
Experiments with Automated Constrained Expression Analysis of
Concurrent Software Systems

George S. Avrunin* Laura K. Dillon+
Department of Mathematics and Statistics Department of Computer Science

University of Massachusetts, Amherst University of California, Santa Barbara
Jack C. Wileden**$

Department of Computer and Information Science
University of Massachusetts, Amherst

Abstract
It is unlikely that any single approach to analysis of concur-
rent software systems will meet all the needs of software de-
velopers throughout the development process. Thus, exper-
imental evaluation of different analysis techniques is needed
to determine their relative strengths and practical limita-
tions. Such evaluation requires automated tools implement-
ing the analysis techniques.

This paper describes a prototype toolset automating the
constrained expression approach to the analysis of concur-
rent software systems. The results of preliminary experi-
ments with the toolset are reported and the implications of
these experiments are discussed.

I Introduction
A wide variety of techniques have been proposed for a.na-
lyzing the behavior of concurrent software systems. These
differ in their underlying models of concurrent computation,
in the questions about behavior they attempt to answer, and
in the stages of the software development process in which
they are applied. It is unlikely that any single approach to

‘Partially supported by NSF grant CCR-8806970 and ONR grant
N00014-89- J- 1064

+Partially supported by NSF grant CCR-8702905
*Partially supported by NSF grant CCR-8704478 with cooperation

from DARPA (ARPA order 6104).

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-342-6/89/0012/0124 $1.50

analysis can possibly meet all the needs of software develop-
ers throughout the development process.

The effective use of analysis techniques during software
development requires an understanding of their relative
strengths and practical limitations. While virtually all ex-
isting analysis techniques are known to have limitations of
various kinds, little is known about the practical significance
of these limitations. This determination can only be made
through experimental application of the techniques to a wide
range of concurrent systems. Clearly, experiments must be
conducted with systems of realistic size and complexity! and
so automated tools implementing the analysis technrques
will be required. In this paper, we report on a prototype
toolset supporting the constrained expression approach to
analysis, and the results of some preliminary experiments
with that toolset.

The next section of the paper briefly describes the con-
strained expression approach. The third section describes
the toolset, and the fourth reports some of our experience
in using the toolset. Fina.lly, we discuss the implications of
these experiments for further work on constrained expres-
sions.

2 Constrained Expressions

In the constrained expression approa.ch to a.nalysis of concur-
rent systems, the system descriptions produced during soft-
ware development (e.g., designs in some design notation) are
translated into formal representations, ca.lled constrained ez-
pression representations, to which a variety of analysis meth-
ods are then applied. This approach allows developers to
work in the design notations and implementa.tion languages
most appropriate to their tasks. Rigorous analysis is based
on the constrained expression representations tha.t are me-
chanically generated from the system descriptions created
by software developers.

This section contains a brief overview of the constrained
expression formalism. A detailed and rigorous presentation

124

is given in 111, and a less formal treatment presenting the
motivation E or many of the features of the formalism appears
in [5 . The use of constrained expressions with a variety of

1 deve opment notations is illustrated in [5] and [13].
The constrained expression formalism treats the behaviors

of a concurrent system as sequences of events. These events
can be of arbitrary complexity, depending on the system
cha.racteristics of interest and the level of system description
under consideration. Associating an event symbol to each
event, we can regard each possible behavior of the system as
a string over the alphabet of event symbols.

We use interleaving to represent concurrency. Thus, a
string representing a possible behavior of a system that con-
sists of several concurrently executing components is ob-
tained by interleaving strings representing the behaviors of
the components. The events themselves are assumed to be
atomic a.nd indivisible. “Events” that are to be explicitly
regarded as overlapping in time are represented by treating
their initiation and termination as distinct atomic events.

