
708 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20. NO. 9, SEPTEMBER 1994

Automated Derivation of Time Bounds
in Uniprocessor Concurrent S y s terns

George S . Avrunin, James C. Corbett, Laura K. Dillon, Member, IEEE, and Jack C. Wileden, Senior Member, IEEE

Abstruct- The successful development of complex real-time
systems depends on analysis techniques that can accurately assess
the timing properties of those systems. This paper describes a
technique for deriving upper and lower bounds on the time
that can elapse between two given events in an execution of a
concurrent software system running on a single processor under
arbitrary scheduling. The technique involves generating linear
inequalities expressing conditions that must be satisfied by all
executions of such a system and using integer programming
methods to find appropriate solutions to the inequalities. The
technique does not require construction of the state space of
the system and its feasibility has been demonstrated by using an
extended version of the constrained expression toolset to analyze
the timing properties of some concurrent systems with very large
state spaces.

Index Terms- Concurrent systems, real-time systems, auto-
mated analysis, timing analysis, linear inequalities, integer pro-
gramming, finite state systems.

I. INTRODUCTION
S the use of real-time software systems grows, there A is increasing need for analysis methods to accurately

assess the timing properties of such systems. This is true for
both “hard” real-time systems, in which inability to produce
results within specified deadlines is tantamount to failure,
and “soft” real-time systems, in which inability to produce
results within specified deadlines is tantamount to failure, and
“soft” real-time systems, in which the utility of the results
produced declines as the time required to produce those results
increases [25]. For instance, even real-time systems relying on
sophisticated scheduling mechanisms require accurate predic-
tions (produced either a priori or at run-time) of the timing
properties of the units of computation that they are attempting
to schedule. The problem of determining timing properties
is, however, already a difficult one for sequential software,
and the introduction of concurrency increases that difficulty
significantly by greatly increasing the number of possible
executions that must be considered.

Manuscript received September IO, 1993; revised July 1994. This research
has been supported by grants from the National Science Foundation, the Office
of Naval Research, and the Defense Advanced Research Projects Agency.
Recommended by J. Gannon.

G. S. Avrunin and J. C. Wileden are with the University of Massa-
chusetts at Amherst. MA 01003 USA: e-mail: avrunin@math.umass.edu,
wileden@cs,umass.edu.
I. C. Corbett is with the University of Hawaii at Manoa, Manoa, HI 96822

USA; e-mail: corbett@hawaii.edu.
L. K. Dillon is with the University of Califomia at Santa Barbara, CA

93 106 USA: e-mail: dillon@cs.ucsb.edu.
IEEE Log Number 9404462.

One approach has been to study particular algorithms for
scheduling the execution of different processes, and to try to
determine whether a given concurrent system can be scheduled
in a way that meets its timing requirements. If the component
processes of a concurrent system are periodic (i.e., request
execution repeatedly at fixed intervals) and do not interact, the
effects of various pre-emptive scheduling algorithms are well
understood. If dynamic assignment of priorities to processes
is possible, then the earliest deadline algorithm is optimal,
in the sense of providing the best processor utilization [18].
For static priority assignments, rate monotonic scheduling, in
which the processes with shorter periods get higher priorities,
is an optimal scheduling algorithm in the sense that any set
of processes that can be scheduled successfully with a static
priority assignment can be scheduled with the rate monotonic
algorithm. For both earliest deadline and rate monotonic
scheduling, there are simple sufficient conditions to determine
whether a set of processes can be successfully scheduled [18,
Theorems 5 and 71. When the processes are not periodic and
interact, the situation is more complex, and the problem of
determining schedulability is Nf -hard [191. For instance, rate
monotonic scheduling methods can still be applied, but it is
necessary to recast aperiodic processes as periodic ones (using
periodic server processes, for example) and to use special
scheduling to avoid priority inversion problems [22], [23].

This paper is concerned with the case in which processes
in a concurrent system are aperiodic and interact in complex
ways, and in which the system developer has (or wishes to
exercise) little control over scheduling beyond that provided by
the semantics of interprocess communication. Such a situation,
for instance, would frequently be the case for systems using
Ada tasking constructs without special runtime support for
rate monotonic scheduling. In this setting, it may be impor-
tant to show that the system satisfies certain critical timing
requirements without establishing full schedulability under a
particular scheduling algorithm.

Various approaches to analyzing timing properties have
been described in the literature. Some (e.g., [I], [8]) have
relied upon testing or simulation to obtain timing information.
Of course, testing and simulation can, at best, only provide
representative samples of timing behavior and hence cannot
be expected to accurately determine timing properties of
concurrent systems.

Most of the other analysis methods that have been proposed
have involved the introduction of special logics and proof
techniques (e.g., [13], [16]) or construction and analysis of
the state space of the system (e.g., [7], [I l l , [14], [201). The

0098-5589/94$04.00 0 1994 IEEE

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:57:24 UTC from IEEE Xplore. Restrictions apply.

mailto:avrunin@math.umass.edu
mailto:wileden@cs,umass.edu
mailto:corbett@hawaii.edu
mailto:dillon@cs.ucsb.edu

AVRUNIN er 01.: AUTOMATED DERIVATION OF TIME BOUNDS IN UNIPROCESSOR CONCURRENT SYSTEMS 709

techniques based on proving theorems in special logics have
typically been difficult to automate, and therefore have limited
potential for practical application by developers of concurrent
real-time software. Automation of logic-based techniques,
such as Modechart [17], SCR [3], and Trio [12], is possible
if restrictions can be made on the kinds of properties to be
verified or on the domains of the variables in the logic (i.e., all
domains, including time, must be finite). In such cases, these
techniques are similar to those based on state enumeration.
Although techniques based on analyzing the state space of
the system are relatively straightforward to automate, the size
of the state space is, in general, exponential in the number
of processes in the concurrent system [21], [26]. Hence these
techniques are computationally infeasible except for special
classes of systems, and so their potential for practical use is
also limited.

In this paper, we describe a technique for assessing timing
properties of a concurrent software system executing on a
single processor by deriving upper and lower bounds on the
time that can elapse between two given events in any execution
of the system. The technique finds worst-case bounds, under
arbitrary scheduling, without requiring enumeration of the state
space of the system. Experiments with the technique, some
of which are described later in this paper, show that the
technique can be used efficiently with some examples having
more than 2500 reachable states, indicating that this technique
might provide a foundation of practical automated tools for
developers of real-time software.

Our technique is based on a formal model in which the
execution of a concurrent system is treated as a totally ordered
set of event occurrences, representing the activities in which
the system engages and the order in which those activi-
ties occur. Example events might include the synchronous.
exchange of messages involving two processes, a process
asynchronously sending (or receiving) a message to (or from)
another process, a process entering its critical section, a
process incrementing the value of some variable, etc. Our
analysis method involves generating a set of linear inequalities
expressing necessary conditions that must be satisfied by any
execution of the concurrent system being analyzed. Integer
programming techniques can then be used to find solutions
to these inequalities that maximize or minimize an objective
function reflecting the durations of events in the system. The
minimum and maximum values of the objective function are
lower and upper bounds, respectively, on the time that can
elapse between occurrences of the events of interest.

