s. Additional cycles may sometimes be eliminated by 
“unrolling” loops for which the maximum number of iterations 
is known. 
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Process 1 Process 2 Process 3 Process 4 

Fig. 6. Example of Fig. 5 after cycle removal. 

B .  Eliminating Unreachable Start States 

As noted earlier, it is possible that the upper or lower 
bound found by the method described in Section 11-B will 
correspond to a “partial behavior” that cannot actually occur 
because it is not possible to reach all of the start states of that 
“partial behavior” at the same time in any actual behavior 
of the system. We can eliminate many, though not all. of 
these cases by using a somewhat larger system of inequalities. 
The larger system includes additional inequalities representing 
conditions that must be satisfied by the initial segment of an 
actual behavior containing the partial behavior of interest, that 
is, the event subsequences leading from the initial states of 
each of the tasks in the concurrent system to the states at which 
the partial behavior in question begins in each of those tasks. 
Essentially, we use the system of inequalities to simultaneously 
describe necessary conditions for a partial behavior starting at 
A and ending at B and for an initial segment ending at the 
start of the partial behavior. 

To construct this augmented system of inequalities, we 
generate a new transition variable ya for each arc a in the 
DFA’s to represent the number of times that arc is crossed in 
the initial segment. Another set of flow equations is generated 
for these transition variables just as is done for the partial 
behavior starting at A and ending at B,  with two exceptions: 

I )  Start variables associated with the partial behavior are 
counted as flow out in generating the flow equations for 
the initial segment, since they correspond to states where 
the initial segment will end. Halt variables associated 
with the partial behavior are ignored in generating the 
flow equations for the initial segment. 

2) At the initial states of the task DFA’s there is an implicit 
flow in of one, thus forcing the initial segment to begin 
at those states. 

Equations are also generated to require equal numbers of 
matching communication events from different tasks in the 
initial segment. (These equations involve only the ya’s.) 

The additional equations represent necessary, but not, in 
general, sufficient conditions for the existence of an initial 
segment from the initial state of each task to the start states 
of each task relative to a partial behavior starting at A and 
ending at B. As with the original system of inequalities, 
these additional equations impose conditions on numbers of 

event occurrences, but cannot enforce consistent ordering of 
event occurrences in different tasks nor accurately control 
the number of times that cycles can be traversed. Hence 
the additional equations do not guarantee the existence of 
an appropriate initial segment, so the bound reported by the 
integer programming system still need not be the least upper 
bound or greatest lower bound. We have found, however, that 
generating the augmented system of inequalities does eliminate 
many unreachable “partial behaviors,” frequently sharpening 
the bounds that we derive. 

IV. EXPERIMENTS 
In order to demonstrate the feasibility of our analysis 

method, we have modified parts of our constrained expression 
toolset to support the inequality-based analysis techniques 
described above. In this section we describe the application 
of our method for deriving upper bounds to two families of 
concurrent systems. 

The constrained expression toolset was developed to support 
inequality-based analysis of logical properties of concurrent 
systems. Our toolset contains a tool for producing constrained 
expressions, or sets of DFA’s and constraints like those de- 
scribed in Section 11, from designs written in an Ada-like 
design notation. It also provides tools for generating systems 
of linear inequalities from constrained expressions, for solving 
systems of linear inequalities, and for generating sample traces 
representing behaviors of a system. (A detailed description of 
the toolset appears in [4].) To perform timing analysis, we 
adapted the component of the toolset that generates inequalities 
to implement the techniques described in the previous sections. 
The integer linear programming (ILP) package provided in the 
toolset finds an optimal solution to the system of inequalities, 
assuming that one exists. It requires the specification of an 
objective function, which is set to reflect the duration of events 
for timing analysis. In [ 5 ] ,  the modified tools are used to derive 
bounds for a version of Helmbold and Luckham’s gas station 
problem [ 151, a mutual exclusion protocol based on coteries 
[IO],  and a system modeling resource contention [ 5 ] .  These 
relatively small and simple systems comprise between four 
and eight tasks, some of which had DFA’s with up to 80 states 
and many interconnected cycles. The number of reachable (un- 
timed) system states, however, does not exceed a few thousand 
in any of these systems, so exact techniques requiring the 
enumeration of the system’s states could probably be applied. 
To demonstrate the utility of our technique on problems of 
more realistic size, we apply it here to two scalable examples 
with very large state spaces that are well beyond the limits of 
state enumeration-based techniques. 

