
Toward Autoniatirig Analysis Support
for Developers of Distributed Software*

Jack C . Wileden
Software Development Laboratory

C o m p u t e r a n d Information Science Depar tment
University of Massachusetts, Amhers t

George S. Avrunin
Department of Mathematsics a n d Stat is t i rs

university of ~ ~ ~ ~ ~ ~ h ~ ~ ~ t t ~ , ~ ~ h ~ ~ ~ t

ABSTRACT

Developing large-srale, reliahle software capable of exploit-
ing the potential of diatribut,ed hardware systenis will demand
the support of powerful automated tools, especially analysis
tools. Our constrninzd ezpression approach to analyzing such
software systems seems to have several advant,ages, including
broad applicability and reasonahle effiriency, relat,ive t,o other
proposed approarhes. Results of initial experiments with our
approarh, based on manual application and preliminary proto-
types of some of the needed tools, have been encouraging. They
have also demonstrated the need for us, and all researchers
working on distributed software analysis, to undertake more
extensive experimentation with larger, more realistic examples.
In this paper, we report on our initial experimentation with
constrained expression analysis and describe our plans for con-
structing the more robust, flexible and efficient prototype tool
implementations needed to support more extensive experimen-
tation.

Introduction

Hardware systems supporting distributed computing are
constantly improving. Our ability to create software effectively
exploiting the potential power of such systems has not kept
pace. This is due in part to a lack of appropriate tools to
aid developers of distrib~it~ed software systems. Because of the
inherent complexity of distributed software, constructing large-
scale, reliable distributed software systems will be virtually im-
possible without Dowerful automated support tools.

We believe that, tools for nnnlyzing distributed software sys-
tems are especially important. In particular, bhere is a need
for tools slipporting analysis of the logical or behavioral as-
pects of distributed systems. These are tools that can help to
uncover logical Raws or unintended properties in a system’s be-
havior, such as deadlock, process starvation or synchronization
anomalies. Ideally, such tools should be applicable not only
to completed code but also to pre-implementation descriptions
such as specifications and designs.

N o existing tool effectively supports siich analysis. Indeed,
it seems unlikely that any single tool would ever fulfi l l all the
analysis needs of distributed software developers. Rather, we

‘The work descrihed lwre was support,ed in part hy National Science
Foundation grants DCR-84-08143 and DCR-85-00332 and hy the Defense
Advanced Research Projects Agency (ARPA Order No. 6104, ARPA Pro-
gram Code No. 7E20) t.hrough National Science Fouiidat,ion grant CCR-
87-04478.

expect t,hat there will eventually be a collection of tools, earh
known t o be of greatest value for a particular class of problems,
or during a particiilar phase of soft,ware development. Togehher
bhe tools in this collection w.ill provide t.he necessary analysis
capabilities. Assenibling such a collection will require the devel-
opment of a variety of analysis techniques, support,ed by theo-
rrt,ical studies of their rapabilit,ies and limitations. Also needed,
however, will be experiment,al studies of the techniques, based
on robust, prototype implementat,iona of the requisi1.e t,ools, to
establish the practical utility and shortcomings of the tech-
niques.

In fact, several techniques have been proposed for analyzing
distributed software systems a t various stages in t,heir develop-
ment. All are known to have certain limitations. The practical
significanre of those limitations is not clear, however, since most
of the proposed techniques have never been adeqriately tested
through prototype implementation and experinientat>ion. For
similar reasons, the phases of development, to which these t.ech-
niques are best applied and the analysis questions that they are
best snited for addressing are also not clearly est,ablished.

Over the last several years, we have been developing and
experiment,ing with an a.pproarh for analyzing dist,ribllted soft,-
ware syskms. While it too has some lirnitatione, we believe that
our constrained erpression approach has several advantages rel-
ative to other approaches. In particular, the constrained ex-
pression approach appears to be:

B r o a d l y Applicable: Its use is not restricted t,o a lim-
ited set of design or programming languages nor to a liin-
ited range of analysis problems.

R.c.latively Efficient: It, offers a highly focused style of
analysis that limits combinatorial explosion.

S t r a i g h t f o r w a r d to Implement: Not,liing more exotic
than standard language processing and nunicrical analysis
tools seems t,o be required.