Although integer programming is an NP-complete prob-
lem, the systems of inequalities produced by our method are
network flows with side constraints and can frequently be
solved very quickly. We have demonstrated the feasibility
of our method by implementing it in an extended version
of our constrained expression toolset [4] and analyzing the
timing properties of some concurrent systems with large state
spaces. These experiments provide encouraging evidence for
the potential usefulness of the technique in real-time software
development.

In the next section of this paper, we briefly outline the
formal model on which our technique is based and then discuss

our method for generating inequalities. The third section
explains why the bounds may not be tight and describes two
extensions to our techqique that can be used to sharpen the
bounds. Some of our experimental results are described in the
fourth section, and the final section summarizes the paper and
discusses some key issues concerning our method and results.

11. DERIVING BOUNDS

A. The Model
Our inequality-based technique for deriving bounds on the

time that can elapse between Occurrences of a specified pair
of events in behaviors of a concurrent system requires that
the system be described as a collection of deterministic finite
state automata (DFA’s), such as those produced by the front-
end of our constrained expression toolset. For simplicity, we
will describe our technique for the case in which processes of
the concurrent system communicate by synchronous message-
passing over named channels and only briefly indicate the
modifications required for other communication mechanisms.
Each process is represented by a DFA in which each arc is
labeled with a symbol representing either the communication
of a message over a particular channel or a computation
intemal to the process. We will assume that each symbol
representing a communication event belongs to the alphabets
of exactly two DFA’s and that each symbol representing a
computation belongs to the alphabet of exactly one DFA. This
can easily be achieved by encoding such things as process
and channel names in the symbols and imposes no additional
restrictions on the systems that can be modeled (e.g., we can
still model multiple callers of an Ada entry by using distinct
symbols for each caller). An example appears in Fig. 1, where
communication events are represented by capital letters (e.g.,
A) and computation symbols have been omitted. A string over
the union of the alphabets of the DFA’s corresponds to a trace
of an execution of the concurrent system if its projection on
the alphabet of each DFA lies in the language accepted by the
automaton.

The representation of a concurrent system as a collection of
DFA’s suffices for analysis of logical properties and is, in fact,
essentially the intemal representation used by our constrained
expression toolset, which was originally developed for such
logical analysis. To perform timing analysis, however, this
representation must first be extended to account for time.
This can be done straightforwardly by assigning a duration
to each event’ and regarding the time required for a sequence
of events to be the sum of the durations of the individual
events in the sequence. Of course, such an interpretation only
makes sense when the events are non-overlapping, as would
be the case if the concurrent system being analyzed were to
be run on a single processor. We adopt this straightforward
extension to the DFA representation of a concurrent system,
and the corresponding limitation on the class of concurrent

’ Our technique could be used equally well with a model that viewed events
as instantaneous and assigned durations to the intervals between events, simply
by mapping events to the nodes of appropriate DFA’s and intervals to the
arcs connecting nodes. However, the approach taken in this paper was more
convenient with our existing toolset.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:57:24 UTC from IEEE Xplore. Restrictions apply.

710 IEEE TRANSAOIONS ON SOITWARE ENGINEERING, VOL. 20, NO. 9, SEPTEMBER 1994

D

Fig. I . A simple example.

Pnuess 3

V

D

Proecss 4

systems whose timing properties we can analyze, as a first
step toward applying our inequality-based techniques to the
analysis of real-time systems. (It should be noted that upper
bounds obtained under the assumption that events do not
overlap remain valid in general. Of course, such bounds will
not be very tight in cases where execution on a multiprocessor
results in significant performance improvements.)

Other communication mechanisms, in addition to the syn-
chronous message-passing discussed above, can be described
by augmenting the DFA’s representing sequential processes
with a set of languages over subsets of the union of the DFA
alphabets, as in the constrained expression formalism [4], [9]
where these languages are generated using regular expression
operators and a single additional operator. (The constrained
expression formalism is capable of describing all recursively
enumerable languages.) The additional languages, called con-
straints, express restrictions on traces that are imposed by
the communication (or other synchronization) primitives. For
systems in which communication is by asynchronous buffered
message-passing, for example, constraints over symbols that
denote matching send and receive events require that each
receive event is preceded by a coresponding send event so
that no messages are received before they are sent but several
messages can be sent before any are received. A detailed
description of one such case can be found in [9], for example.
The inequality-based analysis method described below is eas-
ily adapted for use with this more general representation for
a concurrent system.

Clearly our model cannot represent all real-time systems.
The most important restrictions are the following:

Requires Bounds on Execution Time of Sequential Code: We
assume that a technique like that of Shaw [24] can be used to
derive upper and lower bounds on the execution time of se-
quential code regions between communications. This is already
a difficult problem for sequential programs since obtaining
good bounds may require knowledge of the program’s input
as well as its structure. We require such bounds in order to
assign a duration to each event.

Finite State Processes: With DFA’s, we cannot model vari-
ables with infinite ranges, unbounded recursion, or unbounded
heap allocation. We can model the effect of local variables on
control flow by encoding the values of variables into the states
of the DFA’s, although we note that encoding the values of
variables with large ranges may lead to a state explosion that
makes our analysis infeasible in practice.

No Dynamic Task Creation: We cannot directly model dy-
namic task creation, although the creation of a bounded
number of tasks can be modeled using communication, as will
be shown in Section IV.

All Events are Busy: We cannot model events, such as
timeouts or delays, that take some amount of real time to
occur, but do not consume CPU time.

No Scheduling Policy: Our model does not incorporate any
specific scheduling policy. This makes the model more widely
applicable, but may render it incapable of verifying systems
in which the scheduling policy is essential to the corectness.

B . Inequality Generation

Whereas analysis of logical properties of concurrent systems
primarily involves answering questions such as “Does any
behavior of the system, starting from its initial state, produce
a deadlock?”, analysis of timing properties requires answering
questions such as “What is the longest (or shortest) time
that can elapse between an occurrence of event A and an
occurrence of event B?” It is sometimes desirable to further
restrict attention to only those parts of behaviors that do, or
do not, contain certain other events, that is, to ask questions
such as “What is the longest (or shortest) time that can elapse
between an occurrence of event A and an occurrence of event
B, when there are at least two intervening C events and no
intervening D events?” In fact, we always implicitly impose
the restriction that no other A or B events occur in the part
of the behavior starting with A and ending with B. This
restriction, while not necessary, simplifies the statement of
timing questions and improves the results obtained from the
marking algorithm described in Section 111-A.

In general, therefore, analysis of timing properties focuses
on various subsequences of events, which we refer to as partial
behaviors, that might occur within the full sequences that cor-
respond to complete system behaviors. Of course, sometimes
the subsequence of interest is the full sequence.) Our approach
is to generate a system of inequalities representing necessary
conditions that must be satisfied by all such subsequences.

Suppose that we wish to generate the set of inequalities
needed to find an upper or lower bound on the time that can
elapse between two events corresponding to arc labels in a
DFA representation of a concurrent program, such as the ex-

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:57:24 UTC from IEEE Xplore. Restrictions apply.

