
Experiments with an Improved Constrained Expression Toolset

George S. Avrunin* Ugo A. Buy’ James C, Corbett* Laura K. Dillont Jack C. Wiledenq

Abstract

At TAV3, we described a prelimimu-y version of the con-

strained expression toolset, and reported on the results of our

initial experiments with it, Through those experiments we

discovered shortcomings in some of the tools that limited

the size of the examples that we could analyze. We have

since redesigned and reimplementcd several components of

the toolset, with performance improvements of more than two

orders of magnitude in some cases. The improved toolset has

been successfully used with designs that involve hundreds

of concurrent processes. In this paper, we describe several

experiments with the new version of the toolset, including

preliminary experiments with a technique for analyzing sys-

tems that include an essentially arbitrary number of identical

components.

1 Introduction

At the 1989 Symposium on Software Testing, Analysis, and

Verification, we described a preliminary version of a toolset

for analyzing designs for concurrent systems, and reported

on the results of some experiments with it [3]. The toolset

automated the main constrained expression analysis tech-

*Research partially suppotted by NSF grant CCR-8806970 and ONR
grant NOOO14-89-J-1O64

tResearch partially supported by NSF grant CCR-8702905

$Research partially supported by NSF grant CCR-8704478 with cooper-

ation from DARPA (ARPA order 6 104).

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by

permission of the Association for Computing Machinery. To copy other-

wise , or to republish, requires a fee and/or specific permission.

@ 1991 ACM 089791-449-X/91/0009/0178 $1.50

niques, and the results presented at the conference, which

were somewhat better than those that appewed in the pro-

ceedings volume, were encouraging. Nonetheless, these re-

sults demonstrated some severe limitations in the toolset.

For example, the toolset could not complete the anatysis of a

ten philosopher version of the standard dining philosophers

problem.

Since that conference, we have redesigned and reimple-

mented several of the components of the toolset, leading

to significant improvements in performance. For instance,

the toolset now carries out a fully automated analysis of a

100 philosopher version of the dining philosophers prob-

lem (comprising 200 concurrent processes), beginning with

source code in an Ada-based design language and producing

an exeeution trace displaying deadlock, in approximately 20

minutes on aDECstation3100. This and other experimental

results indicate that the constrained expression analysis tech-

niques can serve as a foundation for useful tools for software

developers.

In this paper, we report on some experiments with the new

implementation of the constrained expression toolset. We be-

gin with a very brief overview of the constrained expression

formatism and toolset in the next section, The third seetion

describes some analyses carried out with the toolset. and the

fourth section discusses some current and planned research

intended to extend and improve our analysis techniques and

the tools implementing them. The final section contains a

summary and conclusions.

2 The Constrained Expression Toolset

2.1 Overview

The constrained expression formatism provides what is es-

sentially a formal language approach to the description of

178

Figure 1: Diagram of Constrained Expression Toolset

executions of concurrent systems. The “unconstrained” be-

havior of each process in a concurrent system is represented

by a regular expression, catled aprocess expression (or alter-

natively, in accordance with Ada terminology, a task expres-

sion), over an alphabet of event symbols. An execution of the

concurrent system being analyzed involves an execution of

each of these processes, subject to additional restrictions such

as those, for example, imposed by the communication and

concurrency primitives of the language in which the system

is implemented. We represent these restrictions by additional

expressions, called constraints, which need not be regular. A

string of event symbols thus represents the trace of an execu-

tion of the concurrent system if each of its projections on the

alphabet of a process expression lies in the language of that

expression, so that the string describes an execution of each

process, and each of its projections on the alphabet of a con-

straint lies in the language of that constraint, so that the string

satisfies the additional restrictions. (For simplicity, in this pa-

per we will regard the executions of concurrent systems as

represented by traces, and so as totally ordered in time. The

formalism and our anatysis techniques are, however, com-

patible with viewing the executions as corresponding only to

partial orders of events [1].) Detailed and rigorous presenta-

tions of the formalism are given in [5] and in the appendix

to [7], and less formal treatments intended to provide a more

intuitive understanding of its features appear in [1] and [4].

The current version of the automated constrained expres-

sion analysis toolset is intended for use with concurrent sys-

tem designs written in an Ada-like design language called

CEDL (Constrained Expression Design Language) [6]. In

normat use, an analyst would fist use the deriver to produce

a constrained expression representation from a concurrent

system design written in the CEDL design language. The

constrained expression produced by the denver would then

be used as input to the constraint eliminator, which inter-

sects some of the task expressions corresponding to the tasks

of the CEDL design and some of the constraints, producing

an equivalent constrained expression with fewer constraints.