The set of strings representing behaviors of a particular
concurrent system is obtained by a two-step process. First,
a. regular expression, called the system expression, is derived
from a description of the system in some notation such as a
design or programming language. The language of the sys-
tem expression includes strings representing all possible be-
haviors of the system. It may, however, also include strings
that do not represent possible behaviors, as the system ex-
pression does not encode the full semantics of the system
description. This language is then “filtered” to remove such
strings, using other expressions, called constraints, which are
also derived from the original system description. A string
survives this filtering process if its projections on the alpha-
bets of the constra.ints lie in the languages of the constraints.
The constraints (which need not be regular) enforce those
aspects of the semantics of the design or programming lan-
guage, such as the appropriate synchronization of rendezvous
between different tasks or the consistent use of data, that are
not captured in the system expression. The reasons for this
two-step process, which might not seem as straightforward
as generating behaviors directly from a single expression, are
discussed in [13].

Our main constrained expression analysis techniques re-
quire that questions about the behavior of a concurrent sys-
tem be formula.ted in terms of whether a pa.rticular event
symbol, or pattern of event symbols, occurs in a string rep-
resenting a. possible behavior of the system. For example,
questions about whether the system can deadlock might be
phra,sed in terms of the occurrence of symbols representing
the starvation of component processes of the system.

Starting from the assumption that the specified symbol,
or pattern of symbols, does occur in such a string, we use the
form of the system expression and the constraints to generate
inequa.lities involving the numbers of occurrences of various
event symbols in segments of the string. If the system of
inequalities thus generated is inconsistent, the original as-
sumption is incorrect and the specified symbol or pattern of
symbols does not occur in a string corresponding to a be-
havior of the system. If the inequalities are consistent, we
use them in attempting to construct a string containing the
specified pattern.

Constrained expression analysis, then, is a static, event-
based approach (though the construction of a behavior from
a solution of a system of inequalities has similarities to dy-
namic analysis). The constrained expression formalism is
closely related to path expressions [7], event expressions [21],
and COSY [20]. More detailed discussion of the relation be-
tween constrained expressions and a variety of methods for
describing and analyzing concurrent software systems can
be found in [5] and [24]. The constrained expression anal-
ysis techniques can be regarded as rigorous formulations of
methods based on arguments a.bout the order and number of
occurrences of events. Such methods have been widely used

in conjunction with concurrent software systems (e.g., [16]).
In summary, the constrained expression approach is ap-

plicable to systems expressed in a variety of notations and
languages. It offers a focused approach to analysis, which, by
keeping the amount of uninteresting information produced
to a minimum, can be very efficient. One potential difficulty
in applying the approach is that it requires that analysts cor-
rectly formulate questions about the behavior of a system in
terms of patterns of event symbols in strings representing
system behaviors. Other potential drawbacks include the
difficulty of automating some aspects of generating and rea-
soning about the systems of inequalities.

After manually applying the constrained expression anal-
ysis techniques to a number of small examples with encour-
aging results

I
e.g., [2], [5], [6], [24]), we began to construct

prototype too s automating various aspects of the analysis.
An important goal of this automation effort is to support
experimentation directed at determining the practical sig-
nificance of the potential problems cited above. This paper
describes the first complete version of the prototype toolset
and reports the results of some experiments with it.

3 The Constrained Expression
Tools

The prototype toolset (see Figure 1) consists of five major
components: a deriuer that produces constrained expression
representations from concurrent system designs in a partic-
ular design language; a constraint eliminator that replaces
a constrained expression with an equivalent one involving
fewer constraints; an inequality generator that generates a.
system of inequalities from the constrained expression rep-
resentation of a concurrent system; an integer programmirrg
package for determining whether this system of inequalities
is consistent or inconsistent, and, if the system is consis-
tent, for finding a solution with appropriate properties; and
a behavior generator that uses the constrained expression
and the solution found by the integer programming package
(when the inequalities are consistent) to produce a string
of event symbols corresponding to a system behavior with
the desired properties. The organization of the toolset is
illustrated in the figure.