71 I AVRUNIN er al.: AUTOMATED DERIVATION OF TIME BOUNDS IN UNIPROCESSOR CONCURRENT SYSTEMS

Pmcess 3

D

Fig. 2. Example of Fig. 1 with start, halt, and transition variables.

ample appearing in Fig. 1. We first assign a transition variable
x, to each arc a, which will represent the number of times that
arc a is crossed in a partial behavior. Any partial behavior will
correspond to some assignment of nonnegative integer values
to these variables. We then assign a start variable si to each
state i, which will be one if the process containing state i
is in state i at the beginning of the partial behavior and zero
otherwise. Similarly, we assign a halt variable hj to each state
j, which will be one if the process containing state j is in state
j at the end of the partial behavior and zero otherwise. When
seeking partial behaviors from A to B (inclusive), we can, in
the processes in which A appears, omit start variables from
any states not having an outbound arc labeled A. Similarly. in
the processes in which B appears, we can omit halt variables
from any states not having an inbound arc labeled B. Fig. 2
illustrates the result of applying this procedure to the DFA's
of Fig. 1 when we are interested in partial behaviors starting
with event A and ending with event B.

We next write a set of flow equations over these variables.
The flow equations require that the flow into each state equal
the flow out (i.e., the number of times a state is entered during
a partial behavior equals the number of times it is exited).
Starting is counted as flow in and halting is counted as flow
out. For the example in Fig. 2 the following equations can be
generated in this way (the equation number is the number of
the state from which the equation comes):

25 = 2 7 (6)
(7)
(8)
(9)

2 1 0 = X l l (10)
X l l + 2 1 2 = 2 1 2 (1 1)

312 = 2 1 3 + h12 (12)

5 1 3 + s 1 3 2 1 4 + h 1 3 (13)
2 1 4 + 814 2 1 5 + h 1 4 (14)
2 1 5 + 515 = h15 (15)

$16 f 316 2 1 6 + h16 (16)
s 1 7 = x 1 7 (17)
5 1 7 = 5 1 8 (18)

(19)
x 1 g = 0. (20)

2 6 = 5 8

x 7 + 2 8 = xg

~g + s g = 2 1 0 + h g

5 1 8 + s i 9 = x i 9 + h i 9

We also want the partial behavior to start in exactly one place
in each process and halt in exactly one place in each process,
so we generate an equation for each process stating that the
sum of the start variables equals one. Given the flow equations.
this is sufficient to force exactly one of the halt variables in
each process to equal one.

(21)
(22)

816 = 1 (23)
(24)

Finally, we equate the sums of transition variables on arcs
representing the same communication event in different pro-
cesses.

(25)

x 9 = X l 8 (26)
(27)
(28)
(29)

The system of equations produced by the above steps repre-
sents a set of conditions that must be satisfied by a partial
behavior beginning with a designated event (e.g., a com-
munication corresponding to symbol A in our example) and
ending with another designated event (e.g., a communication
corresponding to symbol B in our example). To further restrict
attention to partial behaviors that do, or do not contain
certain other symbols, additional inequalities expressing those
restrictions would be added. For example, to restrict attention
in our example to only those partial behaviors beginning with
A and ending with B, having atleast two intervening C events
and no intervening D events, we could add the following:

2 1 + 2 6 + 2 1 1 2 2 (30)
5 1 3 + 2 1 5 2 2 (31)

2 2 + x5 + 2 1 2 = 0 (32)

2 1 6 = 0.. - (3 3)

82 + s3 + s g = 1
312 + S I 3 + 814 + 815 = 1

317 f 319 = 1.

2 3 + 2 4 + XI0 = 2 1 7 + 5 1 9

x 1 + 2 6 + 5 1 1 = 2 1 3 + 215
2 2 + 2 5 + 2 1 2 = 2 1 6

5 7 + 5 8 = 2 1 4 .

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:57:24 UTC from IEEE Xplore. Restrictions apply.

712 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 9, SEPTEMBER 1994

Note that only (30) and (32) would actually need to be added
since the other two are redundant given equations (27) and
(28). Note further that the additional restrictions on C and
D events make it impossible to find any conforming partial
behaviors since there are no executions in which C occurs
twice between an A and a B. Therefore, in the remainder of
our discussion of this example we will ignore these restrictions
and the corresponding inequalities (30)-(33).

Given a system of inequalities representing the set of condit-
tions that must be satisfied by partial behaviors beginning and
ending with some designated events, a nonnegative integral
solution to this system indicates that these conditions are
simultaneously satisfiable, and hence that a partial behaviour
having the specified properties could exist. (Reasons that such
a behavior might not exist, despite the existence of a solution
to the set of inequalities, are discussed in Section 11). If such a
partial behavior did exist, in each process it would start at the
state whose start variable is one and end at the state whose
halt variable is one in the solution to the inequalities. The
flow equations guarantee that, in each process, it is possible to
traverse some set of arcs connecting the start and halt states
for the process, while (25)-(29) guarantee that the arcs in
different DFA’s that represent the same communication event
are traversed the same number of times. Let ti be the duration
associated with the communication or computation symbol on
the arc with transition variable 5, (for simplicity, we divide the
time required for synchronous communication evenly between
the participating processes). The duration ti is either the
upper or lower bound for executing the corresponding code,
depending on whether we seek an upper or lower bound in the
analysis. Then we define the integer programming objective
function to be

t g ; .
i

Standard integer programming techniques can then be used
to find a solution to the system of inequalities that gives the
maximum or minimum value for the objective function. (The
maximum value of the objective function could, of course,
be unbounded. In practice, for reasons discussed below, we
usually impose some relatively large upper bound on the
variables, thus ensuring that there is an upper bound on the
total duration of the subsequences we are considering. Since all
our variables represent counts, and are therefore assumed to be
nonnegative, the minimum value is always bounded by zero).

To apply the method to systems with other communication
primitives, we need only replace the equations enforcing
synchronous communication. For systems communicating by
buffered asynchronous message-passing, for example, instead
of equating the sums of transition variables on arcs repre-
senting the same communication event in different processes,
we would introduce inequalities on the numbers of send and
receive events reflecting the fact that messages must be sent
before they can be received. (The method discussed in Section
III-B can be used to deal with the fact that some message
might have been sent before the beginning of the subsequence
of interest).

111. TIGHTENING THE BOUNDS
The procedure described above produces upper and lower

bounds on the duration of partial behaviors starting and ending
with designated events. As noted above, however, in some
cases solutions to the generated system of inequalities may
not actually correspond to subsequences of behaviors. Hence,
while the bound found by the integer programming system is
an upper or lower bound, depending on whether we maximized
or minimized the total duration, it is not necessarily the least
upper bound or greatest lower bound for the duration of
the partial behaviors in question. There are two reasons that
solutions to the system of inequalities may not correspond to
actual partial behaviors.

The first reason is that these inequalities reflect most, but
not all, of the semantics of the synchronously communicating
DFA’s. In particular, they do not guarantee that communication
events in different processes will occur in a consistent order.
In the example of Fig. 1, for instance, there is a solution to
the system of (1)-(29) that corresponds to the partial behavior
denoted by the set of state sequences

That is, in this solution the start variables associated with states
3, 12, 16, and 17, the halt variables associated with states 9,
14, 16, and 19, and the transition variables associated with
arcs between states 3 and 5 , 5 and 7, etc., all have the value
one, and all other variables have the value zero. There is also
another solution to the system (1)-(29) that corresponds to the
“partial behavior” denoted by the set of state sequences

{ (3 , 5 , 7 , 8 , 9) , (13,14,15), (161, (17,18.19)) .