(This procedure facilitates the analysis of systems in which

the flow of control in a task depends on the manipulation of

data.) The inequality generator takes the constrained expres-

sion produced by the eliminator as its input, together with a

query formulated by the analyst, and produces a system of lin-

ear inequalities reflecting the constrained expression and the

query. The IMINOS integer programming package would
then be used to determine whether this system has any in-

teger solutions and, if it does, to find one with appropriate

properties (typically one that minimizes some measure of
size). When a solution is found, the behavior generator uses
this solution to guide a highly constrained, depth-first search

to determine whether this solution corresponds to an actual

system trace, and to produce such a trace if it does. The

179

discussion below describes some results of using the toolset

to analyze concurrent system designs. More complete de-

scriptions of the individual tools are given in [1] and [3]. The

organization of the toolset is illustrated in Figure 1.

2.2 Improvements in the toolset

Four of the Eve components of the toolset — atl except

the deriver — have been extensively modified since TAV3,

leading to significant improvements in performance. In this

section, we briefly describe the changes.

In the results presented at TAV3, the constraint eliminator

represented a major bottleneck. Part of this was due to the

somewhat inefficient implementation of the prototype, but

the chief difficulty involved the conversion of deterministic

finite automata (DFAs) into regukw expressions (REs). The

constraint eliminator converts RE representations of task ex-

pressions and constraints into DFAs in order to carry out the

intersection process, and the version of the inequality genera-

tor in use at the time expected to see RE representations. The

constraint eliminator therefore converted the DFA obtained

by intersecting a task expression and a constraint back into an

RE. Unfortunately, the resulting RE may be very much larger

than the DFA from which it is generated, and the process of

producing the RE from the DFA may be quite expensive.

However, very efficient systems of inequalities can easily

be generated from REs, where “efficient” is a measure of

the relation between the size of the system of inequalities

and the size of the object from which it is generated. We

have therefore developed a hybrid representation for task ex-

pressions that we catl regular expression deterministic finite

automata (REDFAs). REDFAs are DFAs whose arcs are la-

beled with regular expressions satisfying certain conditions

that preserve determinacy. Unlike REs, REDFAs are never

significantly larger than the DFAs from which they are gen-

erated. Unlike DFAs, very efficient systems of inequalities

can be easily generated from REDFAs.

We have therefore reimplemented the constraint elimina-

tor, improving the efficiency of its code and modifying it so

that the task expressions it outputs may be represented as

REs, DFAs, or REDFAs, at the user’s option, In general, we

use the REDFA representation. These changes produced sub-

stantial improvements in the performance of the eliminator.

The inequality generator was atso modified to accept input in

any of the three representations, and to write out additionat

semantic information for use by the integer programming

package.

The integer programming package used for the experi-
ments described in our paper in the TAV3 Proceedings had

previously been installed at the University of Massachusetts

as part of another project. We had encountered problems with

it and, by the time we presented our results at TAV3, had

implemented our own branch-and-bound integer program-

ming system, IMINOS. IMINOS uses the MINOS optimiza-

tion system [10] to solve the LP relaxations of IP problems.

Very recently, we have modified the branching strategy used

by IM~OS to take advantage of the semantic information

produced by the inequality generator. This has resulted in

substantial improvements in the performance of IMINOS on

most of our examples.

The behavior generator has also been reimplemented to

improve its efficiency and add some functionality. The new

version can make use of more information contained in a

solution to the system of inequalities, and provides more in-

formation to the user. It also has facilities that atlow the

analyst to use it in a more interactive fashion by using only

a part (possibly none) of the solution and by modifying the

solution to require or prohibit certain event sysmbols from

occurring in the behavior string. Furthermore, it now in-

corporates a depth bound to its search through the global

state space, and allows the anatyst to extend that bound if no

solution is found.

3 Performance of the Toolset

In this section we discuss a number of experiments with

the constrained expression toolset, including new results for

the examples discussed in [3]. Additional experiments are

described in [1].

3.1 Dining philosophers

Perhaps the most widely known example in the concurrent

systems literature is Dijkstra’s dining philosophers. This sys-

tem models a group of philosophers who periodically think

and eat. The philosophers eat at around table with one seat

for each philosopher and one fork between each pair of seats.