To dat,e we have demonst,rated the approach’s broad ap-
plicability by showing how it can be applied to systems de-
scribed in a diverse set of design and programming notations,
including CSP and Petri nets [I41 and Ada [t l) . We have alRo
shown that, it produces relatively efficient, assessment,s of signif-
icant, properties of dist,rihuted syst,ems. We have, for example,
used it in manually analyzing the dining philosophers problem,
a distributed mutual exclusion mechanism and an antomated
gas station system. Finally, we have produced primitive pro-
totype implementations of some of the central tools required
t o automate the constrained expression approach. These initial
prototype iniplementations have demonstrated the feasibility of

CH2541-1/88/0000/0350$01.00 0 1988 IEEE
350

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:47:50 UTC from IEEE Xplore. Restrictions apply.

automating the approach using fairly straightforward technol-
ogy.

Encouraged by these init,ial results, we now plan to continue
development of the technique and to undertake a thorough as-
sessment of its potential practical value. This will involve both
continued theoretical work and serious experimentation with
examples of realistic size and complexit,y. The experimentation
wit.11 realistic examples will require tools that are more robust
and extensible, a.re more efirient, and have better user inter-
faces t2han our current prototypes.

In t,he remainder of this paper, we report. on some of our ini-
tial experimentation with the constrained expression approach
and describe our plans for continued efforts toward automated
analysis support for developers of distributed software. We be-
gin with an overview of the current status of work on tools
supporting analysis of distributed software systems. We then
outline our constrained expression approach and describe how
it can be used to analyze distribut,ed software. We illustrate
t.his by describing one of our recent experiments. This is fol-
lowed by a description of the improved prototype toolset, that
we are currently building. We conclude with a summary of our
plans for enhanced tools and further experimentation.

Tools for Analyzing Distributed Software

Tools for analyzing soft,wa.re may be hroadly classified as dy-
namic or static. ’Tools for dynamic analysis are t>hose that derive
their information through some sort of animation of the system,
such as an execution, simulation, or interpretation. Static anal-
ysis t,oots, on t.he ot,her hand, derive t,heir informat,ion entirely
from inspection of the system’s description, without requiring
any kind of animation.

Dynamic analysis met,hods are basically variations on t-he
t,raditional techniques of test,ing and debugging. The analysis
tools associated with PAiSLey [32,33] and DCDS [I), for ex-
ample, are dynamic analysis tools. In each case, they support
an interpretive animation, or simulation, of the behavior of a
system described in the corresponding notation. The results of
tha t animation can then be inspected in an attempt to deter-
mine properties of the system. Along with these dynamic anal-
ysis tools for use with pre-implementation descriptions, there
has been some work on tools for testing and drbiigging of dis-
tributed programs. These include post-mortem debugging tools
that work by generating trace information during t,he system’s
execution and then allowing the user t o study the trace after
execuhion has trrminated (e.g., [241, 1231, (221) as well as more
interactive debugging tools that permit (,he user t.o monitor,
and possibly modify, the course of a system’s executiolt (e.g.,

Dynamic analysis met,hods, whether applied to pre-
implenientation descriptions or to completed programs, suffer
from the fact that each distinct possible behavior of the sys-
tem must be considered separat,ely, by carrying out a separate
testing or debugging “run.” This aspect of dynamic analysis
is problematic even for sequent.ial software systems, since a re-
alistically complex system has an extremely large, or possibly
infinit,e, number of distinct possible behaviors. The prohlem
is rnnltiplied in distributed systmns, since t h e nondeterministic
interleaving of concnrrent act,ivit.ies that characterixes such sys-
t a t “ dramatically increases the nnmber of possible behaviors.
Moreover, nondeterminism and timing dependencies make it ex-

181, 171, i w

tremely difficult t o identically reproduce a given test or debug-
ging run, and hence t,o examine t.he effects of any modifications
that, might be made t o the syskm. On the other hand, dynamic
analysis is at,tract,ive because it is relatively straight,forward t o
provide and prodiires concrete results direclrly from the descrip-
tion that the developer has created, whet,her that description
is in a programrriing language or a pre-implementation nota-
t,ion. For these reasons, it may be of significant use in certain
situations, such as during an initial exploration of a system’:
behavior or for detailed observation of some specific behavioral
sequence.