The current toolset is intended for use with designs writ-
ten in the Ada-based design lan
Expression Design Language) [12 I

uage CEDL (Constrained
. CEDL focuses on the ex-

pression of communication and synchronization among the
tasks in a distributed system, and language features not re-
lated to concurrency are kept to a minimum. Thus, for ex-
ample, data types are limited, but most of the Ada control-
flow constructs have correspondents in CEDL. We have cho-
sen to work with a design notation based on Ada because
Ada is one of the few programming languages in relatively
widespread use that explicitly provides for concurrency, and
because we expect our work on analysis of designs to con-
tribute to and benefit from the Arcadia Consortium’s work
on Ada software development environments [23]. Those as-
pects of the toolset that depend on CEDL are noted below.

Examples showing the manual application of the analy-
sis techniques automated by the prototype toolset have ap-
peared previously. In particular, a CEDL formulation of
the standard dining philosophers problem, the correspond-
ing constrained expressions, simplified versions of those ex-
pressions, an outline of the inequality generation and solu-
tion process for those expressions, and an example beha.vior
corresponding to the deadlock discovered by that process
appear in [5]. Similarly, parts of the CEDL formulation of
Helmbold and Luckham’s gas station problem [l’i’], parts of
the corresponding constrained expressions and some of the
inequalities generated in analyzing that problem appear in
[24]. The intermediate inputs to and outputs from the tools

125

Figure 1: Diagram of Constrained Expression Toolset

in our toolset are not designed to be easily human readable.
Hence, we do not include examples of them in the descrip-
tions of the individual tools presented below but refer the
reader to the corresponding information in [5j and [24].

The deriver [I] produces constrained expression represen-
ta.tions from CEDL system designs. It is written in Ada,
and was developed using Arcadia-produced versions of stan-
dard compiler construction tools and the Graph Definition
Language and GRAPHITE processor [9]. The deriver gener-
ates a graph representing the constrained expression. Even-
tually, this will be the standard internal representation for
constrained expressions. Currently, however, the prototypes
of the other tools expect input in other formats, and small
utility programs convert between the formats. For a. CEDL
design, the system expression of the constrained expression
representation produced by the deriver consists of the in-
terleave of task expressions representing the behavior of the
ta.sks in the system. The deriver also generates all required
constraints.

The constraint eliminator [14] is written in Common LISP,
and sha.res a common front end with the behavior generator.
It takes a “generator expression”, which is a subexpression
of the system expression, and constraints involving symbols
from the generator expression, and produces a new expres-
sion whose language is the set of strings in the language of
the generator expression that satisfy the constraints. The
constraint eliminator converts the generator expression and
constraints into finite state automata

I
the constraints in a

constrained expression representation o a CEDL system a.re
regular), from which it produces a new automaton accepting
the intersection of the appropriate languages. It then returns
an expression corresponding to this automaton. In principle,
the generator expression need only be regular, and so could
be the full system expression. However, the process of inter-
secting the finite state automata quickly becomes intractable
if the generator expression involves the interleave operator.
For this rea.son the current constraint eliminator will only
accept. generator expressions that use the standard regular
expression operators. When analyzing constrained expres-
sions derived from CEDL designs, the constraint eliminator
is typically used with a task expression and the constra.ints
that enforce correct dataflow within tasks. The input task
expression is then replaced with the expression returned by
the constraint eliminator and the intra-task data flow con-
straints are eliminated. This process facilitates certain as-
pects of the analysis of the constrained expression, as indi-
cated below.