A philosopher requires two forks to eat and each philosopher

who wants to eat attempts to pick up one fork, say the one

on the left, and then the other, eats, and then puts the forks

down. The system is interesting because of the possibility

of deadlock caused by all the philosophers picking up the

forks on their left, leaving each of them unable to pick up the

second fork. Various approaches can be used to prevent the

deadlock.

We have analyzed several variations of this system. In the

basic one, we model each fork by a task with two entries.

Calls to the UP entry represent the fork being picked up

by a philosopher and catls to the DOWN entry represent the
fork being put down. The fork task loops forever, accepting

calls first at its UP entry and then at its DOWN entry. Each

philosopher is represented by a task that repeatedly calls the

UP entry of the fork to its “left”, the UP entry of the fork to

its “right”, and then the DOWN entries of the two forks. A

system with n philosophers thus has 2n tasks. Analysis is

intended to detect the possibility of deadlock.

In Figure 2, we show the performance of the constrained

180

phils tasks deriv elim ineq IMINOS behav size total

20 40 111 4 30 4 18 381x320 167

40 80 208 10 101 15 39 761 x640 375

60 120 305 20 210 21 73 1141x960 629

80 160 413 34 336 34 109 1521x1280 926

100 200 522 52 479 44 153 1901x1600 1250

Figure2: Toolset Performance on Basic Dining Philosophers Problem

phils tasks deriv elim ineq IMINOS behav size total

20 41 140 121 231 249 603x1261 741

30 61 190 502 798 1100 903x2491 2590

40 81 265 1519 2370 3143 1203x4121 7297

Figure3: Toolset Performance onthe Dining Philosophers with Host

expression toolset on several sizes of the basic dining philoso-

phers system, for all of which the toolset produced a system

trace displaying deadlock. Thecolumns give, respectively,

the number of philosophers, the number of tasks in the sys-

tem, the time in seconds used by the deriver, the eliminator,

the inequality generator, IMINOS, and the behavior genera-

tor, the size of the system of inequalities (number of inequal-
ities x number of variables), and the total time used by the

toolset. All the experiments reported in this paper were run

on a DECstation 3100 with 24 MB of memory; times given

are in CPU seconds on that machine and include both user

and system time. For comparison, note that the analysis of a

version with eight philosophers reported in [3] took 234 sec-

onds on a Sun 3/60, and the version of the toolset described

in that paper was unable to complete the analysis of a version

with ten philosophers.

One of the standard ways to prevent deadlock in the dining

philosophers system is to introduce a “host” or “butler” who

ensures that all the philosophers do not attempt to eat at

the same time. We have modeled this by introducing an

additional host task and modifying the philosopher tasks.

The host task has two entries, ENTER and LEAVE, and a

philosopher must rendezvous with the host at ENTER before

attempting to pick up the first fork. After putting down the

second fork, the philosopher calls the LEAVE entry. The host

keeps track of the number of philosophers in the dining room

(the number of rendezvous that have occurred at ENTER

minus the number at LEAVE) and repeatedly accepts calls at

ENTER as long as no more than n – 2 philosophers are in the

dining room. The LEAVE entry is unguarded, so calls at that

entry can be accepted at any time.
Although the dining philosophers system with host and

n philosophers involves only one more task than the basic

system with the same number of philosophers, the numbers

of inequalities and variables and some of the tool execution

times are much larger for the systems with host. This reflects

the extra complexity introduced by the additional entry calls
in the system with the host and by the fact that control flow in

that system depends on the value of the variable representing

the number of philosophers in the dining room. As a rough

measure of this extra complexity, we note that the number of

reachable states for the system with 40 philosophers and host
is at least 100,000 times the number of reachable states for the

basic system with 40 philosophers. Because the constrained

expression approach does not require enumeration of all the

reachable states of the system, however, the size of the corre-

sponding system of inequalities and the tool execution times

go up by much smaller factors.

Again, we analyzed these systems to detect possible dead-

lock due to all the philosophers picking up forks. Perfor-

mance of the toolset for n dining philosophers with host is

shown in Figure 3 for severat values of n. The columns in

the table show the number of philosophers, the number of

tasks, the times for the various tools, the size of the system

of inequalities, and the total time, just as in Figure 2. In

each case, IMINOS reports that there is no integral solution

to the system of inequalities, implying that no such deadIock

is possible. It is therefore not necessary to run the behavior

generator in these cases. As reported in [3], the previous ver-

sion of the toolset required 687 seconds on a Sun 3/60 for a

version with five philosophers. We note that these examples

and the readers-writers system with writer priority described

below are the only ones we have tried for which the new

branching strategy for IMINOS actually leads to worse per-

formance. The table shows the results with the new strategy

for consistency with the other data presented in this pape~
the IMINOS times with an earlier version of the toolset were

65,58, and 81 seconds, respectively.