Static analysis t,echniqiies can he f i~r t~her categorized as
state-based or errent-based. State-based analysis techniques pro-
ceed by considering the states or sequences of states that a
system may attain, and attempting t o determine properties of
t,hose states or st,ate seqnences. Siich approaches are gener-
al ly handicapped by the huge number of st,ate va.riahles that
might be relevant. to the stat,e of a realistically cornplex system.
l h i s difficulty increases when state-based techniques are ap-
plied t o distributed systems, since the number of state variables
increases with t>he numher of concurrently executing compo-
nents. Moreover, the notion of overall system state is ill-defined
for distributed systems, since there is no meaningful concept of
global time in such systems 1191.

One style of state-based analysis proceeds by generating a
representation of the possible states of a system and determin-
ing whetsher certain states are reachable. This reachability anal-
ysis (18) is the fundamental approach to analyzing Petri nets. It
has also been proposed by Taylor [29] and by Apt 121 as a gen-
eral purpose approach t o analyzing concurrent programs. The
advantage of this style is that it is relatively straightforward to
implement and that its exhaustive approach may lead t o the
discovery of behaviors that would otherwise be overlooked by
the developer. It seems, however, to be prohibitively expen-

sive t o actually carry out for systems of realistic size, due tc
the necessity of generating and exploring t,he huge s ta te spaces.
Moreover, a large number of the states reported as reachable are
typically uninteresting, and some may in fact be unreachable
due t o the highly simplified t,reatment of cont,rol Row dependen-
cies used in this st,yle of analysis. Thus t,he h ~ ~ m a n analyst may
be left with a major task in det,ermining whirh of the reported
states can actually be reached and which of those reachable
states are of interest.

The other major style of st.at,e-based analysis is founded on
theorem proving. Some logical system is assoriated with the
s ta te spa.ce and proofs regarding properties of that s ta te space
are attempted. Owirki and Gries were early advocates of this
approach (261. More recently, a number of researchers have
invesrigated the application of temporal logic to this style of
analysis (e.g., [27,28)). Reasoning about the st,ate space instead
of generating it is an attractive feature of this approach, but
automating that reasoning has proven t o be very dificiilt.

Event,-based analysis is predicated on viewing a system’s he-
havior as a sequence of event occnrrences, where the granii1arit.y
and complexity of the events considered varies according t o the
level a t which t,he system is being described 1311. This a.pproach
seems partirularly natural for analyzing distribrited systems, in
part becarwe it avoids the ill-defined notion of bhe st.ate of such
syst.erns. Hoare’s trace model of CSP 1171, Milner’s CCS (251
and Lauer’s COSY 1211 are all examples of approaches that have

35 1

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:47:50 UTC from IEEE Xplore. Restrictions apply.

adopted event-based analysis. In each case, however, the anal-
ysis techniques are limited to use with the one specific notation
with which they are associated, and their implementations, if
any, have been preliminary a t best.

As we explain in the next section, constrained expression
analysis is a broadly applicable evenbbased approach that ap-
pears susceptible to significant levels of automation. In essence
i t is a rigorous formulation of a method of analysis based on
arguments about number and order of event occurrences that
has been widely, if less rigorously, used in conjunction with con-
current and distributed software systems (e.g., 1151). The ap-
proach seems to complement the others we have surveyed due
to it,s highly focused st,yle of analysis, which limits the amount
of uninteresting information that i t produces, and due to its
generality, which makes it amenable t,o use with a wide variety
of programming languages and pre-implementation notations.
Furthermore, while some other analysis methods depend upon
highly sophisticat,ed tools such as automated theorem provers,
i t appears that relatively straightforward, well understood tech-
nology such as standard compiler construction tools and an in-
teger programming package will be sufficient for automating a
considerable portion of our approach.

The Constrained Expression Formalism

Conat,rained expression analysis of dist,ributed systems is an
event-based approach. In this approach, system descriptions
given i n a wide variety of design notalions and programming
languages are translated into formal representations, called con-
strained ezpression representations, to which a variety of analy-
sis methods can then be applied. This approach to analysis al-
lows developers of distributed systems to work in the notations
and languages most appropriate to their tasks, while rigorous
analysis of the systems they develop is based on the constrained
expression representation.