The inequality generator [3], which is also written in Com-
mon LISP, takes a constrained expression representation in

essentially the same format as that accepted by the con-
straint eliminator, and generates a system of linear inequal-
ities representing part of the semantics of the constrained
expression. The Inequality generator builds an abstract syn-
tax tree representing each task expression, and genera.tes
inequalities based on the semantics of regular expressions.
It then generates additional inequalities derived from some
of the constraints. The full system of inequalities involves
both the total numbers of occurrences of various event sym-
bols and the numbers of times various branches in the ab-
stract syntax trees are traversed. However, these inequalities
do not reflect the complete semantics of the constrained ex-
pression. For example, not all the information about the
relative order of event symbols is represented, so that the
constraints that enforce correct dataflow are not reflected in
the generated system of inequalities. (The significance of
this problem for intra-ta.sk dataflow is reduced by applica-
tion of the constraint eliminator.) In addition, the generated
system of inequalities does not completely reflect the seman-
tics of the alternation operator when one of its operands is
the Kleene star of an expression. The full semantics would
require quadratic inequalities, and the integer programming
package we are currently using only handles linear systems.
As mentioned below, we are currently investigating another
integer programming package that may eliminate this prob-
lem.

The inequality generator also provides an interactive fa.-
cility allowing the analyst to add inequalities representing
assumptions or queries about the behavior of the system.
The inequality generator produces an output file giving the
system of inequalities in the format required by the integer
programming package, as well as a human-readable report
giving the correspondence between variables in the system of
inequalities and event symbols. If the integer programming
package finds a solution to the system of inequalities, the
inequality generator uses this correspondence to report the
solution to the analyst in terms of traversal of the abstra.ct
syntax trees and the numbers of occurrences of event sym-
bols. Certain aspects of the inequality generator, including
the representation of various constraints, depend on fea.tures
of CEDL. Its basic structure, however, is compatible with all
constrained expressions.

The integer programming package that we are currently
using is a branch-and-bound integer linear programming sys-
tem [19] written in FORTRAN; it was chosen because it
had already been installed as part of a previous project at
the University of Massachusetts. We have encountered some
problems with its branch-and-bound strategy, as described
in the next section, and with the limitation to linear sys-

126

constraint inequality int. prog. behavior total CPU

system deriver eliminator generator package generator time

DPH-3 123 77 23 7 - 230

DPH-4 133 194 62 41 - 430

DPH-5 162 330 102 103 - 687

RW-I 43 539 32 17 124 765

RW-c 63 1740 38 83 - 1924

GAS-I 75 960 220 - - -

GAS-C 76 944 190 - - -

Figure 2: Sun ‘J/60 CPU times, in seconds, for the constrained expression tools.

terns. We are currently implementing integer programming
on top of the MINOS optimization package [22].

The behavior generator [15] is a Common LISP program
for producing system behaviors with certain properties. In-
put to the program consists of a constrained expression and
counts for certain event symbols (counts produced by the in-
teger programming package). The behavior generator builds
finite state automata corresponding to the task expressions
and constraints of the constrained expression. It then uses
heuristic search techniques to find a string of event symbols
representing a system behavior with the given numbers of
symbol occurrences. It can be used with any constrained
expression having regular constraints.

4 Using the Toolset

We have begun to use the prototype toolset in the anal-
ysis of concurrent systems. The preliminary experiments
reported below represent an initial attempt to determine
the practical limitations of automated support for the con-
strained expression approach to analysis. A number of varia-
tions of four different systems are analyzed. First, a standard
formulation of the dining philosophers problem provides a
basis for comparison with other analysis techniques because
of its widespread use as a benchmark problem. The addi-
tion of a host task controlling entry to the dining room indi-
cates how the introduction of intra-ta.sk dataflow affects tool
performance. The readers/writers problem requires analy-
sis of more complex da.ta flow patterns. Finally, we analyze
an automated gas station example in which both the syn-
chronization patterns and intra-task dataflow are relatively
complex. Varying the number of philosophers in the dining
philosophers problems indicates how increasing the number
of tasks in the system being analyzed affects tool perfor-
mance. We consider both time and space efficiency of the
tools.

The ta.ble in Figure 2 gives CPU times for the application
of the components of the toolset to these systems. The ta-
ble in Figure 3 provides information about the sizes of the
constrained expression representations and the system of in-
equalities used in the analysis for each case.