For comparison, we also analyzed the dining philosophers

with host in the case where an incorrect guard on the host’s

181

phils tasks deriv elim ineq IMINOS behav size totat

20 41 141 131 246 76 39 607x1305 633

30 61 196 491 862 107 104 905x2523 1760

40 81 259 1571 2509 265 200 1205x4163 4804

Figure 4: Toolset Performance on the Dining Philosophers with Erroneous Host

phils tasks deriv elim ineq IMINOS behav size total

5 11 59 2 13 3 11 144 x 174 88

5 6 49 89 74 5 11 303x585 228

5 6 51 30 7 1 73x95 89

5 5 36 1 5 1 96 x80 43

5 5 49 7 12 2 192 x202 70

Figure 5: Toolset Performance on Other Versions of the Dining Philosophers Problem

ENTER entry allows all the philosophers to enter the dining

room at once. The performance of the toolset on these prob-

lems is shown in Figure 4. In each case, the toolset produced

a behavior exhibiting the deadlock.

Several other versions of the dining philosophers problem

have been investigated. We report briefly on the analysis of

a few of these with the constrained expression toolset.

Young et al. [13] used their CATS system to analyze three-,

four-, and five-philosopher examples of an “unrolled version

of the dining philosophers with host. In this version, the host

task does not use a variable to keep track of the number

of philosophers in the dining room, but instead uses nested

se 1 ect statements. The CATS system was used to verify a

temporal logic assertion (that, under the assumption of a fair

scheduler, each philosopher can get into the dining room).

We used the constrained expression toolset to analyze the

five-philosopher system for deadlock. The design published

in [13] is not equivalent to the one in which the host uses

a variable to keep track of the number of philosophers in

the room (as was pointed out to us by Sol Shatz), and the

constrained expression toolset correctly detects a possible

deadlock in the “unrolled version.

Karam and Buhr [9] analyze several versions of the dining

philosophers problem for deadlock and starvation. Their

systems use a single fork manager task to model the forks,

rather than individual tasks. We anatyzed CEDL versions of

two of these systems for deadlock.

We also analyzed two modifications of the basic dining

philosophers system that avoid deadlock without introducing

other tasks. In the first of these, one philosopher picks up the

forks in the reverse of the order used by the other philoso-

phers, picking up, say, the fork on the right first while the

others pick up the one on the left first. In the second version,

which was suggested to us by Robert Kurshan, the philoso-

phers pass around a “dictionary” token. A philosopher does

not attempt to eat while holding the token, thereby ensuring

that atl the philosophers do not hold forks at once.

Results for these other versions of the dining philosophers

problem are shown in Figure 5.The first row of the table gives

the results for the five-philosopher “unrolled” system of [13].

In this case, the toolset produces a system trace displaying the

deadlock. The second row gives results for a system with a

fork manager in which deadlock is possible, and the third row

gives results for a system in which the fork manager prevents

deadlock by requiring the philosophers to pick up both forks

at the same time. In the Iirst of these latter two cases, the

toolset produces a system trace displaying deadlock. In the

second, IMINOS reports that no deadlock is possible, and it

is not necessary to run the behavior generator. The fourth

row of the table gives the results for the system in which one

philosopher picks up the forks in the opposite order, and the

fifth row gives the results for the system with the dictionary.

IMINOS reports that deadlock is impossible in both of these

cases as well, and the behavior generator is not run.

3.2 Gas station

The automated gas station example introduced by Helm-

bold and Luckham [8] has been studied by a number of au-
thors (e.g., [9], [12]). This system models an automated gas

station with an operator, a number of pumps, and a collection

of customers. A customer pays the operator, who then acti-

vates a pump as appropriate. The customer then pumps gas,

and the pump informs the operator of the amount pumped.

The operator then gives change to the customer. Helmbold

and Luckham used a series of iterative refinements of this

system to illustrate their run-time monitoring system for de-

bugging Ada tasking programs. Their examples involved

182

Cus tasks deriv elim ineq IMINOS behav size total

2 4 36 30 15 8 6 120X200 95
2 4 37 34 16 6 125 x209 93

3 5 44 2807 308 86 153 604 X 1401 3398

3 5 46 730 89 21 30 315x643 916

Figure 6: Toolset Performance on the Gas Station

systems with ten customers and three pumps.

