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ABSTRACT 

Developing large-srale, reliahle software capable of exploit- 
ing the potential of diatribut,ed hardware systenis will demand 
the support of powerful automated tools, especially analysis 
tools. Our constrninzd ezpression approach to analyzing such 
software systems seems to have several advant,ages, including 
broad applicability and reasonahle effiriency, relat,ive t,o other 
proposed approarhes. Results of initial experiments with our 
approarh, based on manual application and preliminary proto- 
types of some of the needed tools, have been encouraging. They 
have also demonstrated the need for us, and all researchers 
working on distributed software analysis, to  undertake more 
extensive experimentation with larger, more realistic examples. 
In this paper, we report on our initial experimentation with 
constrained expression analysis and describe our plans for con- 
structing the more robust, flexible and efficient prototype tool 
implementations needed to  support more extensive experimen- 
tation. 

Introduction 

Hardware systems supporting distributed computing are 
constantly improving. Our ability to create software effectively 
exploiting the potential power of such systems has not kept 
pace. This is due in part to  a lack of appropriate tools to  
aid developers of distrib~it~ed software systems. Because of the 
inherent complexity of distributed software, constructing large- 
scale, reliable distributed software systems will be virtually im- 
possible without Dowerful automated support tools. 

We believe that, tools for nnnlyzing distributed software sys- 
tems are especially important. In particular, bhere is a need 
for tools slipporting analysis of the logical or behavioral as- 
pects of distributed systems. These are tools that can help to  
uncover logical Raws or unintended properties in a system’s be- 
havior, such as deadlock, process starvation or synchronization 
anomalies. Ideally, such tools should be applicable not only 
to  completed code but also to pre-implementation descriptions 
such as  specifications and designs. 

N o  existing tool effectively supports siich analysis. Indeed, 
it seems unlikely that  any single tool would ever fulfi l l  all the 
analysis needs of distributed software developers. Rather, we 
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expect t,hat there will eventually be a collection of tools, earh 
known t o  be of greatest value for a particular class of problems, 
or during a particiilar phase of soft,ware development. Togehher 
bhe tools in this collection w.ill provide t.he necessary analysis 
capabilities. Assenibling such a collection will require the devel- 
opment of a variety of analysis techniques, support,ed by theo- 
rrt,ical studies of their rapabilit,ies and limitations. Also needed, 
however, will be experiment,al studies of the techniques, based 
on robust, prototype implementat,iona of the requisi1.e t,ools, to  
establish the practical utility and shortcomings of the tech- 
niques. 

In fact, several techniques have been proposed for analyzing 
distributed software systems a t  various stages in t,heir develop- 
ment. All are known to have certain limitations. The practical 
significanre of those limitations is not clear, however, since most 
of the proposed techniques have never been adeqriately tested 
through prototype implementation and experinientat>ion. For 
similar reasons, the phases of development, to  which these t.ech- 
niques are best applied and the analysis questions that they are 
best snited for addressing are also not clearly est,ablished. 

Over the last several years, we have been developing and 
experiment,ing with an a.pproarh for analyzing dist,ribllted soft,- 
ware syskms. While it too has some lirnitatione, we believe that  
our constrained erpression approach has several advantages rel- 
ative to  other approaches. In particular, the constrained ex- 
pression approach appears to  be: 

B r o a d l y  Applicable:  Its use is not restricted t,o a lim- 
ited set of design or programming languages nor to  a liin- 
ited range of analysis problems. 

R.c.latively Efficient: It, offers a highly focused style of 
analysis that  limits combinatorial explosion. 

S t r a i g h t f o r w a r d  to Implement: Not,liing more exotic 
than standard language processing and nunicrical analysis 
tools seems t,o be required. 

To dat,e we have demonst,rated the approach’s broad ap- 
plicability by showing how it can be applied to systems de- 
scribed in a diverse set of design and programming notations, 
including CSP and Petri nets [I41 and Ada [ t l ) .  We have alRo 
shown that, it produces relatively efficient, assessment,s of signif- 
icant, properties of dist,rihuted syst,ems. We have, for example, 
used it in manually analyzing the dining philosophers problem, 
a distributed mutual exclusion mechanism and an antomated 
gas station system. Finally, we have produced primitive pro- 
totype implementations of some of the central tools required 
t o  automate the constrained expression approach. These initial 
prototype iniplementations have demonstrated the feasibility of 
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automating the approach using fairly straightforward technol- 
ogy. 