The first six rows of the tables give the data for versions of
the standard dining philosophers problem with three, four,
five, six, eight, and ten philosophers, respectively. In the
analysis reported here, we seek to determine whether a. par-
ticular philosopher task could possibly wait indefinitely for a
rendezvous with a second fork task, and thus starve (in both
the concurrent systems and metaphorical senses). These sys-

tems do not have a doorkeeper or host to prevent all the
philosophers from trying to pick up forks at the same time,
and are therefore subject to deadlock in which each philoso-
pher task starves waiting to rendezvous with a second fork
task. The dining philosophers systems without host use ren-
dezvous simply for synchronization purposes, and involve no
intra-task dataflow. We therefore do not use the constraint
eliminator in these cases.

The size of the constrained expression representations of
these systems goes up linearly with the number of philoso-
phers, as does the execution time of the inequality generator
and the size of the system of inequalities genera.ted. We
have successfully applied the deriver and inequality genera.-
tor with systems conta.ining up to twenty philosophers (i.e.,
forty concurrent tasks), and expect no difficulties with even
larger systems. However, the integer programming pa.ck-
age we are currently using is unable to solve the systems
of inequalities generated in the cases with more than eight
philosophers, due to failure of an accuracy test in the course
of solving a linear programming relaxation of the integer lin-
ear programming problem. We discuss the implications of
this failure below. In the cases where a solution to the sys-
tem of inequalities is found, the behavior generator produces
a behavior exhibiting the deadlock.

The next three rows of the tables give data for analyses of
three-, four- and five-philosopher versions that have a host
task to prevent all the philosophers from entering the dining
room and trying to pick up forks at the same time. A

f
a.in,

the analysis seeks to determine whether a particular ~111 oso-
pher can starve. In these cases, the constraint eliminator
is applied to the task expression for the host, along with
the constraints enforcing consistent use of the variable tha.t
counts the number of philosophers in the dining room. The
resulting task expression is used in the input to the inequal-
ity generator. Because this task expression must represent
the effects of all possible execution paths on the va.riable that
counts philosophers in the dining room, the size of the con-
strained expression used as input to the inequality generator
and the size of the resulting system of inequalities both go
up rapidly with the number of philosophers, and are signif-
icantly greater for the five-philosopher system with a host.
than for the eight-philosopher system without a host. Due
to the detailed structure of the particular system of inequal-
ities, however, the integer programming package does not
encounter accuracy problems here, and, in each of the three
cases, reports that no philosopher starves. Thus, it is not,
necessary to use the behavior generator in these cases.

The tenth and eleventh lines of the tables give data for two
CEDL versions of the readers/writers examples of [8]. These

127

output of output of output of
deriver eliminator inequality gen.

system operators symbols operstors symbols inequahtles varmbles

DPH-3 133 269 167 363 96 121
DPH-4 166 385 668 1276 202 483
DPH-5 203 481 1169 2206 295 905

RW-I 133 253 451 768 117 243
RW-C 199 360 501 1082 130 281

GAS-I 320 571 3048 7539 604 1751
GAS-C 146 305 2620 6666 690 1494

Figure 3: Sizes of constrained expressions and systems of inequalities. The second and third columns give the numbers of
regular expression operators and event symbols for the constrained expression produced by the deriver; the fourth and fifth
columns give the corresponding figures for the constra.ined expression produced by the constraint eliminator. The last two
columns give the numbers of inequalities and variables in the system produced by the inequality generator.