We have analyzed several versions of the system that cor-

respond to some of the refinements used by Helmbold and

Luckham, The first of our systems contains two customer

tasks, one pump task, and one operator task. Since we are

interested in the concurrent aspects of the design, rather than

the details of the computations performed by the various

tasks, we ignore the amount of money paid by customers and

the amount of change received. In this version, the opera-

tor does not activate the pump for a waiting customer until

change has been given to the other customer. Because of

a race between two customers who have both prepaid, the

operator may attempt to give change to a customer who has

not yet pumped gas, leading to deadlock. Our analysis is

intended to detect this deadlock. In a second version, again

with two customers, the operator activates the pump for any

waiting customer before giving change. In this case, such

a deadlock is impossible, and the toolset reports this. (Note

that, even though deadlock is avoided, it is still possible for a

customer to rtxeive another customer’s change. Karam and

Buhr’s [9] critical race assistant points up this possibility.)

When this deadlock-free two-customer design is scaled up

to three customers, however, a more complicated race condi-

tion arises, again leading to the possibility of deadlock. (This

was tirst noticed by K. C. Tai [11], who used a graphical anal-

ysis method to detect the error.) We analyzed two versions

of such a three-customer gas station. The Iirst is a straight-

forward extension of the two-customer design. In this case,

the analysis must reflect the much larger number of possible

states of the queue of waiting customers, leading to the long

times for the constraint eliminator and the inequality gener-

ator and the relatively large system of inequalities. In the

second version, the number of possible states is reduced by

setting the slots in the queue to some fixed value when they

are not occupied by customers waiting for service. (Since

that practice would allow standard datatlow techniques to

detect certain errors, it might be good programming style

in general.) The toolset finds the deadlock in both of these

versions of the gas station.

Results for the gas station examples are shown in Figure 6.

The first column in the table shows the number of customers
for each problem; the other columns are the same as in the

preceding figures. The Iirst line of the table gives results

for the original two-customer gas station, in which deadlock

occurs, and the second line gives information for the revised

two-customer version without deadlock. The Sun 3/60 times

we reported at the TAV3 symposium for these problems were

2339 and 1858 seconds respectively. (At the time we pre-

pared our paper for the proceedings of the symposium, the

toolset was not able to complete the analysis of these cases.)

Results for the three-customer extension are shown in the

third line of the table, and those for the version that reduces

the number of queue states are given in the fourth line. We

note that these systems have many fewer tasks than the dining
philosophers examples, but the systems of inequalities and

the tool execution times are relatively large. This chiefly

reflects the more complicated dataflow in the operator task.

One way to avoid deadlock and ensure that customers re-

ceive their own change is to have separate entries in the

operator and pump tasks to distinguish the calls from various

customers. In this variant of the system, the operator task

maintains a flag for each customer indicating whether that

customer has prepaid and is waiting for change. Our analy-

sis of this vtiant of the gas station system was intended to

determine whether a customer who has prepaid can be per-

manently blocked before pumping gas. The toolset correctly

determines that this cannot occur.

For comparison, we also analyzed a version with two cus-

tomers with an error (similar to that in the two-customer

version discussed previously) that permits deadlock to occur.

Results for the correct and incorrect versions of these sys-

tems are shown in Figure 7. The first row gives results for

the erroneous two-customer version. The next five rows give

the results for the correct versions. It is not necessary to use

the behavior generator in the latter cases.

3.3 Readers and writers

Another standard example from the concurrent systems

literature is the readers and writers problem. In this prob-

lem, readers and writers attempt to gain access to a shared

resource. Readers can share access, but the resource can be

corrupted if more than one writer gains access at the same

time and readers may get inconsistent data if a writer and one

or more readers use the resource simultaneously. Various
versions of this problem have been considered, with priority

schemes and other variations. We analyzed some CEDL ver-

sions of the problem for deadlock and to determine whether

183

Cus tasks deriv elim ineq IMINOS behav size total

2 4 39 3 5 1 3 76X 80 51

2 4 36 3 4 1 65x63 44

3 5 47 11 9 4 107X131 71

4 6 62 62 23 13 181 x279 160

5 7 92 415 85 42 327x611 634

6 8 168 2991 308 180 633x1359 3647

Figure 7: Toolset Performance on Gas Station with Separate Entries for the Customers

(r,w) tasks deriv elim ineq IMINOS behav size total

(4,1) 6 40 7 9 6 3 82x137 65

“ (4,1) 6 40 5 4 49

(4,1) 6 41 9 9 273 90x148 332

Figure 8: Toolset Performance on Readers and Writers Problem

a writer and one or more readers could gain access to the

resource at the same time.