Encouraged by these init,ial results, we now plan to  continue 
development of the technique and to undertake a thorough as- 
sessment of its potential practical value. This will involve both 
continued theoretical work and serious experimentation with 
examples of realistic size and complexit,y. The experimentation 
wit.11 realistic examples will require tools that  are more robust 
and extensible, a.re more efirient, and have better user inter- 
faces t2han our current prototypes. 

In t,he remainder of this paper, we report. on some of our ini- 
tial experimentation with the constrained expression approach 
and describe our plans for continued efforts toward automated 
analysis support for developers of distributed software. We be- 
gin with an overview of the current status of work on tools 
supporting analysis of distributed software systems. We then 
outline our constrained expression approach and describe how 
it can be used to  analyze distribut,ed software. We illustrate 
t.his by describing one of our recent experiments. This is fol- 
lowed by a description of the improved prototype toolset, that  
we are currently building. We conclude with a summary of our 
plans for enhanced tools and further experimentation. 

Tools for Analyzing Distributed Software 

Tools for analyzing soft,wa.re may be hroadly classified as dy- 
namic or static. ’Tools for dynamic analysis are t>hose that  derive 
their information through some sort of animation of the system, 
such as an execution, simulation, or interpretation. Static anal- 
ysis t,oots, on t.he ot,her hand, derive t,heir informat,ion entirely 
from inspection of the system’s description, without requiring 
any kind of animation. 

Dynamic analysis met,hods are basically variations on t-he 
t,raditional techniques of test,ing and debugging. The analysis 
tools associated with PAiSLey [32,33] and DCDS [I), for ex- 
ample, are dynamic analysis tools. In each case, they support 
an  interpretive animation, or simulation, of the behavior of a 
system described in the corresponding notation. The results of 
tha t  animation can then be inspected in an attempt to  deter- 
mine properties of the system. Along with these dynamic anal- 
ysis tools for use with pre-implementation descriptions, there 
has been some work on tools for testing and drbiigging of dis- 
tributed programs. These include post-mortem debugging tools 
that  work by generating trace information during t,he system’s 
execution and then allowing the user t o  study the trace after 
execuhion has trrminated (e.g., [241, 1231, (221) as well as more 
interactive debugging tools that  permit (,he user t.o monitor, 
and possibly modify, the course of a system’s executiolt (e.g., 

Dynamic analysis met,hods, whether applied to  pre- 
implenientation descriptions or to  completed programs, suffer 
from the fact that each distinct possible behavior of the sys- 
tem must be considered separat,ely, by carrying out a separate 
testing or debugging “run.” This aspect of dynamic analysis 
is problematic even for sequent.ial software systems, since a re- 
alistically complex system has an extremely large, or possibly 
infinit,e, number of distinct possible behaviors. The prohlem 
is rnnltiplied in distributed systmns, since t h e  nondeterministic 
interleaving of concnrrent act,ivit.ies that  characterixes such sys- 
t a t “  dramatically increases the nnmber of possible behaviors. 
Moreover, nondeterminism and timing dependencies make it ex- 

181, 171, i w  

tremely difficult t o  identically reproduce a given test or debug- 
ging run, and hence t,o examine t.he effects of any modifications 
that, might be made t o  the syskm.  On the other hand, dynamic 
analysis is at,tract,ive because it is relatively straight,forward t o  
provide and prodiires concrete results direclrly from the descrip- 
tion that  the developer has created, whet,her that description 
is in a programrriing language or a pre-implementation nota- 
t,ion. For these reasons, it may be of significant use in certain 
situations, such as during an initial exploration of a system’: 
behavior or for detailed observation of some specific behavioral 
sequence. 

Static analysis t,echniqiies can he f i~r t~her  categorized as 
state-based or errent-based. State-based analysis techniques pro- 
ceed by considering the states or sequences of states that  a 
system may attain, and attempting t o  determine properties of 
t,hose states or st,ate seqnences. Siich approaches are gener- 
al ly  handicapped by the huge number of st,ate va.riahles that  
might be relevant. to  the stat,e of a realistically cornplex system. 
l h i s  difficulty increases when state-based techniques are ap- 
plied t o  distributed systems, since the number of state variables 
increases with t>he numher of concurrently executing compo- 
nents. Moreover, the notion of overall system state  is ill-defined 
for distributed systems, since there is no meaningful concept of 
global time in such systems 1191. 