systems involve four tasks: two readers, one writer,and a
controller that is intended to prevent a reader and a writer
from simultaneously using the shared data. The first system
is an incorrect implementation in which the value of a vari-
a.ble indicating that a writer has access to the shared data is
set incorrectly when the writer finishes with the data. In this
case, the analysis determines that the tasks in the system can
starve waiting for access to the data. The second system is
a correct implementation, and manual analysis of the con-
strained expression representation establishes this fact. The
toolset, however, cannot directly answer questions involv-
ing the occurrence of one event between two others, such as
“Does a reader attempt to use the shared data between the
writer gaining and releasing access to it?” This is because
the inequalities produced by the inequality generator do not
reflect all the information about the relative order of events.
We therefore modify the CEDL code slightly to include an
explicit test for the failure of mutual exclusion, and use the
toolset to determine whether a corresponding error flag is
ever set. The increased complexity of control flow caused
by this modification accounts, at least in part, for the long
execution time of the constraint eliminator in this case.

The la.st two lines of the tables give information for two
CEDL versions of the automated gas station examples of
[li’]. These systems also involve four tasks: two customers,
a pump, and an operator. The first system is an incorrect
implementation in which deadlock can occur, and the second
is a correct version. Analysis here is intended to determine
whether sta.rvation of customer tasks is possible. In these
ca.ses, we use the constraint eliminator with the task expres-
sion representing the operator of the automated gas station
and the constraints enforcing consistent use of the variables
that count and maintain a queue of the customers pump-
ing gas. Even with only two customer tasks in the system,
the behavior of the operator is considerably more complex
than that of the host in the dining philosophers systems or
the controller in the readers/writers systems, and the sys-
tem of inequalities produced by the inequality generator is
too large for the Land-Powell integer programming package,
which allows a maximum of 999 variables. We expect that
improvements in the constraint eliminator and the conver-
sion to an integer programming package based on MINOS
will very soon allow us to apply the complete toolset to these
systems as well.

5 Conclusions

These initial experiments with the prototype constrained ex-
pression toolset are encouraging. The toolset provides com-
plete analysis of both versions of the dining philosophers
problem, with and without a doorkeeper. It also provides
complete analysis of the readers/writers problem, although
a minor alteration to the problem is required to make this
automated analysis possible. Even the prototype versions
of the tools are efficient enough to be useful to software de-
velopers on examples of moderate size. Furthermore, earlier
experiments show that the constrained expression approach
can detect a variety of errors and can be used with a broad
range of design notations and programming langua.ges.

However, some weaknesses of the prototype toolset are
evident. The most significant of these involve the branch-
and-bound integer programming package we are currently
using [19], and include the limitations on the size of system
of inequalities that the package can handle, the accuracy
problems noted in the previous section, and the restriction
to linear inequalities. This package is an implementation in
FORTRAN 66 of the first branch-and-bound algorithm for
general integer programs [18]. Its division scheme has been
replaced, in virtually all commercial integer programming
codes, by the variable dichotomy scheme first proposed by
Dakin (10 , and we believe that some of its strategies for se-
lecting a I! ranching variable and for exploring the tree may
be poorly suited to our systems of inequalities. For these
reasons and others, including the ability to handle quadra.tic
inequalities, we expect a considerable improvement in per-
formance from the integer programming package we are cur-
rently implementing using the MINOS optimization pa.ck-
age [22].

Other drawbacks of the prototype toolset were not as sig-
nificant in the experiments described here, but may become
more important when the toolset is applied to a wider range
of concurrent systems. These include the facts that the sys-
tem of inequa.lities produced by the inequality generator does
not reflect the full semantics of the constrained expression
representation (though the use of quadratic inequalities with
the MINOS system addresses part of this issue) and that the
task expressions returned by the constraint eliminator may
lead to larger systems of inequalities than other, equivalent
expressions.

We are now beginning to address these issues, a.nd a num-
ber of improvements to the toolset are planned. In addi-

12%

tion to repla.cing the Land-Powell integer linear program-
ming package with one based on MINOS that will allow
quadratic inequalities, we intend to modify the behavior gen-
erator to use all the information contained in a solution to
the system of inequalities, rather than just the total num-
bers of occurrences of the various event symbols. We will be
modifying the inequality generator to produce the quadratic
inequalities needed to express the semantics of the alterna-
tion operator when one of its operands is the Kleene star of
an expression, and are investigating other ways to improve
the generation of inequalities so that they reflect more of the
full semantics of constrained expressions. We are also inves-
tigating several approaches to improving the performance of
the constraint eliminator.