We give here a brief overview of the conskrained expression
formalism. A detailed and rigorous presentation is given in
[IO] , and a less formal t.reatment presenting the niotivat’ion for
many of the features of the formalism appears in [5]. The use
of constrained expressions with a variety of design notations is
illustrated in 151 and [14].

l h e constrained expression formalism treats behaviors of a
distrihuted system as seqiiences of event,s. These events can be
of arbitrary complexity, depending on the systerri characleristics
of interest and the level of system description under consider-
ation. By associating an event symbol to each event,, we can
regard each possible behavior of the syst,em as a string over the
alphabet of event symbols. Sets of such strings, and properties
of those sets, then become the primary objects of interest in
assessing the possible behaviors of a dist.ribiit,ed system.

We use interleaving to represent concurrency. Thus, a string
representing a possible behavior of a system that consists of a
number of concurrently executing coniponents is obtained by in-
terleaving, or shuffling, strings representing the behaviors of the
components. The events themselves are assumed to be atomic
and indivisible, with only one event taking place a t any trime.
Events that are to be explicitly regarded as overlapping in time
can be represented by treating their initiation and termination
as distinct atomic events. This view of events is essentially the
same as that taken, for example, by Hoare in [17].

In the constrained expression formalism, the set of strings of
event symbols representing behaviors of a particular distributed

system is obt,ained by a two-step process. First a regular ex-
pression, called the system ezpression, is derived from a de-
scription of the system in some notation such as a design or
programming language, The set of prefixes of the language of
this system expression includes strings representing all the pos-
sible behaviors of the system. (We consider prefixes, rather
than complete strings in the language of the system expression,
in order to represent behaviors in which parts of the system
terminate abnormally.)

Then this set is “filt.ered” to remove prefixes that do not
represent possible behaviors of the system. A string survives
this filtering process if its projections on cert,ain subalphabets
of the alphabet of event symbols lie in the languages of other
expressions, called constraints. These constraints, which are
not necessarily regular, are used to enforce various aspects of
the semantics of the design or programming language, such as
the appropriate synchronization of rendezvous between different
tasks or consistent use of data. The process of deriving the
appropriat,e regular expressions arid constraints from a system
description can be regarded as a standard compilation, and can
be fiilly automated.

As a final step, symbols representing events that are not of
inkres t when describing the final system behaviors are erased.
The resulting set of strings is the interpreted language of the
constrained expression. The interpreted language thus repre-
sents exactsly the possible behaviors of the system. It is impor-
tant to note that it is never necessary to actually generate th i s
(possibly infinite) language. The analysis techniques operate
on the constrained expression itself, rather than on individual
strings in the interpreted language.

Analysis Based on the Constrained Expression
Formalism

We have developed a number of powerful analysis techniques
based on the conshained expression formalism. We give here
a brief descript,ion of tlhe most important of t,hese techniques
and show how it would be applied to a design for a distributed
software system.

The fundament,al approach is t,o phrase a question ahoiit. t,he
behavior of a system represented by a constrained expression
in terms of whether a particular event symbol, or pattern of
event symbols, occurs in a string representing a behavior of the
system being analyzed. For example, questions about whether
the system deadlocks might be phrased in terms of the occur-
rence of symbols representing the starvation of the component
processes of the system.

We then assume that t,he specified symbol, or pattern of
symbols, does indeed occur in a such a string. Starting from
this assumption, we generate inequalities involving the number
of occurrences of event symbols in segments of tbe string. (In-
equalities holding in segments of a st,ring can reflect properties
iiivolving the order of occurrence of events, as well as simply
the number of their occurrences.) If the system of inequali-
ties thus generated is inconsistent, we may conclude that the
original assumption was incorrect, and the specified symbol or
patkern of symbols does not occiir in a string corresponding t o
a behavior of the system. If the system is consistent, we use
the inequalities in attempting to construct a string containing
the specified pattern.

352

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:47:50 UTC from IEEE Xplore. Restrictions apply.