The former in fact represents a possible behavior subsequence,
but the latter does not, since it involves an inconsistent
ordering of the Occurrences of events C and E in the first and
second processes (C occurring before E in the first process
and E occurring before C in the second).

Another way in which the generated system of inequalities
does not reflect all the semantics of the DFA’s is that it does
not adequately restrict the numbers of occurrences of events
labeling arcs that form a cycle in a process DFA. As a result,
cycles in the DFA’s can lead to solutions to the system of
inequalities corresponding to “partial behaviors” that contain
“extra” events not actually in the behavior subsequence. An
example of this latter problem can be seen by examining
(l l) , (16), and (28) above, which are the only equations
containing the transition variables 2 1 2 and 216 associated
with the arcs in the cycles of the example in Fig. 2. These
equations can be satisfied by choosing any value of, say, 2 1 2 ,

and taking 216 = xz + 25 + 2 1 2 as required by equation (28).
These variables can thus be assigned arbitrarily large values
in solutions found by the integer programming package. The
communication equations add enough additional restrictions to
eliminate such solutions in many, but not all, cases.

The nonzero variables in an optimal solution to the system
of inequalities determine a path in each DFA from a starting
state to a halting state, possibly together with some cycles
not connected to that path and having transition variables

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:57:24 UTC from IEEE Xplore. Restrictions apply.

AVRUNIN et al.: AUTOMATED DERIVATION OF TIME BOUNDS IN UNIPROCESSOR CONCURRENT SYSTEMS 713

with nonzero values. This problem with unconstrained cycles
affects the sharpness of an upper bound on duration much
more severely than that of a lower bound, since a solution
minimizing the total duration will tend to set unconstrained
variables to zero. If a large upper bound for all variables
is introduced into the integer programming problem, the
variables corresponding to such “disconnected” cycles will all
take values near that upper bound in a solution maximizing
the total duration and can be easily detected by inspection of
the solution. Since such “disconnected” cycles cannot actually
occur in an execution, it might seem that a valid upper bound
could be obtained by simply subtracting those variables from
the solution. This is not the case, however, since the cycle
may contain an event that occurs in the subsequence attaining
the true maximum duration and eliminating the events in the
cycle would eliminate this subsequence, possibly leading to an
incorrect bound. For instance, suppose that in our example the
communication corresponding to symbol D takes more time
than the communication corresponding to symbol C, and that
both take a nonzero amount of time. Let U be the (analyst-
specified) maximum value for all variables in the integer
programming problem, and let tn denote the time taken by
a communcation corresponding to symbol R. (For simplicity,
we will assume that all instances of the communication
corresponding to R take the same amount of time). Then the
partial behavior having the maximum duration is

{(2,4,6,8,9) , (13.14), (16, IS), (17.18,19)}.

but the solution to our system of equations that maximizes the
durations corresponds to the set of state sequences

{(3,5,7,8,9). (llu), (12. 13.14). (16”), (17.18.19)).

(The state sequence (11“) in this represents the fact that the
variables associated with the arc forming a cycle at state 1 1
has the value U in the solution. Note, however, that there are
no start or halt variables associated with state 1 1 and that
the variable associated with the arc between states 10 and 1 I
has the value zero in this solution.) The maximum value of
the objective function is thus t~ + f g + tc + ut^ + f , E . We
see that the cycles at states 1 1 and 16 are taken an “extra”
%L times here. If we simply subtract U ~ D from this value, we
have t-4 + t g + tc + t ~ . However, the partial behavior with
maximum duration has duration t 4 + t~ + t~ + t ~ , which
is larger since t~ > tc. Thus, subtracting the events in the
cycle from a solution maximizing the objective function leads
to an incorrect bound.

As we have just described, one reason that a solution to the
inequalities may not correspond to an actual partial behavior
is that the inequalities do not reflect all of the semantics of
the DFA’s from which they are generated. The second reason
is that is may not be possible to reach all of the start states
corresponding to that solution at the same time in an actual
behavior of the system. For instance, in; the example of Fig. I
it is possible to reach all the start states of the partial behavior

{(3,5,7,8,9). (12.13.14), (16). (17,18. 19))

simultaneously in an actual behavior (via the initial partial
behavior {1,3), (la) , (16,16). (17))). On the other hand, it is

not possible to simultaneously reach all the start states of the
“partial behavior”

{(3 ,5 ,7 ,8 ,9) , (13,14,15), (16), (17,18,19)}

in any actual behavior.
In some cases it is possible to tighten the bound obtained by

integer programming through procedures that overcome some
of the problems introduced by cycles and eliminate some “par-
tial behaviors” whose initial states are not all simultaneously
reachable. We now present a marking algorithm that reduces
the problems arising due to cycles in the DFA’s, and then
describe an approach that reduces the problem of spurious
solutions due to unreachable initial states.

A. Eliminating Unreachable Cjdes

In order to prevent cycles from intefering with the integer
programming system’s computation of the upper bound, we
wish to remove as many of them as possible from the DFA’s
before inequalities are generated. We use a straightforward
marking algorithm to identify arcs that can be removed from
DFA’s without leading to an incorect bound. thereby breaking
or removing cycles that cannot be reached. The marking
algorithm accepts as input a set of start events, a set of
stop events (but not more than one start and one stop event
per DFA), a set of required events, and a set of forbidden
events. The last two inputs are optional, but may be used
by the analyst for various purposes such as to remove cycles,
block consideration of “partial behaviors” that are known to be
infeasible or further restrict the set of partial behaviors being
considered. For instance, an analyst interested in the time that
can elapse between events -4 and B when C also occurs and
D does not could specify G as a required event and D as a
forbidden event. In our prototype implementation, the analyst
may specify required and forbidden events when giving the
interval for which bounds are sought.

The marking algorithm is based on the observation that there
are two condition\ under which it is clear that an arc cannot
actually be reached in a partial behavior starting at A and
ending at B, and hence can be eliminated:

I) The arc is in one of the DFA’s containing A or B and
does not lie along any path starting with A, ending with
B, or both. For example, the cycle labeled D in Process
1 of Fig. 1 does not lie along any path ending with B,
and so cannot be reached along any path that is part of
a partial behavior starting at A and ending at B.

2) The arc is in a DFA with a required event and every
path from the required event to the arc passes through a
forbidden event. The start and stop events A and B are
required, in addition to those events the analyst specifies
as required. Initially, the forbidden events are those .
specified as forbidden by the analyst. A communication
event in a DFA can also become forbidden if all of its
matching events in other DFA’s are removed.

An example of the use of these conditions is given in Fig.
3. The marking algorithm would remove the arc labeled C
in Process 1 due to the first condition (recall that we are not
allowing a partial behavior starting at A and ending at B to

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:57:24 UTC from IEEE Xplore. Restrictions apply.

714 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 20. NO. 9, SEPTEMBER 1994

Process 1 Process 2 Process 3 Process 4 Process I Process 2 Process 3 Process 4 1 D

D & D

Fig. 3. Example of a cycle that can be removed.