In addition, improvements to the interfaces between the
human analyst and the toolset and between the tools are un-
derway. Clearly, analysts should be able to formulate behav-
ioral queries in terms of elements from the original system
description and at a higher level of abstra.ction than is cur-
rently possible, and a common internal representation would
help in integrating the various tools. We are currently exper-
imenting with using the UTM-0 automated generator [25 ,

! a prototype tool supporting specification level interoperabi -
ity, to provide access to a common internal representation for
constrained expressions from both Ada a.nd Common LISP
programs. This will eliminate the need for the utility pro-
gra.ms that now translate between the different constrained
expression formats used by the various tools. It will also al-
low us greater freedom in choosing which languages to use in
future implementations of improved versions of the various
toolset components.

While starting to improve the prototype toolset, we have
also begun to explore additional applications for constrained
expression analysis, some of which may lead to enhance-
ments to the underlying formalism and further modifica-
tions to the tools. In particular, we have begun to study
the application of the constrained expression approa.ch to
various scheduling and real-time problems [4]. Because ex-
pressing some of these scheduling and timing problems, as
well as the semantics of certain programming languages for
concurrent systems, involves constraints that are not regular
expressions, we hope to be able to eliminate the regularity
restrictions in some of the tools.

For a more complete understanding of the strengths and
weaknesses of the constrained expression approach and the
prototype toolset, we need to evaluate the performance of
the toolset on a wider range of examples. The problem
of designing an a.ppropriate suite of benchmark problems
for concurrent software analysis tools has not been carefully
studied; we hope to develop some criteria for such a suite in
the course of collecting additional examples for experiments
with the constrained expression toolset. It is unlikely tha.t
a single a.pproach to analysis will meet the needs of devel-
opers of concurrent software, and such a test suite would
be of significa.nt value in comparing various approaches and
determining the types of problems for which each approach
has the greatest value.

Based on the prototype toolset and the initial experi-
ments described in this paper, we are very encouraged about
the prospective value of the constrained expression approach
to automated analysis of concurrent software systems. We
therefore plan to pursue the toolset improvements, enhance-
ments to the formalism, and more extensive experimental
eva.luation outlined above. We expect that these activi-
ties, in conjunction with similar experimental evaluations
by other researchers developing other analysis techniques,
preferably all based on a common test suite, will result in
improved understanding of the relative strengths and weak-
nesses of the constrained expression approach and alterna-
tive concurrent system analysis techniques.

Acknowledgments
Our students Susan Avery, Ugo Buy, Michael Greenberg,
RenHung Hwang, and George Walden ha.ve played impor-
tant roles in the development of the toolset and the experi-
mental evaluation reported in this paper.

References

[II

PI

[31

[41

PI

[‘31

PI

PI

[91

WI

PI

I121

[I31

S. Avery. A tool for producing constrained expression
representations of CEDL designs. Software Develop-
ment Laboratory Memo 89-2, Department of Computer
and Information Science, University of Massachusetts,
1989.

G. S. Avrunin. Experiments in constrained expres-
sion analysis. Technica. Report 87-125, Department of
Computer and Information Science, University of Mas-
sachusetts, Amherst, November 1987.

G. S. Avrunin and U. Buy. An inequality generator for
constrained expression analysis. In preparation.

G. S. Avrunin, L. K. Dillon, and J. C. Wileden. Con-
strained expression analysis of rea.l-time systems. Tech-
nical Report 89-50, Department of Computer and In-
formation Science, University of Massachusetts, 1989.