An example of the use of this method of analysis is given
in [6], where an informal version is used to detect an error in
a solution to the distributed mutual exclusion problem and to
verify that a modification removes the defect. Ot,her examples
appear in [5] and [lo], where the method is applied t.0 the dining
philosophers problem, and in [4], where it is applied to a version
of the automated gas station example used by Helmbold and
Luckham llS] to illustrate their run-time monitorirlg approach
to debugging Ada tasking programs. We now illuslrate the use
of this method by presenting a portion of the analysis of [4].

We have shown t,hat constxaiiied expression representat,ions
can be mechanically produced from system descriptions in a
wide variety of design notat.ions 114,11], but we have concen-
trated our recent efforts on the analysis of systems described in
an Ada-based design langiiage we have developed with Laura
Ilillon and our st.udent Usha Sundaram. This language, called
CEDI, [121, focuses on the expression of communication and
synchronization among the tasks in a distributed sysbem, and
language feat,ures not relaled to concurrency are kept to a min-
imum. Thus, for example, dat,a types are limited, but almost
all of the Ada control-now constructs and the various forms of
the Ada select statement have correspondents in CEDL. We
have chosen to work with a design irotation based on Ada be-
caitse Ada is one of the few programming languages in relatively
widespread use that explicitly provides for concurrency, and be-
cause we expect our work on analysis of designs to contribute
to and benefit from the Arcadia Consortium’s work on Ada
software development environments 1301.

Figures 1 and 2 illustrate t.he rise of tlhe CEDL notation.
They show the declarations and one task body of a CEDL ver-
sion of the automated gas station.

In this system, customers repeatedly arrive a t t,he gas sta-
tion and prepay for gas. This is represented by the rendezvous
between a CUSTOMER task and the OPERATOR task at, the PREPAY
entry of the OPERATOR. If no customer is waiting, the operator
activates the pump. Otherwise, the operator enters the cus-
tomer’s request in a queue.

After prepaying, a customer goes to the pump and starts
i t , pumps gas, and t,hen stops t,he piimp. These activit,ies are
represenkd by two calls to entries of the PUMP in the body of
the CUSTOMER task. The customer then collects change from the
operator, as modelled by an accept statement in the body of
the CUSTOMER task.

Aft,er a customer has shut, it off, t,he primp repork t,o the
operator. This is modelled by the call to 0PERATOR.CHARGE in
the a c c e p t FINISH-PUMPING statement in the body of the PUMP
task. The operat,or, who waits for a customer to prepay or for
a report from the pump, gives change to the customer after
this report. If another customer is waiting, the operator then
reactivates the pump.

A set of translation rules for producing constrained expres-
sion representlatiom from CEDI, designs is given in [111. These
translation rules produce a task ezpression for each task in the
system a.nd a collection of constraints; the system expression
of the constrained expression representation is the interleave of
these task expressions. In Figure 4, we show the task expres-
sion corresponding to the pump task in our system. This t,ank
expression was derived rising the t>ranslation rules of [l I] and
then simplified and reduced [13]. The line nrlrnbers in this fig-
lire are included for reference. The event synibols used in the

package COMMON is
t y p e C-NAME is (c l , c 2) ; - - names f o r two

- - customers
t y p e COUNTER is (z e r o . o n e . t w o , t h r e e) ;

- - enough t o handle
- - 3 customers

end COMMON;

use COMMON:
t a s k OPERATOR is

e n t r y PREPAY(CUST0MER-ID : i n C-NAME);
e n t r y CHARGE;

end OPERATOR;

t a s k PUMP is
e n t r y ACTIVATE:
e n t r y START-PUMPING;
e n t r y FINISH-PUMPING;

end PUMP;

u s e COMMON:
t a s k CUSTOMER-1 is

e n t r y CHANGE:
end CUSTOMER-1;

use COMMON;
t a s k CUSTOMER-2 is

e n t r y CHANGE;
end CUSTOMER-2;

Figure 1: Task dec lara t ions for the two-cus tomer g a s
s t a t i o n system

t a s k body PUMP is
begin

loop
a c c e p t ACTIVATE;
a c c e p t START-PUMPING:
a c c e p t FINISH-PUMPING do

. . . - - compute charge f o r
- - t h i s t r a n s a c t i o n

0PERATOR.CHARGE; - - r e p o r t charge
- - t o o p e r a t o r

end FINISH-PUMPING;
end loop:

end PUMP:

F i g u r e 2: B o d y of the PUMP t a s k

task expression are essentially t,hose of [I I] , with some simplifi-
cation and abbreviation. A t,able showing the symbols and the
associated events is given in Figure 3.