The first of these examples models a divide-and-conquer 
computation using the fork/join concurrency construct. Since 
our analysis method, like most others, cannot handle dynami- 
cally created tasks, we assume an upper bound on the number 
of tasks that can be created. A fork is modeled by placing a 
f o r k  synchronization at the top of the task being spawned 
and at the point in the parent at which it spawns the task. 
Joins are modeled similarly using a j o i n  synchronization at 
the bottom of the child task and at the point of the join in 
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n Tasks 
60 122 

120 242 
180 362 

Number of Time 
Generate Solve Total Inequalities Variables 

45 16 61 957 1012 
85 39 124 1917 2032 

169 74 243 2877 3052 

n I Tasks I Generate I Solve I Total I Inequalities I Variables 
100 I 101 I 59 I 15 I 74 I 891 I 989 

240 
300 

Fig. 7. Performance results for divide-and-conquer example. 

482 243 113 356 3837 4072 
602 319 167 486 4797 5092 

the parent task. In the n-task version of this example, n is the 
limit on the number of tasks involved in forks. The forking 
structure is very simple: task i+ 1 is potentially created by task 
i .  Task 1 is the only task that must exist; task 71 cannot fork. 

Each task, except task 72. decides whether to fork a child 
and then performs some amount of computation. If a task 
forks a child, then it performs “small” computation involving 
a shared resource, modeled by communication with a separate 
task representing the resource; otherwise it performs a “big” 
computation. Task n always performs a “big” computation 
if it is spawned. We applied our automated analysis tools 
to various size versions of this example system, seeking an 
upper bound on the total execution time of the program given 
analyst-specified bounds on duration of the communcations 
and computations in each task. For this particular example, the 
exact upper bound can be determined rather straightforwardly. 
Assume for simplicity that the fork and join communications 
are instantaneous. Then, given that U ( i )  is an upper bound on 
the total execution times of tasks i ,  . . ‘ 7 1 ,  the desired bound, 
U ( l ) ,  can be computed recursively as follows: 

U(7t) = B,, 
U ( i )  = rnax(B;, S, + U ( i  + I)) 

where Bi and Si are the durations of the big and small 
computations, respectively, for task i .  This fact allows us to 
readily determine whether our automated analysis has yielded 
a sharp bound. 

Fig. 7 shows the results of using the automated tools to 
derive the desired upper bound automatically from a specifi- 
cation of the system. The table shows the size of the system 
analyzed (n), the number of tasks in the system, the time to 
generate the inequality system, the time to solve the inequality 
system, the total analysis time, and the size of the inequality 
system produced. All times are in seconds on a SPARCstation 
10 Model 41. In each case, the toolset found the exact upper 
bound, i.e, the value of U(1) given by the formula above. 
For the results shown, the durations used for big and small 
computations were 5 and 1 time units, respectively, except for 
tasks 5, 15, 25, . . . whose big computation took 50 time units. 
For the values of 71, in the table, these durations result in all 
but the last 5 tasks being forked. Results for other experiments 
with different durations were similar. 

The second example models communication through a 
network. Each task represents a node that can receive and 
transmit packets. For scalability, we consider a network with 
a simple and regular structure, where the nodes are arranged in 
a grid with 2 rows and 71 columns. (This is, in fact, the structure 
of a fault tolerant phone network used in urban India.) Each 
node in the grid is connected to the four nodes in adjacent 
columns. Two special nodes, the source and the target, lie at 

opposite ends of the grid and are connected to the two nodes in 
the column at that end of the grid. We model the transmission 
of a single packet through the network from the source node 
to the target node. Each node upon reception of the packet, 
nondeterministically chooses one of the two nodes in the next 
column to send the packet to. We model the transmission 
of a packet from one node to another as a synchronization 
between the corresponding tasks. The duration assigned to 
each such synchronization represents the time required for the 
transmission between those nodes. 

As before, we applied our automated analysis tools to 
various size versions of this example system. In this case, 
the analysis seeks an upper bound on the time to transmit a 
packet from the source node to the target node. We have again 
chosen an example for which the exact upper bound can be 
determined rather straightforwardly, this time using shortest- 
path techniques, allowing us to readily determine whether our 
automated analysis has yielded a sharp bound. 