One style of state-based analysis proceeds by generating a 
representation of the possible states of a system and determin- 
ing whetsher certain states are reachable. This reachability anal- 
ysis (18) is the fundamental approach to  analyzing Petri nets. It 
has also been proposed by Taylor [29] and by Apt 121 as a gen- 
eral purpose approach t o  analyzing concurrent programs. The 
advantage of this style is that  it is relatively straightforward to  
implement and that  its exhaustive approach may lead t o  the 
discovery of behaviors that  would otherwise be overlooked by 
the developer. It seems, however, to  be prohibitively expen- 

sive t o  actually carry out for systems of realistic size, due tc  
the necessity of generating and exploring t,he huge s ta te  spaces. 
Moreover, a large number of the states reported as reachable are 
typically uninteresting, and some may in fact be unreachable 
due t o  the highly simplified t,reatment of cont,rol Row dependen- 
cies used in this st,yle of analysis. Thus t,he h ~ ~ m a n  analyst may 
be left with a major task in det,ermining whirh of the reported 
states can actually be reached and which of those reachable 
states are of interest. 

The  other major style of st.at,e-based analysis is founded on 
theorem proving. Some logical system is assoriated with the 
s ta te  spa.ce and proofs regarding properties of that  s ta te  space 
are attempted. Owirki and Gries were early advocates of this 
approach (261. More recently, a number of researchers have 
invesrigated the application of temporal logic to  this style of 
analysis (e.g., [27,28)). Reasoning about the st,ate space instead 
of generating it is an attractive feature of this approach, but 
automating that  reasoning has proven t o  be very dificiilt. 

Event,-based analysis is predicated on viewing a system’s he- 
havior as a sequence of event occnrrences, where the granii1arit.y 
and complexity of the events considered varies according t o  the 
level a t  which t,he system is being described 1311. This a.pproach 
seems partirularly natural for analyzing distribrited systems, in 
part becarwe it avoids the ill-defined notion of bhe st.ate of such 
syst.erns. Hoare’s trace model of CSP 1171, Milner’s CCS (251 
and Lauer’s COSY 1211 are all examples of approaches that  have 
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adopted event-based analysis. In each case, however, the anal- 
ysis techniques are limited to use with the one specific notation 
with which they are associated, and their implementations, if 
any, have been preliminary a t  best. 

As we explain in the next section, constrained expression 
analysis is a broadly applicable evenbbased approach that ap- 
pears susceptible to  significant levels of automation. In essence 
i t  is a rigorous formulation of a method of analysis based on 
arguments about number and order of event occurrences that 
has been widely, if less rigorously, used in conjunction with con- 
current and distributed software systems (e.g., 1151). The ap- 
proach seems to  complement the others we have surveyed due 
to  it,s highly focused st,yle of analysis, which limits the amount 
of uninteresting information that i t  produces, and due to  its 
generality, which makes it amenable t,o use with a wide variety 
of programming languages and pre-implementation notations. 
Furthermore, while some other analysis methods depend upon 
highly sophisticat,ed tools such as automated theorem provers, 
i t  appears that  relatively straightforward, well understood tech- 
nology such as standard compiler construction tools and an in- 
teger programming package will be sufficient for automating a 
considerable portion of our approach. 

The Constrained Expression Formalism 

Conat,rained expression analysis of dist,ributed systems is an 
event-based approach. In this approach, system descriptions 
given i n  a wide variety of design notalions and programming 
languages are translated into formal representations, called con- 
strained ezpression representations, to  which a variety of analy- 
sis methods can then be applied. This approach to analysis al- 
lows developers of distributed systems to work in the notations 
and languages most appropriate to  their tasks, while rigorous 
analysis of the systems they develop is based on the constrained 
expression representation. 

We give here a brief overview of the conskrained expression 
formalism. A detailed and rigorous presentation is given in 
[ IO] ,  and a less formal t.reatment presenting the niotivat’ion for 
many of the features of the formalism appears in [5]. The use 
of constrained expressions with a variety of design notations is 
illustrated in 151 and [14]. 

l h e  constrained expression formalism treats behaviors of a 
distrihuted system as seqiiences of event,s. These events can be 
of arbitrary complexity, depending on the systerri characleristics 
of interest and the level of system description under consider- 
ation. By associating an event symbol to each event,, we can 
regard each possible behavior of the syst,em as a string over the 
alphabet of event symbols. Sets of such strings, and properties 
of those sets, then become the primary objects of interest in 
assessing the possible behaviors of a dist.ribiit,ed system. 

We use interleaving to represent concurrency. Thus, a string 
representing a possible behavior of a system that consists of a 
number of concurrently executing coniponents is obtained by in- 
terleaving, or shuffling, strings representing the behaviors of the 
components. The events themselves are assumed to be atomic 
and indivisible, with only one event taking place a t  any trime. 
Events that  are to be explicitly regarded as overlapping in time 
can be represented by treating their initiation and termination 
as distinct atomic events. This view of events is essentially the 
same as that  taken, for example, by Hoare in [17]. 