These systems consist of a number of tasks representing

readers and writers, and a controller task that the others catl

in order to gain access to the resource. The analysis for

deadlock is similar to the analyses described above. The

analysis for simultaneous access by readers and writers is

quite different, and requires some discussion.

A reader gains access to the resource through a rendezvous

with the controller at its STARTREAD entry, and relinquishes

access through a rendezvous at END.READ. Similarly, a

writer gains and relinquishes accesses through rendezvous at

the entries START.WRITE and END_WRITE. WNW31EOUS

access by a reader and a writer would thus be represented in

a system trace by an occurrence of a symbol representing the

rendezvous at START-WRI TE between symbols representing

corresponding rendezvous at STARTREAD and ENDREAD,

or by the occurrence of a symbol representing a rendezvous at

STARTREAD between symbols representing corresponding

rendezvous at START.WRI TE and END_WRI TE. Detecting

such simultaneous access in a system trace depends on deter-

mining that symbols occur in that trace in a particuhw order,

and the inequalities we generate do not reflect the order of

symbol occurrences. For this reason, our toolset cannot di-
rectly address this question. In order to anaIyze the readers

and writers system for undesirable simultaneous access to the
resource, we therefore modified the controller task so that, at

each STARTREAD or START.WRI TE rendezvous, it checks

to determine whether a reader and a writer both have access

to the resource and sets a flag if this is the case. Our analysis

then asks whether the symbol representing the setting of this

flag occurs in any trace of the system.

Results for a few versions of these readers and writers sys-

tems are shown in Figure 8. The tint column of the table

contains an ordered pair giving the number of readers and

the number of writers in the system. The first line of the

table gives times for an incorrect system with four readers

and one writer. In this system, an error in the controller

task allows a deadlock. The second line gives results for a

correct system that is analyzed for undesirable simultaneous

access to the resource. In this case, the constraint eliminator

removes that part of the controller process expression con-

taining the symbol representing the setting of the flag, and it
is not even necessary to generate a system of inequalities to

determine that the flag is never set. The time shown for the

inequality generator in the table is just the time required to

determine that the symbol does not occur in the constrained

expression produced by the constraint eliminator. The times

reported in [3] for 2-reader versions of these systems were

755 seconds and 1924 seconds, respectively. The third line

in Figure 8 gives results for a system in which the controller

gives the writer priority by accepting a call at START_WRITE

at any time, but then disabling the entry START-READ and

waiting for all readers who have access to the resource to

relinquish it before allowing the writer to proceed. This sys-

tem, which is correct, was analyzed to detect deadlock. As

noted above, the new branching strategy for IMINOS leads

to worse performance with this example; the IMINOS time
with an earlier version of the toolset was 59 seconds.

4 Current Research

We are currently investigating a number of extensions to

the constrained expression anatysis techniques and modifica-

tions to the toolset to support those extensions and improve

its performance. We briefly mention some of these ideas.

We have begun to develop methods for analyzing systems

184

Cus rl r2 tasks deriv ineq IMINOS size total

400 380 380 402 25 3 2 36 X 39 30

400 380 379 402 25 3 2 36 X 39 30

800 780 780 802 25 3 2 36 X 39 30

800 780 779 802 25 3 2 36 X 39 30

Figure 9: Toolset Performance with Many Identical Tasks

that include an essentially arbitrary number of identical tasks

and we have started modifying the toolset to support these

methods. In conjunction with these techniques, we have

also experimented with the use of an integer programming

variable to represent a CEDL variable used by a task in the

system to maintain a count of some sort. At this time, the lat-

ter technique can only be used with certain types of systems,

and the behavior generator needs further modification for use

with these two techniques, but we present in Figure 9 some

results of applying the other components of the toolset to a

system involving two coupled resource managers controlling

two resources and a large number of identical customers who

require equal amounts of each resource.