Fig. 8 shows the results of using the automated tools to 
derive this bound automatically from a specification of the 
system. The first column of the table shows the number of 
columns in the network (71), and the remaining columns are as 
in Fig. 7. In each case the toolset found the exact upper bound. 
For the results shown, the durations used the transmission 
times were 10 time units for each transmission, except for 
the transmissions from nodes, 5) 15! 25: . . .in row 1 to nodes 
6 ,16 ,26 , . . .  in row 2,  and the transmissions from nodes 
6: 16: 26 , .  . . in row 2 to nodes 7,17.27.. . .in row 1, which 
were assigned a duration of 20 time units. These durations 
cause the packet to zigzag from the top to the bottom row and 
back again every 10 columns. Results for other experiments 
with different durations were similar. 

Note that, as the network router example demonstrates, the 
applicability of our technique is not strictly limited to systems 
executing on a single processor. Rather, the technique’s appli- 
cability is determined by the degree to which computations 
overlap, not the architecture per se; it is unlikely that the 
network would be run on a single processor. When there is 
little overlap in the computations of sequential components, 
as in this system, our analysis yields good bounds, even 
in the multiprocessor case. Note also that, in both this and 
the last example, we could just as easily have sought lower 
bounds by setting the ILP package to minimize the objective 
function. 

In theory, the technique can produce very loose bounds due 
to unenforced event orderings and cycles in the DFA’s. In 
practice, however, the technique produced sharp bounds for 
all the experiments described here as well as those described 
in [ 5 ] ,  demonstrating that the necessary conditions are strong 
enough to be useful on some nontrivial systems. 
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Finally, and most importantly, note that the state spaces of 
both examples grow exponentially in n (the size R. problem 
has at least 2” reachable states), but the rates of growth of the 
analysis times for these systems are clearly subexponential. We 
believe this is evidence that our technique is scalable and can 
be used on some systems for which other proposed techniques 
would be prohibitively expensive. 

V. CONCLUSION 

A fundamental timing analysis problem is the determination 
of the maximum, or minimum, amount of time that can elapse 
between the occurrence of two given events during a system’s 
execution. In this paper we have described an approach to 
finding upper and lower bounds that can approximate these 
quantities under arbitrary scheduling of processes. Neither 
testing nor simulation can establish maximum or minimum 
values, in general. Some other approaches to analysis, such1 as 
model checking applied to a representation of a system’s state 
space or the use of special logics and proof techniques for 
reasoning about timing properties, can, in principle, produce 
exact values for the minimum and maximum time between 
two events. As noted earlier, however, these alternatives either 
are extremely difficult to automate or, because they require 
construction of a state space whose size grows exponentially 
with the number of processes in the concurrent system, are 
computationally intractable for concurrent systems of nontriv- 
ial size. As demonstrated by the examples of the previous 
section, analysis times for our method can grow much less 
than exponentially and therefore the method can be applied to 
some systems with very large state spaces. Thus, by providing 
bounds rather than exact values, our method trades some 
accuracy for greater feasibility. 

The key questions that must be answered about our method 
in order to evaluate this trade-off are: 

When can it be applied practically? 
When does it provide useful bounds? 

Obviously, the method is of little use if it does not produce 
results more quickly than the exact approaches and the bounds 
produced will be of little value if they are far from the 
exact times. Of course, determining when an application is 
“practical” and when bounds are “useful“ depends very much 
on the particular situation, including the speed of the machine 
used to carry out the analysis, the requirements for the system 
being analyzed, and the precise value for the time that can 
elapse between the specified events, and all these parameters 
will vary. 

These questions pose very challenging research problerns. 
Given the current state of the art, we believe that insight 
into the first question can, at least for the foreseeable future, 
best be obtained empirically. Furthermore, we would argue 
that software developers will derive relatively little benefit 
from theoretical answers to the second question until enough 
experience with the method has accumulated to provide some 
useful guidelines for answering the first. 