In the constrained expression formalism, the set of strings of 
event symbols representing behaviors of a particular distributed 

system is obt,ained by a two-step process. First a regular ex- 
pression, called the system ezpression, is derived from a de- 
scription of the system in some notation such as a design or 
programming language, The set of prefixes of the language of 
this system expression includes strings representing all the pos- 
sible behaviors of the system. (We consider prefixes, rather 
than complete strings in the language of the system expression, 
in order to represent behaviors in which parts of the system 
terminate abnormally.) 

Then this set is “filt.ered” to  remove prefixes that do not 
represent possible behaviors of the system. A string survives 
this filtering process if its projections on cert,ain subalphabets 
of the alphabet of event symbols lie in the languages of other 
expressions, called constraints. These constraints, which are 
not necessarily regular, are used to  enforce various aspects of 
the semantics of the design or programming language, such as 
the appropriate synchronization of rendezvous between different 
tasks or consistent use of data.  The process of deriving the 
appropriat,e regular expressions arid constraints from a system 
description can be regarded as a standard compilation, and can 
be fiilly automated. 

As a final step, symbols representing events that  are not of 
inkres t  when describing the final system behaviors are erased. 
The resulting set of strings is the interpreted language of the 
constrained expression. The interpreted language thus repre- 
sents exactsly the possible behaviors of the system. It is impor- 
tant to  note that it is never necessary to actually generate th i s  
(possibly infinite) language. The analysis techniques operate 
on the constrained expression itself, rather than on individual 
strings in the interpreted language. 

Analysis Based on the Constrained Expression 
Formalism 

We have developed a number of powerful analysis techniques 
based on the conshained expression formalism. We give here 
a brief descript,ion of tlhe most important of t,hese techniques 
and show how it would be applied to a design for a distributed 
software system. 

The fundament,al approach is t,o phrase a question ahoiit. t,he 
behavior of a system represented by a constrained expression 
in terms of whether a particular event symbol, or pattern of 
event symbols, occurs in a string representing a behavior of the 
system being analyzed. For example, questions about whether 
the system deadlocks might be phrased in terms of the occur- 
rence of symbols representing the starvation of the component 
processes of the system. 

We then assume that t,he specified symbol, or pattern of 
symbols, does indeed occur in a such a string. Starting from 
this assumption, we generate inequalities involving the number 
of occurrences of event symbols in segments of tbe string. (In- 
equalities holding in segments of a st,ring can reflect properties 
iiivolving the order of occurrence of events, as well as simply 
the number of their occurrences.) If the system of inequali- 
ties thus generated is inconsistent, we may conclude that the 
original assumption was incorrect, and the specified symbol or 
patkern of symbols does not occiir in a string corresponding t o  
a behavior of the system. If the system is consistent, we use 
the inequalities in attempting to  construct a string containing 
the specified pattern. 
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An example of the use of this method of analysis is given 
in [6], where an informal version is used to  detect an error in 
a solution to  the distributed mutual exclusion problem and to  
verify that a modification removes the defect. Ot,her examples 
appear in [5] and [lo], where the method is applied t.0 the dining 
philosophers problem, and in [4], where it is applied to a version 
of the automated gas station example used by Helmbold and 
Luckham llS] to illustrate their run-time monitorirlg approach 
to  debugging Ada tasking programs. We now illuslrate the use 
of this method by presenting a portion of the analysis of [4]. 

We have shown t,hat constxaiiied expression representat,ions 
can be mechanically produced from system descriptions in a 
wide variety of design notat.ions 114,11], but we have concen- 
trated our recent efforts on the analysis of systems described in 
an Ada-based design langiiage we have developed with Laura 
Ilillon and our st.udent Usha Sundaram. This language, called 
CEDI, [ 121, focuses on the expression of communication and 
synchronization among the tasks in a distributed sysbem, and 
language feat,ures not relaled to  concurrency are kept to a min- 
imum. Thus, for example, dat,a types are limited, but almost 
all of the Ada control-now constructs and the various forms of 
the Ada select  statement have correspondents in CEDL. We 
have chosen to work with a design irotation based on Ada be- 
caitse Ada is one of the few programming languages in relatively 
widespread use that explicitly provides for concurrency, and be- 
cause we expect our work on analysis of designs to  contribute 
to  and benefit from the Arcadia Consortium’s work on Ada 
software development environments 1301. 

Figures 1 and 2 illustrate t.he rise of tlhe CEDL notation. 
They show the declarations and one task body of a CEDL ver- 
sion of the automated gas station. 