The figure shows the number of customer tasks, the amount

of the first resource originally available, the amount of the

second resource originally available, the number of tasks in

the systems, and the times used by the components of the

toolset. The analysis is intended to detect the possibility that

the controller of the second resource grants more requests

for access to the resource than can be accommodated by the

available amount. The first two lines of the table give the

results for systems with 400 customers; the first line shows a

correct system and the second shows one with fewer units of

the second resource, leading to an error. The third and fourth

lines give the results for similar systems with 800 customer

tasks. Because the variables used to count resource units in

the two controllers are represented by integer programming

variables, it is not necessary to use the constraint eliminator in

these analyses. The solutions found by IMINOS for the two

incorrect examples do indeed correspond to system traces

displaying the pathological behavior. Note that the systems

of inequalities are the same size and the exwution times are

the same for all versions of the system. While still very

preliminary, these results suggest that the toolset will be able

to handle systems including essentially arbitrary numbers of

identical tasks.

Having demonstrated that automated constrained expres-

sion analysis can be successfully applied to realistic sized

problems of certain classes, and in some cases to arbitrar-

ily large systems, we now wish to extend its application to

additional classes of problems. One such class is real-time

systems problems, specifically the analysis of timing proper-

ties of concurrent systems. We have recently extended our

techniques and modified the toolset to carry out an automatic

derivation of an upper bound on the time that can elapse

between the occurrences of any two designated events in an

execution of a logically concurrent system running on a sin-

gle processor [2]. We are currently investigating methods for

obtaining similar results for the situation in which each pro-

cess in the concurrent system runs on its own processor (the

case of “maximal parallelism”) and we intend to examine the

more difficult multi-processor case in which there are more

processes than processors. We are also studying ways to take

particular scheduling disciplines into account in our analysis.

We would also like to extend our techniques to apply to

so-called “fairness” questions, such as whether one or more

processes in a concurrent system can “starve”, i.e., wait in-

definitely for a resource that is repeatedly available but per-

petually given to other processes. Analyzing this class of

questions will require extending the constrained expression
formalism to represent infinite behaviors. Another class of

interest is questions that are expressed in terms of the order

in which events occur, such as questions concerning mutual

exclusion. Although we have successfully used our existing

methods to answer some questions of this type, such as the

readers and writers problems, our existing methods are not

able to address them directly, and we must modify the sys-

tem being analyzed in order to carry out our analysis. Some

techniques for handling segments of executions, which we

have developed for use in analysis of real-time systems prob-

lems, will provide a starting point for tackling this class of

questions.

Another important research direction under investigation

is the modularization of constrained expression representa-

tions and of their analysis. The current toolset analyzes com-

plete, self-contained systems. In order to support analysis of

individual system components, we propose extending con-

strained expressions with environment constraints that ex-

press assumptions about the environment in which a compo-

nent executes. We are currently experimenting with this ap-

proach and with methods for composing the constrained ex-

pression representations of system components. Such meth-

ods will make it possible to apply constrained expression

analysis to incomplete system designs and to designs for still

larger, more complex systems.

An additional area of future research is the solution of the

integer linear systems we generate. We chose to base the in-

teger programming component of the toolset on MINOS for

185

several reasons, including the availability and robustness of

MINOS and the relative ease of adding the branch-ad-bound

mechanism to it. The performance of IMINOS significantly

improves on the results obtained from the Land and Pow-

ell package, which was used in the experiments described

in [3]. While the performance of IMINOS, particularly with

the new branching strategy described earlier, has been very

satisfactory for demonstrating the feasibility of our general

approach, further development of the toolset would bene-

fit from improved integer programming methods. We are

therefore continuing to experiment with refinements to our

branching strategy and also investigating special-purpose al-

gorithms for the solution of the network flow problems with

side constraints that are generated by our method.

5 Summary and Conclusions

The redesign and reimplementation of several components of

the constrained expression toolset have resulted in dramatic

performance improvements on a range of example analysis

problems. Perhaps most strikingly, the improved toolset car-

ries out a complete analysis of the basic dining philosophers

problem with 100 philosopher tasks and 100 fork tasks, start-

ing from the CEDL code and producing a behavior displaying

deadlock, in approximately 20 minutes. When the behavior

of the individual tasks is more complex, the toolset cannot

handle quite so many tasks, but it is clear that it can be used

with at least some systems involving hundreds of concurrent

processes. This is in marked contrast to the results reported

for most other methods that have been implemented, notably

those based on constructing and searching a reachability tree.

The results of our most recent experiments indicate the

potential value of the constrained expression approach. On-

going and planned research is directed at many of the issues

identified by our experiments. This research involves im-

provements in the toolset to enhance its performance and

make it easier and more convenient to use, and extensions to

the constrained expression formalism and the analysis tech-

niques automated by the toolset to expand the range of ques-

tions it can answer and concurrent systems it can analyze.