The method described in Sections I1 and 111 converts a 
question about a system of communicating processes to an 
integer linear programming problem by generating a system 

of inequalities and an objective function to be maximized 
or minimized over the nonnegative integer solutions to those 
inequalities. Integer linear programming is NP-complete, and 
is regarded in practice as computationally quite difficult. 
For special classes of problems (the “totally unimodular” 
ones), however, integer linear programming reduces to linear 
programming, for which polynomial algorithms are known and 
the simplex algorithm is almost always practical even though 
its worst-case performance is exponential. The integer linear 
programming problems arising from our method are not totally 
unimodular, but they do have special properties that seem to 
make them easier to solve than the general case-in particular 
large portions of them are network flow problems that are 
totally unimodular. Although there has been some effort to 
develop special-purpose solvers for this type of problem (net- 
work flows with certain side constraints), we are not aware 
of any theoretical results that indicate when such problems 
can be solved much more efficiently than the general integer 
linear programming problem, or how much more efficiently. 
Even papers proposing new methods for solving such problems 
validate those methods by presenting empirical data on their 
performance on standard test problems [2]. 

Since a formal characterization of the class of systems for 
which our method is efficient would depend on a similar 
characterization of the class of integer linear programming 
problems that can be solved efficiently, and this second 
characterization is unavailable, we are unable to say the- 
oretically when our method is more practical than exact 
methods. Furthermore, the question of practicality in real 
applications depends not just on the details of a particular 
integer programming algorithm, but also on the details of 
a particular implementation that must deal with numerical 
problems involving such things as instability and the inaccu- 
racy of floating point arithmetic. It therefore seems clear that, 
until stronger results about the solution of these integer pro- 
gramming problems are available, the best information about 
the practicality of our method will come from accumulating 
experience in applying it to a wide range of systems. 

Given that reachability-based approaches can provide exact 
answers to questions about the time that can elapse between 
events, our method is of interest only when it is more feasible 
than such approaches. Thus, theoretical results about the qual- 
ity of the bounds provided by our method, which seem difficult 
to obtain, will be of most value to system developers only in 
cases where there is reason to believe that the method is more 
practical than exact approaches. Although our experiments, 
such as those described in Section IV, demonstrate that such 
cases exist, a good deal more experience with the method 
will be needed to justify the effort required to obtain such 
results. This experience will also help to guide theorists in 
proposing appropriate hypotheses under which such theorems 
can be proved. 

Another issue related to the quality of the bounds we obtain 
is the accuracy of the durations that our method assigns 
to individual events in the modeled system’s behavior. One 
could generalize the model to treat durations as varying over 
some probability distribution(s), but for finding maximum and 
minimum timings one would still only be interested in the 
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maximum and minimum values that those durations could 
assume. For certain classes of relatively low-level events, of 
course, some of this information is available from component 
specifications, but obtaining such maxima and minima for 
higher-level events in the face of sophisticated compilers 
and complex hardware architectures is extremely challenging. 
Work like that of Shaw [24], who has developed an automated 
proof rule-based technique for deriving timing properties from 
programs in high-level languages and has measured the accu- 
racy of the derived times against actual run times, is necessary 
to provide guidance on the assignment of the durations used 
in our method. Unlike some other approaches, which attempt 
to establish that a system satisfies a complete set of timing 
requirements, our method derives upper and lower bounds on 
the time that can elapse between a specified pair of events. It 
is thus particularly suited for analyzing systems with a small 
number of critical timing bounds. A broad range of systems 
can be represented using the model on which the method 
is based. As indicated earlier, the model can be applied to 
concurrent systems that assume different underlying models 
of computation and communication [9]. In particular, neither 
the restriction to two-party communication nor the assumption 
that the automata are deterministic, both made for purposes 
of the examples in this paper, is critical to the model or the 
analysis method. 

A good deal of further experience with the method will 
be required to provide good answers to the questions about its 
range of practical application and the accuracy of the bounds it 
provides. Nevertheless, we have demonstrated that the method 
can be feasibly automated and have successfully applied it to 
some scalable families of examples. Although these examples 
are smaller and more restricted than real concurrent systems, 
the ability of our prototype implementation to analyze systems 
having more than 2”’ reachable states is very encouraging. 
Furthermore, initial work on extending the method to the 
multiprocessor setting [6]  is quite promising. We, therefore, 
believe that our method has considerable potential as a foun- 
dation for practical tools for developers of real-time software. 
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