In this system, customers repeatedly arrive a t  t,he gas sta- 
tion and prepay for gas. This is represented by the rendezvous 
between a CUSTOMER task and the OPERATOR task at, the PREPAY 
entry of the OPERATOR. If no customer is waiting, the operator 
activates the pump. Otherwise, the operator enters the cus- 
tomer’s request in a queue. 

After prepaying, a customer goes to  the pump and starts 
i t ,  pumps gas, and t,hen stops t,he piimp. These activit,ies are 
represenkd by two calls to  entries of the PUMP in the body of 
the CUSTOMER task. The customer then collects change from the 
operator, as modelled by an accept statement in the body of 
the CUSTOMER task. 

Aft,er a customer has shut, it off, t,he primp repork t,o the 
operator. This is modelled by the call to 0PERATOR.CHARGE in 
the a c c e p t  FINISH-PUMPING statement in the body of the PUMP 
task. The operat,or, who waits for a customer to prepay or for 
a report from the pump, gives change to  the customer after 
this report. If another customer is waiting, the operator then 
reactivates the pump. 

A set of translation rules for producing constrained expres- 
sion representlatiom from CEDI, designs is given in [ 111. These 
translation rules produce a task ezpression for each task in the 
system a.nd a collection of constraints; the system expression 
of the constrained expression representation is the interleave of 
these task expressions. In Figure 4, we show the task expres- 
sion corresponding to the pump task in our system. This t,ank 
expression was derived rising the t>ranslation rules of [ l  I] and 
then simplified and reduced [13]. The line nrlrnbers in  this fig- 
lire are included for reference. The event synibols used in  the 

package COMMON is  
t y p e  C-NAME is  ( c l , c 2 ) ;  - -  names f o r  two 

- -  customers 
t y p e  COUNTER is  ( z e r o . o n e . t w o , t h r e e ) ;  

- -  enough t o  handle 
- -  3 customers 

end COMMON; 

use  COMMON: 
t a s k  OPERATOR is  

e n t r y  PREPAY(CUST0MER-ID : i n  C-NAME); 
e n t r y  CHARGE; 

end OPERATOR; 

t a s k  PUMP is  
e n t r y  ACTIVATE: 
e n t r y  START-PUMPING; 
e n t r y  FINISH-PUMPING; 

end PUMP; 

u s e  COMMON: 
t a s k  CUSTOMER-1 is  

e n t r y  CHANGE: 
end CUSTOMER-1; 

use  COMMON; 
t a s k  CUSTOMER-2 is  

e n t r y  CHANGE; 
end CUSTOMER-2; 

Figure 1: Task dec lara t ions  for the two-cus tomer  g a s  
s t a t i o n  system 

t a s k  body PUMP is 
begin  

loop  
a c c e p t  ACTIVATE; 
a c c e p t  START-PUMPING: 
a c c e p t  FINISH-PUMPING do 

. . .  - -  compute charge f o r  
- -  t h i s  t r a n s a c t i o n  

0PERATOR.CHARGE; - -  r e p o r t  charge 
- -  t o  o p e r a t o r  

end FINISH-PUMPING; 
end loop:  

end PUMP: 

F i g u r e  2: B o d y  of the PUMP t a s k  

task expression are essentially t,hose of [ I  I ] ,  with some simplifi- 
cation and abbreviation. A t,able showing the symbols and the 
associated events is given in Figure 3. 
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Oiir analysis t,hen proceeds by generating a system of in- 
equalities relating the numbers of occurrences of certain events 
in a behavior of the dist,ribiit>ed system under analysis. This 
process of generating inequalities begins with t,he assumption 
tha t  a particular pattern of event symbols, reflecting a partic- 
ular property of t,he system under analysis, occurs in a string 
in the interpreted language of the constrained expression. It is, 
of course, a primary task of the analyst t o  choose appropriate 
properties of the system for investigation. 

Consider the question of whether a customer who prepays 
always gets to  pump gas. Prepaying is modelled by a ren- 

1 G m b T  Associated event 
~ 1 1 

In the pyinhols used in the task expression in Figure 4 ,  the t,ask nan ie  
CUSTOMER i is ahhrevinted to Ci, PUMP is ahhrevinted to P, and OPERATOR 
is abbreviated t o  0. Entry names are also ahbreviated. 