Based on the results of the experiments conducted with the

current version of the toolset and the improvements to be

expected in the near future, we believe that the constrained

expression approach can serve as a foundation for practical
tools for developers of concurrent software.

References

[1] G. S. Avrunin, U. A. Buy, J. C. C!orbett, L. K. Dillon,

and J. C. Wileden. Automated analysis of concurrent

systems with the constrained expression toolset. IEEE
Trans. Softw. Eng., to appear.

[2] G. S. Avrunin, J. C. Corbett, L. K. Dillon, and J. C.

Wileden. Automated constrained expression analysis of

real-time software. Submitted for publication. Available

as T&hnicat Report 90-117, Department of Computer

and Information Science, University of Massachusetts,

Dec. 1990.

[3] G. S. Avrunin, L. K. Dillon, and J. C. Wileden. Exper-

iments with automated constrained expression analysis

of concurrent software systems. In R. A. Kemmerer,

editor, Proceedings of the ACM SIGSOFT ’89 Third

Symposium on Software Testing, Analysis and Verifi-

cation, pages 124-130, December 1989. Appeared as

Software Engineering Notes, 14(8).

[4] G. S. Avrunin, L. K. Dillon, J. C. Wileden, and W. E.

Riddle. Constrained expressions: Adding analysis ca-

pabilities to design methods for concurrent software

systems. IEEE Trans. Softw. Eng., 12(2):278–292,

1986.

[5] L. K. Dillon. Analysis of Distributed Systems Using

Constrained Expressions. PhD thesis, University of

Massachusetts, Amherst, 1984.

[6] L. K. Dillon. Overview of the constrained expression

design language. Technical Report TRCS86-21, De-

partment of Computer Science, University of Califor-

nia, Santa Barbara, October 1986.

[7] L. K. Dillon, G. S. Avrunin, and J. C. Wileden.
Constrained expressions: Toward broad applicability

of analysis methods for distributed software systems.

ACM Trans. Prog. Lang. Syst., 10(3):374402, July

1988.

[8] D. Helmbold and D. Luckham. Debugging Ada tasking

programs. IEEE Software, 2(2):47–57, March 1985.

[9] G. M. Kmm and R. J. Buhr. Starvation and critical race

analyzers for Ada. IEEE Trans. Softw, Eng., 16(8) :829–

843,1990.

[10] M. A. Saunders. MINOS system manual. Technical

Report SOL 77-31, Stanford University, Department of

Operations Research, 1977.

[11] K. C. Tai. A graphical notation for describing ex-

ecutions of concurrent Ada programs. Ada Letters,

6(1):94-103, January-February 1986.

[12] S. Tu, S. M. Shatz, and T. Murata. Theory and appli-

cation of Petri net reduction for Ada-tasking deadlock

analysis. Submitted for publication, 1990.

[13] M. Young, R. N. Taylor, K. Forester, and D. Brodbeck.

Integrated concurrency analysis in a software devel-

opment environment. In R. A. Kemmerer, editor, Pro-

ceedings of the ACMSIGSOFT’89 Third Symposium on

186

Software Testing, Analysis and Verijcation, pages 200-

209, 1989. Appeared as Software Engineering Notes,

14(8).

(G. S. Avmnin) DEPARTMENT OF MATHEMATICS AND STATIS-

TICS, UNIVERSITY OF MASSACHUSETTS AT AMHERST, AMHERST,

MA 01003

E-mail: avrunin@math.umass.edu

(U. A. Buy) DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCLENCE, UNIVERSITY OF ILLINOIS AT CHICAGO, Box

4348, CHICAGO, IL 60680

E-mail: buy@ figaro.eecs.uic.edu

(J. C. Corbett and J. C. Wileden) DEPARTMENT OF COMPUTER

Arm INFORNiAmON SCIENCE, I.NIVERSIH OF MASSAcHusEmS AT

AMHERST, AMHERST, MA 01003

E-mail (Corbett): corbett@cs.umass.edu

E-mail (Wileden): jack@ cs.umass.edu

(L. K. Dillon) DEPmTMENT OF CommER SCIENCE, UNIVER-

SITY OF CALIFORNIA AT SANTA BARBARA, SANTA BARBARA, CA

93106

E-mail: dillon%cs(ijlhub.ucsb.edu

187