Input: A DFA Mj
A set of start events S such that ISn alphabet(Mj)l 5 1
A set of halt events H such that IHn alphabet(Mj)l 5 1
A set of required events R such that R 2 S U H
A set of forbidden events F
DFA M,! = Mj with unreachable ares removed
An updated set of forbidden events F

Output:

Mark all transition arca C E tmns(Mj) with the empty set 0.
For each required event e E R

If e @ H then
For each transition k E tmns(Mj) where label(k) = e:

Search forward from k to all are8 reachable without
crossing an arc laheled with a forbidden event, or
continuing past an arc labeled with a halt event.
Add e to the set marking each arc crossed.

If e @ S then
For each transition C E fmns(Mj) where l ak l (k) =e:

Search backward from C to all arcs reachable without
crossing an arc labeled with a forbidden event, or
continuing past an arc labeled with a start event.
Add e to the set marking each arc crossed.

Set M,! = Mj less all transition are8 not marked with the set alphabet(Mj) fl R.
For each communication symbol c in aIphabet(Mj):

alpAabet(Mj), then F := F U { c) If c

Fig. 4. Algorithm MARK-DFA.

contain any intervening A’s or B’s). This makes the event G
in Process 2 forbidden. We then know that the D cycle in
Process 2 cannot be reached since there is no path from the
A event in that process, which must occur, to the cycle that
does not pass through a forbidden event.

The marking algorithm uses conditions 1 and 2 to remove all
arcs meeting either of these criteria from the DFA’s, thereby
eliminating solutions with positive flow through cycles not
connected to the path from the starting event to the ending
event. The algorithm to mark one DFA, embodied in the
procedure MARK-DFA, is shown in Fig. 4, where trans(hf ,)
is the set of transitions in the DFA M I , /ahel(k) is the symbol
labeling transition k , and alphahet(MJ) = {fuhel(k) 1 k E

Essentially, we mark only those arcs in the DFA that can
be reached from all required events without crossing any
forbidden events. Any remaining unmarked arcs cannot appear
in any partial behavior containing all required events and can
thus be removed. The complete marking algorithm proceeds

trans(A4,)).

(11 (E) c 1 1
(el B

Fig. 5. Example of DFA marking.

a5 follows. First the DFA’s are placed in a list of DFA’s to
process. Then the MARK-DFA procedure is applied to each of
the DFA’s from this list in tum. If an event that is still present
in some DFA that has already been processed is subsequently
marked fobidden by MARK-DFA, then more of the events
in the already-processed DFA may need to be removed, and
the DFA is placed back on the list of DFA‘s to process.
The processing of DFA’s continues until the list of DFA’s
to process is empty. To minimize the number of times each
DFA is processed, it is advantageous to place the DFA’s with
the most start and stop events first on the list, since these
events have the greatest potential to mark parts of the DFA
unreachable and cause other events occurring only in those
parts to be marked forbidden. Given a set of DFA’s with a
total of 71 arcs, the time complexity of MARK-DFA is clearly
O(n). Since each arc may cause MARK-DFA to be called at
most one additional time, the overall time complexity of the
marking procedure is O(n2) .

Applying this algorithm to the example of Fig. 3, we
first place the DFA’s on the list in the order 1, 2, 3, 4.
Process 1 comes first because it has two distinct start/stop
events (A and B). Processes 2 and 3 come next since they
have one start/stop event each. Finally, Process 4 has no
start/stop events. Applying MARK-DFA to Process 1 will
produce the marked DFA shown in Fig. 5. Removing the two
arcs not marked { A , B } removes all communication events
corresponding to the C in Process 2, thereby making that event
forbidden. In Process 2, MARK-DFA now stops at C , causing
the D cycle to be removed. (Note that the presence of the
first D in Process 2 prevents D from being forbidden.) Next,
in Process 3, MARK-DFA removes the lower D cycle, but
it cannot remove the upper one, since that can be reached
backwards from the second B. Since the cycle in Process
2 has been removed, however, the remaining D in Process
3 cannot occur an unbounded number of times. MARK-DFA
removes nothing from Process 4. The final DFA’s, from which
inequalities would be generated, are shown in Fig. 6.

The marking algorithm may not eliminate all cycles from
the DFA’s. Additional cycles may sometimes be eliminated by
“unrolling” loops for which the maximum number of iterations
is known.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:57:24 UTC from IEEE Xplore. Restrictions apply.

AVRUNIN et al.: AUTOMATED DERIVATION OF TIME BOUNDS IN UNIPROCESSOR CONCURRENT SYSTEMS 715

Process 1 Process 2 Process 3 Process 4

Fig. 6. Example of Fig. 5 after cycle removal.

B . Eliminating Unreachable Start States

As noted earlier, it is possible that the upper or lower
bound found by the method described in Section 11-B will
correspond to a “partial behavior” that cannot actually occur
because it is not possible to reach all of the start states of that
“partial behavior” at the same time in any actual behavior
of the system. We can eliminate many, though not all. of
these cases by using a somewhat larger system of inequalities.
The larger system includes additional inequalities representing
conditions that must be satisfied by the initial segment of an
actual behavior containing the partial behavior of interest, that
is, the event subsequences leading from the initial states of
each of the tasks in the concurrent system to the states at which
the partial behavior in question begins in each of those tasks.
Essentially, we use the system of inequalities to simultaneously
describe necessary conditions for a partial behavior starting at
A and ending at B and for an initial segment ending at the
start of the partial behavior.

To construct this augmented system of inequalities, we
generate a new transition variable ya for each arc a in the
DFA’s to represent the number of times that arc is crossed in
the initial segment. Another set of flow equations is generated
for these transition variables just as is done for the partial
behavior starting at A and ending at B, with two exceptions:

I) Start variables associated with the partial behavior are
counted as flow out in generating the flow equations for
the initial segment, since they correspond to states where
the initial segment will end. Halt variables associated
with the partial behavior are ignored in generating the
flow equations for the initial segment.

2) At the initial states of the task DFA’s there is an implicit
flow in of one, thus forcing the initial segment to begin
at those states.

Equations are also generated to require equal numbers of
matching communication events from different tasks in the
initial segment. (These equations involve only the ya’s.)

The additional equations represent necessary, but not, in
general, sufficient conditions for the existence of an initial
segment from the initial state of each task to the start states
of each task relative to a partial behavior starting at A and
ending at B. As with the original system of inequalities,
these additional equations impose conditions on numbers of

event occurrences, but cannot enforce consistent ordering of
event occurrences in different tasks nor accurately control
the number of times that cycles can be traversed. Hence
the additional equations do not guarantee the existence of
an appropriate initial segment, so the bound reported by the
integer programming system still need not be the least upper
bound or greatest lower bound. We have found, however, that
generating the augmented system of inequalities does eliminate
many unreachable “partial behaviors,” frequently sharpening
the bounds that we derive.

IV. EXPERIMENTS
In order to demonstrate the feasibility of our analysis

method, we have modified parts of our constrained expression
toolset to support the inequality-based analysis techniques
described above. In this section we describe the application
of our method for deriving upper bounds to two families of
concurrent systems.