Figure 3: Event Symbols Used in the PUMP Task 
Expression and Associat.ed Events 

P 1  (beg rend(O,P.act)end rend(O,P.act) 

(v beg-rend(Ci, P.start) end.rend(Ci, P.start))  

(v beg-rend(Ci, P.finish)cnll(P, O.charge)resume(P, O.chnrge) 

end.rend(C:i, P.finish)) 

(rtarue,.(P.act)stop(P) 

P 3  Vbeg.rend(O,P.act)end.rend(O,P.act)starue~(P,stnrt)s~@p(P) 

P 4  VbLg.rend(O,P.act,)end.rend(O, P . a c t ) ( V  beg-rend(Ci,P.start) 

end-rend(Ci, P s t a r t ) )  starue,,(P.finish)stop(P) 

P5 vbeg rcnd(O,P.act)end r r n d ( O , P . a c t ) ( V  beg rend(C‘i,P.start) 

end rend(Ci,P.stnrt))  (v beg  rend(Ci,P.finish)) 

starve. ( P ,  O.charge)klll.renli(P.finish)Rtnp(P) 

Figure 4: Task Expression r ( P )  Associated with the 
Task PUMP 

dezvous between the CUSTOMER and OPERATOR tasks a t  the 
ent,ry 0PERATOR.PREPAY and pumping is modelled by a ren- 
dezvous between the CUSTOMER and PUMP tasks a t  the entry 
PUMP. START-PUMPING. In t,he bodies of the CUSTOMER tasks, the 
call t o  OPERATOR. PREPAY is followed immediately by the call to  
PUMP. START-PUMPING. Therefore, the only way t,hat a customer 
can prepay but fail to pump is for the CUSTOMER task to starve 
calliiig the entry PUMP. START-PUMPING. 

Since the two customer tasks in the system are treatred sym- 
metrically, we may thus begin our analysis by assuming that  a 
starve,(Cl,P.start) symbol occurs in a constrained prefix and 
generating a 8ysl.em of inequalities starting from that  assump- 
t,ion. We will show here how some of these inequalities are 
produced. 

Let s be a constrained prefix containing the event symbol 
starve,(Cl,P.start), let (event symbol( denote the number of oc- 
currences of event-symbol in s, and let lPil be 1 or 0 according 
as the projection of s on the alphabet of the lask expression 
r ( P )  lies in lhe language of the expression (P1)’Pi .  We thus 
have 

Istarve,(C1, P.start)( = 1. 

Working backward through the task expression r ( P )  using the 
semantics of the regular expression operat,ors and ignoring the 
stop(€‘ )  symbols for the moment, we have 

I call(P, 0.charge)l 

(beg rend(Ci, P.finish)l 

I end-rend( C1, €‘.start) ( 
lend-rend(C2, €‘.start)( 

Ibeg.rend(Ci, €‘.start)( 

lend rend(0,  P.act)l 

lbeg rend(0,  P.act)l 

c end-rend(Ci, €‘.finish)( 

(resame(P, 0.charge)l 
beg rend(C1, P.finish)l 

beg rend(C2, P.finish)l 

I kill rend( P.finish) I 
( starve,( P ,  0.charge) I 

(beg.rend(Ci, P.finish)l 

I starve,( €‘.finish) I 
(end-rend(Ci, P.start)l 

I starve,( P.s tar t )  I 
lend rend(0 ,  P.act)l 

(starve, (P.act) I 

I 

t 

(beg.rend(Ci, P.finish)l 
1 

-IF 

- 1 ~ 4 1  

(end rend(Ci, P.start)l 
t 

I beg.rend(C1, P.start)l 
I beg .rend( C2, P .start) I 
lend.rend(0, P.act)l - JP31 

(beg rend(0,  P.act,)J 

lend rend(Ci, P.finisIi)l 
1 

i I ~ (F’21 

I resume( P,  Oxhargc) I 

Icall(P, O.charge)/ 
lend rend(C1, P.finish)( 

lend rend(C2, P.finish)l 

1 ~ 5 1  
I killLrend( €‘.finish) I 
I starve,( P ,  0.charge) 

1 ~ 4 1  

1 ~ 3 1  

Istarue,(P.finish)l 

(starne,(P.start)l 

IP21. 
Since exactly one of the alternatives P2 through PS occurs, we 
must also have 

/P21 + IP31 + IP4l + IP51 = 1. 
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These inequalities represent the unconstrained behavior of 
t,he PUMP task. In a similar fashion, we can generate inequalities 
from the other task expressions, 

The constraints in a CEDI, constrained expression represen- 
tation enforce the appropriate synchronization between tasks, 
as  well as other aspects of the sernant,ics of CEDL that  are 
not conveniently represented in the task expressions. These 
constraints are used to  generate addit>ional inequalities. For 
example, a constraint that  represents the semantics of the ren- 
dezvous between the PUMP task and the OPERATOR task a t  the 
entry PUMP. ACTIVATE implies that  

J c a l l ( 0 ,  P.act)l = Jbeg-rend(0, P.act)J and 
lend.rend(0, P.act)l = (resume(0, I’.act)l. 