G. S. Avrunin, L. K. Dillon, J. C. Wileden, and W. E.
Riddle. Constrained expressions: Adding analysis cs-
pabilities to design methods for concurrent software
systems. IEEE Trans. Softw. Eng., SE-12(2):278-292,
1986.

G. S. Avrunin and J. C. Wileden. Describing and ana-
lyzing distributed software system designs. A CM Trans.
hog. Lung. Syst., 7(3):380-403, July 1985.

R. H. Campbell and A. N. Habermann. The specifica-
tion of process synchronization by path expressions. In
E. Gelenbe and C. Kaiser, editors, Operating Systems,
volume 16 of Lecture Notes in Computer Science, pages
89-102. Springer-Verlag, Heidelberg, 1974.

R. H. Carver and K.-C. Tai. Detection of synchroniza-
tion errors in concurrent software by semantics-based
analysis. Preprint, 1988.

L. A. Cla.rke, J. C. Wileden, and A. L. Wolf.
GRAPHITE: A meta-tool for Ada environment devel-
opment. In Proceedings of 2nd International Conference
on Ada Applications and Environments, pages 81-90,
April 1986.

R. J. Dakin. A tree search algorithm for mixed integer
programming problems. Computer Journal, 8:250-255,
1965.

L. K. Dillon. Analysis of Distributed Systems Using
Constrained Expressions. PhD thesis, University of
Massachusetts, Amherst, 1984.

L. K. Dillon. Overview of the constrained expression
design language. Technical Report TRCS86-21, De-
partment of Computer Science, University of California,
Santa Barbara, October 1986.

L. K. Dillon, G. S. Avrunin, and J. C. Wileden.
Constrained expressions: Toward broad applicability
of analysis methods for distributed software systems.
ACM Trans. Prog. Lung. Syst., 10(3):374-402, July
1988.

129

[14] L. K. Dillon and G. Walden. A prototype constraint
eliminator for constrained expression representations.
In preparation.

[15] M. Greenberg and S. Avery. A behavior generator.
Software Development Laboratory Memo 89-1, Depart-
ment of Computer and Information Science, University
of Massachusetts, 1988.

[16] A. N. Habermann. Synchronization of communicating
processes. Commun. ACM, 15(3):171-176, 1972.

[17] D. Helmbold and D. Luckham. Debugging Ada tasking
programs. IEEE Software, 2(2):47-57, March 1985.

[la] A. H. Land and A. G. Doig. An automatic method for
solving discrete programming problems. Econometrica,
28:497-520, 1960.

[19] A. H. Land and S. Powell. Fortran Codes for Mathe-
matical Programming: Linear, Quadratic and Discrete.
John Wiley & Sons, Ltd., London, 1973.

[ZO] P. Lauer, P. Torrigiani, and M. Shields. COSY: A
system specification language based on paths and pro-
cesses. Acta Informatica, 12(2):451-503, 1979.

[21] W. E. Riddle. An approach to software system behavior
modeling. Computer Languages, 4:29-47, 1979.

[22] M. A. Saunders. MINOS system manual. Technical
Report SOL 77-31, Stanford University, Department of
Operations Research, 1977.

[23] R. N. Taylor, F. C. Bell;, L. A. Clarke, L. J. Oster-
weil, R. W. Selby, J. C. Wileden, A. L. Wolf, and
M. Young. Foundations for the Arcadia environment
architecture. In Proceedings SIGSOFT ‘88: Third Sym-
posium on Software Development Environments, pages
1-13, December 1988.

[24] J. C. Wileden and G. S. Avrunin. Toward automat-
ing analysis support for developers of distributed soft-
ware. In Proceedings of the Eighth International Confer-
ence on Distributed Computing Systems, pages 350-357.
IEEE Computer Society Press, June 1988.

[25] J. C. Wileden, A. L. Wolf, W. R. Rosenblatt, and P. L.
Tarr. Specification level interoperability. Submitted.

130