The constrained expression toolset was developed to support
inequality-based analysis of logical properties of concurrent
systems. Our toolset contains a tool for producing constrained
expressions, or sets of DFA’s and constraints like those de-
scribed in Section 11, from designs written in an Ada-like
design notation. It also provides tools for generating systems
of linear inequalities from constrained expressions, for solving
systems of linear inequalities, and for generating sample traces
representing behaviors of a system. (A detailed description of
the toolset appears in [4].) To perform timing analysis, we
adapted the component of the toolset that generates inequalities
to implement the techniques described in the previous sections.
The integer linear programming (ILP) package provided in the
toolset finds an optimal solution to the system of inequalities,
assuming that one exists. It requires the specification of an
objective function, which is set to reflect the duration of events
for timing analysis. In [5] , the modified tools are used to derive
bounds for a version of Helmbold and Luckham’s gas station
problem [151, a mutual exclusion protocol based on coteries
[IO], and a system modeling resource contention [5] . These
relatively small and simple systems comprise between four
and eight tasks, some of which had DFA’s with up to 80 states
and many interconnected cycles. The number of reachable (un-
timed) system states, however, does not exceed a few thousand
in any of these systems, so exact techniques requiring the
enumeration of the system’s states could probably be applied.
To demonstrate the utility of our technique on problems of
more realistic size, we apply it here to two scalable examples
with very large state spaces that are well beyond the limits of
state enumeration-based techniques.

The first of these examples models a divide-and-conquer
computation using the fork/join concurrency construct. Since
our analysis method, like most others, cannot handle dynami-
cally created tasks, we assume an upper bound on the number
of tasks that can be created. A fork is modeled by placing a
f o r k synchronization at the top of the task being spawned
and at the point in the parent at which it spawns the task.
Joins are modeled similarly using a j o i n synchronization at
the bottom of the child task and at the point of the join in

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:57:24 UTC from IEEE Xplore. Restrictions apply.

7 16 IEEE TRANSACTIONS ON SOITWARE ENGINEERING, VOL. 20, NO. 9. SEPTEMBER 1994

n Tasks
60 122

120 242
180 362

Number of Time
Generate Solve Total Inequalities Variables

45 16 61 957 1012
85 39 124 1917 2032

169 74 243 2877 3052

n I Tasks I Generate I Solve I Total I Inequalities I Variables
100 I 101 I 59 I 15 I 74 I 891 I 989

240
300

Fig. 7. Performance results for divide-and-conquer example.

482 243 113 356 3837 4072
602 319 167 486 4797 5092

the parent task. In the n-task version of this example, n is the
limit on the number of tasks involved in forks. The forking
structure is very simple: task i+ 1 is potentially created by task
i . Task 1 is the only task that must exist; task 71 cannot fork.

Each task, except task 72. decides whether to fork a child
and then performs some amount of computation. If a task
forks a child, then it performs “small” computation involving
a shared resource, modeled by communication with a separate
task representing the resource; otherwise it performs a “big”
computation. Task n always performs a “big” computation
if it is spawned. We applied our automated analysis tools
to various size versions of this example system, seeking an
upper bound on the total execution time of the program given
analyst-specified bounds on duration of the communcations
and computations in each task. For this particular example, the
exact upper bound can be determined rather straightforwardly.
Assume for simplicity that the fork and join communications
are instantaneous. Then, given that U (i) is an upper bound on
the total execution times of tasks i , . . ‘ 7 1 , the desired bound,
U (l) , can be computed recursively as follows:

U(7t) = B,,
U (i) = rnax(B;, S, + U (i + I))

where Bi and Si are the durations of the big and small
computations, respectively, for task i . This fact allows us to
readily determine whether our automated analysis has yielded
a sharp bound.

Fig. 7 shows the results of using the automated tools to
derive the desired upper bound automatically from a specifi-
cation of the system. The table shows the size of the system
analyzed (n), the number of tasks in the system, the time to
generate the inequality system, the time to solve the inequality
system, the total analysis time, and the size of the inequality
system produced. All times are in seconds on a SPARCstation
10 Model 41. In each case, the toolset found the exact upper
bound, i.e, the value of U(1) given by the formula above.
For the results shown, the durations used for big and small
computations were 5 and 1 time units, respectively, except for
tasks 5, 15, 25, . . . whose big computation took 50 time units.
For the values of 71, in the table, these durations result in all
but the last 5 tasks being forked. Results for other experiments
with different durations were similar.

The second example models communication through a
network. Each task represents a node that can receive and
transmit packets. For scalability, we consider a network with
a simple and regular structure, where the nodes are arranged in
a grid with 2 rows and 71 columns. (This is, in fact, the structure
of a fault tolerant phone network used in urban India.) Each
node in the grid is connected to the four nodes in adjacent
columns. Two special nodes, the source and the target, lie at

opposite ends of the grid and are connected to the two nodes in
the column at that end of the grid. We model the transmission
of a single packet through the network from the source node
to the target node. Each node upon reception of the packet,
nondeterministically chooses one of the two nodes in the next
column to send the packet to. We model the transmission
of a packet from one node to another as a synchronization
between the corresponding tasks. The duration assigned to
each such synchronization represents the time required for the
transmission between those nodes.

As before, we applied our automated analysis tools to
various size versions of this example system. In this case,
the analysis seeks an upper bound on the time to transmit a
packet from the source node to the target node. We have again
chosen an example for which the exact upper bound can be
determined rather straightforwardly, this time using shortest-
path techniques, allowing us to readily determine whether our
automated analysis has yielded a sharp bound.

Fig. 8 shows the results of using the automated tools to
derive this bound automatically from a specification of the
system. The first column of the table shows the number of
columns in the network (71), and the remaining columns are as
in Fig. 7. In each case the toolset found the exact upper bound.
For the results shown, the durations used the transmission
times were 10 time units for each transmission, except for
the transmissions from nodes, 5) 15! 25: . . .in row 1 to nodes
6 ,16 ,26 , . . . in row 2, and the transmissions from nodes
6: 16: 26 , . . . in row 2 to nodes 7,17.27.. . .in row 1, which
were assigned a duration of 20 time units. These durations
cause the packet to zigzag from the top to the bottom row and
back again every 10 columns. Results for other experiments
with different durations were similar.

Note that, as the network router example demonstrates, the
applicability of our technique is not strictly limited to systems
executing on a single processor. Rather, the technique’s appli-
cability is determined by the degree to which computations
overlap, not the architecture per se; it is unlikely that the
network would be run on a single processor. When there is
little overlap in the computations of sequential components,
as in this system, our analysis yields good bounds, even
in the multiprocessor case. Note also that, in both this and
the last example, we could just as easily have sought lower
bounds by setting the ILP package to minimize the objective
function.

In theory, the technique can produce very loose bounds due
to unenforced event orderings and cycles in the DFA’s. In
practice, however, the technique produced sharp bounds for
all the experiments described here as well as those described
in [5] , demonstrating that the necessary conditions are strong
enough to be useful on some nontrivial systems.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:57:24 UTC from IEEE Xplore. Restrictions apply.

AVRUNIN er al.: AUTOMATED DERIVATION OF TIME BOUNDS IN UNIPROCESSOR CONCURRENT SYSTEMS 717

Finally, and most importantly, note that the state spaces of
both examples grow exponentially in n (the size R. problem
has at least 2” reachable states), but the rates of growth of the
analysis times for these systems are clearly subexponential. We
believe this is evidence that our technique is scalable and can
be used on some systems for which other proposed techniques
would be prohibitively expensive.