Ot,her constraints lead t‘o similar inequalities. 
Having generated the ful l  system of equations and inequal- 

ities, we use a sta.ndard branrh-and-boiind integer linear pro- 
gramming package (201 to  determine whether its is consistent. 
(For convenience, we usually choose the ohjective function t o  
minimize t,he sum of t,he variables.) For the gas station exam- 
ple described here, t,he system consists of roughly 100 equations 
and ineqiialit,ies and the linear programming package finds a so- 
lution t o  the syst,em of inequalities corresponding to a behavior 
in which the task CUSTOMER.1 starves because of a deadlock. 
This requires approximately one minute of computer time on a 
Celerity C1260. A similar analysis shows that ,  when the call 
to the operator is moved out of the accept  FINISH PUMPING 
statement in the body of the PUMP task and the order of two 
calls i n  the body of the OPERATOR task is reversed, a rustomer 
who prepays always gets to pump gas. The constrained expres- 
sion ana.lysis thus detectss an error in t,he design and establishes 
that  a modification t,o the design eliminates the problem. 

Tools Supporting Constrained Expression Analy- 
sis 

The constrained expressinn approach tjo analysis offers sev- 
eral potentially significant advanbages. It can be applied a t  a 
number of stages of tlhe software development process, including 
wpecially the pre-implementation stages of specification and 
design, and it can be used with a wide variety of design no- 
tations and programming languages [ 141. l h i s  allows system 
designers to work with the languages and notations they find 
most appropriate without sacrificing the ability to  do rigorous 
analysis. Because analysis based on the constrained expression 
formalism works wit.h whole classes of system behaviors and 
ca.n be conducted in a highly directed fashion, the problem of 
combinatorial explosion is ameliorated. Moreover, reporting of 
spurious errors is reduced compared to  most state-based analy- 
sis methods, since constrained expression analysis methods can 
take da ta  dependency into account. 

Preliminary experiments, like the one out,lined above, have 
been extremely promising. Applied to  a variety of small con- 
current systems, these methods have been able to  detect subtle 
errors, and t o  prove rigorously that, modifications to the sys- 
tems eliminate t,hose errors (4,5,6,10] Itowever, considerable ex- 
perienre with distributed systems of realistic size and complex- 
it.y will be necessary before the constrained expression analysis 
t,echniques can become practical tools for software developers. 
Only through experimentation with such realistic examples cart 

the strengths and weaknesses of the techniques, the classes of 
prohlems for which they are best suited, and their most appro- 
priate role in the software development process be accurately 
determined. 

For two important reasons, however, even experimentation 
with such examples reqnires robust implementations of con- 
strained expression analysis tools. First, arit,omated support 
is necessary for the application of the analysis techniques t o  
systems much larger than the examples we have already stud- 
ied. It, is not possible to  cope with systems of Reveral hundred 
inequalities with only paper and pencil. Second, the nt,ility of 
constrained expression analysis tools in prart>ice will be affected 
by such factors as the efficiency of their implementations and 
the kind and quality of their interfaces with other tools and with 
human analysts. These issues can only be explored through a 
serious software engineering effort., involving the design, con- 
struction, and evaluation of prototype tools. For these reasons, 
we regard the construction of such tools, and their application 
to  realistic examples of concurrent systems, as an integral part 
of our research on analysis techniques. 

We have begun to  construct a constrained expression toolset 
t o  slipport such experirnentat,ion. This t.oolset consists of three 
main tools. The first of these is a deriver, which is essentially 
a compiler used to  produce constrained expression represent,a- 
tions from designs given in some programming or design nota- 
tion. We have nearly conipleted work on a prototype of this 
t,ool for use with t,he CEUL design language. The prototype 
is being written in Ada, using standard compiler const,tuction 
tools and the Graph I)efinit,ion Language and Graphit,e proces- 
sor that  we have developed as pa.rt of t,he Arcadia project [9,30]. 
It was designed t,o make modification as  straightforward as pos- 
sible, so that  enhancements to  CEDL and the translation rules 
used to produce constrained expression representat,ions would 
be easy t o  implement. Further development of this tool will be 
the result of improvements in our translation rules for CEDL or 
modifications t o  the internal representation used for constrained 
expressions. The deriver will be supplemented by constrained 
expression simplification tools now under construction a t  the 
University of California, Santa Barbara. 

The second tool is a behavior generator, which is used to 
produce strings in the interpreted language of a constrained 
expression. This tool is used in the initial exploration of a 
concurrent syst,em, when the analyst “walks” tlirough the sys- 
tem to get an idea of its funct.ioning. It is also used when 
the inequalities produced in other stages of analysis are consis- 
tent and the analyst hies  to  produce an actual system behavior 
satisfying the inequalities. With a large system, this involves 
a substantial amount of bookkeeping, and often a great deal 
of backtracking as one tries t,o satisfy a large number of in- 
equalities and constraints simultaneously. We have a complete 
specification 131 for the behavior generator, and a partial imple- 
mentation in LISP. Although we expect to  continue to  use LISP 
for rapid prototyping, later versions of this tool will migrate t o  
Ada for compatibility with t,he Arcadia project and other tools. 

Finally, we will need an inequality generator to  provide auto- 
mated support for the generation of the inequalities in analysis 
and their conversion to  a form suitable for input to the integer 
programming package. We have built a prototype inequality 
generator using LISP that  has been useful for some work with 
small systems. This prototype, however, does not make use of 
some import.ant types of constraint)s and generates inequalities 
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in a relatively undirected fashion compared to the heuristics we 
have developed for use in hand analyses. Further development 
of the inequality generator may involve attempts to integrate 
the heuristics into our current prototype or the construction of 
a separate tool based on those heuristics, and will certainly de- 
pend on the results of ongoing theoretical work on modularizing 
analysis and incremental generation of inequalities. As with the 
behavior generator, we expect to  continue to  use LISP in early 
versions of the inequality generator, with eventual migration to 
Ada. 

I t  is apparent that  interfaces between these tools, and he- 
tween some of the tools and the analyst,, are extremely im- 
portant, and we are concerned with both kinds of interfaces. 
Intertool interfaces, in the context of our project, will primar- 
ily consist of internal representations of constrained expressions 
and representations of inequalities suitable for input to the in- 
teger programming package. The latter will be dictated by the 
particular integer programming package that we are using a t  
any given time. We plan to implement the internal represen- 
tation of constrained expressions using the Graph Definition 
Language and Graphite processor (91. This will allow us to 
explore alternatives or even adopt a completely new internal 
representation with only minimal impact on the implementa- 
t,ion of other aspeck of our tools. 

The user interfaces to the existing, exploratory versions of 
our tools are far from friendly. In the long term, we envision 
a sophisticated user interface employing multiple windows and 
a pointing device. Initially, however, we need to  address more 
basic concerns such as appropriate forms in which to report 
the activity of the deriver, the inequality generabr,  the integer 
programming package and the behavior generator. Eventually, 
we will want to  hide the constrained expressions from the tool 
user as much as possible, so that developers of concurrent soft- 
ware will be able to  reap the benefits of using the tools without 
having t o  understand the constrained expression formalism. We 
have tentative ideas in this direction, and will be exploring them 
further as we build the protot#ype toolset. 

Conclusion 

Developing large-scale, rrliahle software capable of exploit- 
ing the potential of distributed hardware systems will demand 
the support of powerful automated tools, especially analysis 
tools. Our Constrained ezpression approach to analyzing such 
software systems seems to  have several advantages, including 
broad applicability and reasonable efficiency, relative to other 
proposed approaches. In this paper we have outlined the con- 
strained expression approach, indicated i ts  relationship to  some 
alternative approaches, and described our experimental use of 
the approach in analyzing a simple but nontrivial example of a 
distributed software system design. 

Results of initial experiments with our approach, based on 
manual application and preliminary prototypes of some of the 
needed tools, have been encouraging. They have also demon- 
s t n t e d  the need for us, and all researchers working on dis- 
tributed software analysis, to  undertake more extensive exper- 
imentation with larger, more realist,ic examples. 

In this paper, we have outlined our plans for consf,ructing 
the more robust, flexible and efficient protot.ype tool implemen- 
tations needed to slipport. more extensive experimentation. We 
look forward to  the completion of this implementation activ- 

ity, and to the availability of similarly robust implementations 
of tools supporting alternative approaches to analysis of dis- 
tributed software. Serious experimentation, leading to mean- 
ingful assessments and coinparisions of the various approaches, 
their practical utility and particular shortcomings, will then be 
possible. This process should eventually result in a collection 
of analysis tools with complement,ary capabilities that. together 
will support analysis across a wide range of problem classes and 
phases of the software development process. Such a collection of 
tools would be extremely valubabk to developers of distributed 
software. 
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