V. CONCLUSION

A fundamental timing analysis problem is the determination
of the maximum, or minimum, amount of time that can elapse
between the occurrence of two given events during a system’s
execution. In this paper we have described an approach to
finding upper and lower bounds that can approximate these
quantities under arbitrary scheduling of processes. Neither
testing nor simulation can establish maximum or minimum
values, in general. Some other approaches to analysis, such1 as
model checking applied to a representation of a system’s state
space or the use of special logics and proof techniques for
reasoning about timing properties, can, in principle, produce
exact values for the minimum and maximum time between
two events. As noted earlier, however, these alternatives either
are extremely difficult to automate or, because they require
construction of a state space whose size grows exponentially
with the number of processes in the concurrent system, are
computationally intractable for concurrent systems of nontriv-
ial size. As demonstrated by the examples of the previous
section, analysis times for our method can grow much less
than exponentially and therefore the method can be applied to
some systems with very large state spaces. Thus, by providing
bounds rather than exact values, our method trades some
accuracy for greater feasibility.

The key questions that must be answered about our method
in order to evaluate this trade-off are:

When can it be applied practically?
When does it provide useful bounds?

Obviously, the method is of little use if it does not produce
results more quickly than the exact approaches and the bounds
produced will be of little value if they are far from the
exact times. Of course, determining when an application is
“practical” and when bounds are “useful“ depends very much
on the particular situation, including the speed of the machine
used to carry out the analysis, the requirements for the system
being analyzed, and the precise value for the time that can
elapse between the specified events, and all these parameters
will vary.

These questions pose very challenging research problerns.
Given the current state of the art, we believe that insight
into the first question can, at least for the foreseeable future,
best be obtained empirically. Furthermore, we would argue
that software developers will derive relatively little benefit
from theoretical answers to the second question until enough
experience with the method has accumulated to provide some
useful guidelines for answering the first.

The method described in Sections I1 and 111 converts a
question about a system of communicating processes to an
integer linear programming problem by generating a system

of inequalities and an objective function to be maximized
or minimized over the nonnegative integer solutions to those
inequalities. Integer linear programming is NP-complete, and
is regarded in practice as computationally quite difficult.
For special classes of problems (the “totally unimodular”
ones), however, integer linear programming reduces to linear
programming, for which polynomial algorithms are known and
the simplex algorithm is almost always practical even though
its worst-case performance is exponential. The integer linear
programming problems arising from our method are not totally
unimodular, but they do have special properties that seem to
make them easier to solve than the general case-in particular
large portions of them are network flow problems that are
totally unimodular. Although there has been some effort to
develop special-purpose solvers for this type of problem (net-
work flows with certain side constraints), we are not aware
of any theoretical results that indicate when such problems
can be solved much more efficiently than the general integer
linear programming problem, or how much more efficiently.
Even papers proposing new methods for solving such problems
validate those methods by presenting empirical data on their
performance on standard test problems [2].

Since a formal characterization of the class of systems for
which our method is efficient would depend on a similar
characterization of the class of integer linear programming
problems that can be solved efficiently, and this second
characterization is unavailable, we are unable to say the-
oretically when our method is more practical than exact
methods. Furthermore, the question of practicality in real
applications depends not just on the details of a particular
integer programming algorithm, but also on the details of
a particular implementation that must deal with numerical
problems involving such things as instability and the inaccu-
racy of floating point arithmetic. It therefore seems clear that,
until stronger results about the solution of these integer pro-
gramming problems are available, the best information about
the practicality of our method will come from accumulating
experience in applying it to a wide range of systems.

Given that reachability-based approaches can provide exact
answers to questions about the time that can elapse between
events, our method is of interest only when it is more feasible
than such approaches. Thus, theoretical results about the qual-
ity of the bounds provided by our method, which seem difficult
to obtain, will be of most value to system developers only in
cases where there is reason to believe that the method is more
practical than exact approaches. Although our experiments,
such as those described in Section IV, demonstrate that such
cases exist, a good deal more experience with the method
will be needed to justify the effort required to obtain such
results. This experience will also help to guide theorists in
proposing appropriate hypotheses under which such theorems
can be proved.

Another issue related to the quality of the bounds we obtain
is the accuracy of the durations that our method assigns
to individual events in the modeled system’s behavior. One
could generalize the model to treat durations as varying over
some probability distribution(s), but for finding maximum and
minimum timings one would still only be interested in the

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:57:24 UTC from IEEE Xplore. Restrictions apply.

718 IEEE TR

maximum and minimum values that those durations could
assume. For certain classes of relatively low-level events, of
course, some of this information is available from component
specifications, but obtaining such maxima and minima for
higher-level events in the face of sophisticated compilers
and complex hardware architectures is extremely challenging.
Work like that of Shaw [24], who has developed an automated
proof rule-based technique for deriving timing properties from
programs in high-level languages and has measured the accu-
racy of the derived times against actual run times, is necessary
to provide guidance on the assignment of the durations used
in our method. Unlike some other approaches, which attempt
to establish that a system satisfies a complete set of timing
requirements, our method derives upper and lower bounds on
the time that can elapse between a specified pair of events. It
is thus particularly suited for analyzing systems with a small
number of critical timing bounds. A broad range of systems
can be represented using the model on which the method
is based. As indicated earlier, the model can be applied to
concurrent systems that assume different underlying models
of computation and communication [9]. In particular, neither
the restriction to two-party communication nor the assumption
that the automata are deterministic, both made for purposes
of the examples in this paper, is critical to the model or the
analysis method.

A good deal of further experience with the method will
be required to provide good answers to the questions about its
range of practical application and the accuracy of the bounds it
provides. Nevertheless, we have demonstrated that the method
can be feasibly automated and have successfully applied it to
some scalable families of examples. Although these examples
are smaller and more restricted than real concurrent systems,
the ability of our prototype implementation to analyze systems
having more than 2”’ reachable states is very encouraging.
Furthermore, initial work on extending the method to the
multiprocessor setting [6] is quite promising. We, therefore,
believe that our method has considerable potential as a foun-
dation for practical tools for developers of real-time software.

REFERENCES

M. W. Alford. “SREM at the age of eight; The distributed computing
design system,” Computer, vol. 18, pp. 3 6 4 6 , Apr. 1985.
A. I. Ali, J. Kennington, and B. Shetty, “The equal flow problem,”
European J . Oper. Res., vol. 36, pp. 107-115, 1988.
J. M. Atlee and J. Gannon, “State-based model checking of event-driven
system requirements,” IEEE Trans. Software Eng., vol. 19, no. I , pp.
24-40, Jan. 1993.
G. S. Avrunin, U. A. Buy, J. C. Corbett, L. K. Dillon. and J. C. Wile-
den, “Automated analysis of concurrent systems with the constrained
expression toolset,” lEEE Trans. Sqfware Eng., vol. 17, no. 1 I , pp.
1204-1222, Nov. 1991.
J. C. Corbett, “Automated Formal Analysis Methods for Concurrent and
Real-Time Software,” Ph.D. thesis. Univ. of Massachusetts at Amherst,
1992.
J. C. Corbett and G. S. Avrunin, “A practical method for bounding the
time between events in concurrent real-time systems,” in Proc.eedings
of the 1993 International Symposium on Software Testing and Analvsis
(ISSTA), T. Ostrand and E. Weyuker, Eds. New York: ACM Press,
June, 1993 pp. 110-1 16.
C. Courcoubetis and M. Yannakakis, “Minimum and maximum delay
problems in real-time system,” in Computer Aided Ver$ic,ation. 3I.d
International Workshop Proceedings. vol. 575 of Lec,turr Notes in

LANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 9. SEPTEMBER 1994

Computer Science, K. G. Larsen and A. Skou, Eds., (Aalborg, Denmark,
July.199 I , pp. 399-409).

[SI B. Dasarathy, “Timing constraints of real-time systems: Constructs for
expressing them, methods of validating them,” IEEE Trans. Sofiuwe
Eng..vol. 1 I , no. 1, pp. 80-86. 1985.

[9] L. K. Dillon, G. S. Avrunin and J . C. Wileden, “Constrained expressions:
Toward broad applicability of analysis methods for distributed software
systems,” ACM Trans. Prog. LanS. Syst.. vol. IO, no. 3, pp. 374-402,
July 1988.

[101 H. Garcia-Molina and D. Barbara, “How to assign votes in a distributed
system,” J . ACM, vol. 32. no. 4, pp. 841-860, Oct. 1985.

[1 I] R. Gerber and 1. Lee, “A Layered approach to automating the verification
of real-time systems,” IEEE Trans. Sc#uwrc En,q.. vol. 18, no. 9, pp.
768-784, Sept. 1992.

1121 C. Ghezzi, D. Mandriolli and A. Morzenti, “Trio: A logic language
for executable specifications of real-time systems,” ./. cf Systems and
Sojm,are, vol. 12. no. 2, pp. 107--123, May 1990.

[I 31 V. H . Haase, “Real-time behavior of programs,” IEEE Trans. Sojtuwe
Eng., vol. 7, no. 5 , pp. 494-501, 1981.

[141 N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud, “The synchronous
data Row programming language LUSTRE,’’ in Proc. IEEE. vol. 79 no.
9, pp. 1305-1320, Sept. 1991.

[IS] D. Helmbold and D. Luckham, “Debugging Ada tasking programs,”
IEEE Software, vol. 2, no. 2, pp. 47-57, Mar. 1985.

[161 F. Jahanian and A. Mok, “Safety analysis of timing properties in real-
time systems,” lEEE Trans. So~?~.arr EnR., vol. 12, no. 5 , pp. 890-904,
1986.

[I71 F. Jahanian and D. Stuart, “A method for verifying properties of
modechart specifications,” in PYOC. Real-Time Syst. Svmp.. 1988, pp.
12-21.

[18] C. L. Liu and J . W. Layland, “Scheduling algorithms for multiprogram-
ming in it hard-real-time environment,” ./. ACM. vol. 20, no. 1 , pp.
46-61, 1973.

[191 A. J . Mok, “Fundamental Design Problems of Distributed Systems for
the Hard Real Time Environment,” Ph.D. thesis. Massachusetts Inst.

New York: Springer-Verlag.

Technology, 1983.
1201 J. S. Ostroff, “Deciding propertics of timed transition models,” IEEE -

Truns. Parallel Distrih. Syst.. vol. I , no. 2, pp. 170--I83, 1990.
1211 J . Reif and S. Smolka, “The complexity of reachability in distributed

communicating processes.” Actu Informatic~a. vol. 25. no. 3, pp.

[22] L. Sha and J . B. Goodenough. “Real-time scheduling theory and Ada.”
IEEE Comput.. vol. 23, pp. 53-62, Apr. 1990.

1231 L. Sha, R . Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols:
An approach to real-time synchronization.” lEEE T , m s . Comput.. vol.
39, no. 9, pp. 1175-1185, Sept. 1990.

1241 A. C. Shaw, “Towards a timing semantics for programming languages,”
in A. M. van Tilbog and G. M. Kooh, Eds., Foundations cf Real-
Time Computin%q: Formul Spec,ificutions and Methods. Boston: Kluwer
Academic Publishers, 1991, ch. Y. pp. 217-249.

[25] J . A. Stankovic and K. Ramamritham, editors, Hord Keal-Time Systems.
Washington, DC: Computer Society Press, 1988.

[26] R. N. Taylor, “Complexity of analyzing the synchronization structure of
concurrent programs,” Acra Inj~nw“icu, vol. 19, pp. 57-84, 1983.

333-354, 1988.

George S. Avrunin received the B.S., M.A., and
Ph.D. degrees in mathematics from the University
of Michigan.

He is a Professor in the Department of Mathe-
matics and Statistics and Adjunct Professor in the
Department of Computer Science at the University
of Massachusetts at Amherst. In addition to formal
methods and tools for the analysis of concurrent and
real-time software systems, his research interests
include the cohomology and representation theory
of finite groups.

Dr. Avrunin is a member of the American Mathematical Society, the Associ-
ation for Computing Machinery, the Association for Women in Mathematics,
and the IEEE Computer Society.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:57:24 UTC from IEEE Xplore. Restrictions apply.

AVRUNIN cf af.: AUTOMATED DERIVATION OF TIME BOUNDS IN UNIPKOCESSOR CONCURRENT SYSTEMS 719

James C. Corbett received the B.S. degree in com-
puter science from Rensselaer Polytechnic Institute
and the M.S. and Ph.D. degrees in computer science
from the University of Massachusetts at Amherst.

He is currently an Assistant Professor iin the
Department of Information and Computer Science
at the University of Hawaii at Manoa. His research
is directed toward devising practical techniques and
building automated tools for the analysis and veri-
fication of concurrent and real-time software.

Dr. Corhett is a member of the Association for
Computing Machinery.

Laura K. Dillon (S’81-M’83-S’83-M’X4) rec’eived
the B.A. and M.S. degrees in mathematics from the
University of Michigan, Ann Arbor, and the M.S.
and Ph.D. degrees in computer science from the
University of Massachusetts, Amherst.

She is an Associate Professor in the Computer
Science Department at the University of Califor-
nia, Santa Barbara. Her research interests include
formal methods for analysis of concurrent sofrware
systems, software specification and verification, and
programming languages. Her research focuses on

providing automated support for reasoning about the behavior of software
systems.

Dr. Dillon is currently an Editor of the IEEE TRANSACTIONS ON SOFT‘W.4RE
EbGINEERIhG and is serving as an ACM National Lecturer. She is a member
of the Association for Computing Machinery, the IEEE Computer Society.
the American Association of University Women and Computer Professionals
for Social Responsibility.

Jack C. Wileden (S’77-M’78-SM’92) received the
A.B. degree in mathemetics and the M.S. and Ph.D.
degrees in computer and communications sciences
from the University of Michigan, Ann Arbor.

He is a Professor in the Computer Science Depart-
ment at the University of Massachusetts at Amherst.
where he has been a faculty member since 1978. His
research interests center on advanced software tech-
nology, particularly software system infrastructure
and software development analysis tools.

Dr. Wileden is the author or co-author of more
than forty papers in joumals and refereed conferences. He is a member of the
Association for Computing Machinery. He is currently an Editor of the IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEhlS and has previously
served as an ACM National Lecturer and an IEEE Distinguished Visitor.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:57:24 UTC from IEEE Xplore. Restrictions apply.