353

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:47:50 UTC from IEEE Xplore. Restrictions apply.

Oiir analysis t,hen proceeds by generating a system of in-
equalities relating the numbers of occurrences of certain events
in a behavior of the dist,ribiit>ed system under analysis. This
process of generating inequalities begins with t,he assumption
tha t a particular pattern of event symbols, reflecting a partic-
ular property of t,he system under analysis, occurs in a string
in the interpreted language of the constrained expression. It is,
of course, a primary task of the analyst t o choose appropriate
properties of the system for investigation.

Consider the question of whether a customer who prepays
always gets to pump gas. Prepaying is modelled by a ren-

1 G m b T Associated event
~ 1 1

In the pyinhols used in the task expression in Figure 4 , the t,ask nan ie
CUSTOMER i is ahhrevinted to Ci, PUMP is ahhrevinted to P, and OPERATOR
is abbreviated t o 0. Entry names are also ahbreviated.

Figure 3: Event Symbols Used in the PUMP Task
Expression and Associat.ed Events

P 1 (beg rend(O,P.act)end rend(O,P.act)

(v beg-rend(Ci, P.start) end.rend(Ci, P.start))

(v beg-rend(Ci, P.finish)cnll(P, O.charge)resume(P, O.chnrge)

end.rend(C:i, P.finish))

(rtarue,.(P.act)stop(P)

P 3 Vbeg.rend(O,P.act)end.rend(O,P.act)starue~(P,stnrt)s~@p(P)

P 4 VbLg.rend(O,P.act,)end.rend(O, P . a c t) (V beg-rend(Ci,P.start)

end-rend(Ci, P s t a r t)) starue,,(P.finish)stop(P)

P5 vbeg rcnd(O,P.act)end r r n d (O , P . a c t) (V beg rend(C‘i,P.start)

end rend(Ci,P.stnrt)) (v beg rend(Ci,P.finish))

starve. (P , O.charge)klll.renli(P.finish)Rtnp(P)

Figure 4: Task Expression r (P) Associated with the
Task PUMP

dezvous between the CUSTOMER and OPERATOR tasks a t the
ent,ry 0PERATOR.PREPAY and pumping is modelled by a ren-
dezvous between the CUSTOMER and PUMP tasks a t the entry
PUMP. START-PUMPING. In t,he bodies of the CUSTOMER tasks, the
call t o OPERATOR. PREPAY is followed immediately by the call to
PUMP. START-PUMPING. Therefore, the only way t,hat a customer
can prepay but fail to pump is for the CUSTOMER task to starve
calliiig the entry PUMP. START-PUMPING.

Since the two customer tasks in the system are treatred sym-
metrically, we may thus begin our analysis by assuming that a
starve,(Cl,P.start) symbol occurs in a constrained prefix and
generating a 8ysl.em of inequalities starting from that assump-
t,ion. We will show here how some of these inequalities are
produced.

Let s be a constrained prefix containing the event symbol
starve,(Cl,P.start), let (event symbol(denote the number of oc-
currences of event-symbol in s, and let lPil be 1 or 0 according
as the projection of s on the alphabet of the lask expression
r (P) lies in lhe language of the expression (P1)’Pi . We thus
have

Istarve,(C1, P.start)(= 1.

Working backward through the task expression r (P) using the
semantics of the regular expression operat,ors and ignoring the
stop(€‘) symbols for the moment, we have

I call(P, 0.charge)l

(beg rend(Ci, P.finish)l

I end-rend(C1, €‘.start) (
lend-rend(C2, €‘.start)(

Ibeg.rend(Ci, €‘.start)(

lend rend(0, P.act)l

lbeg rend(0, P.act)l

c end-rend(Ci, €‘.finish)(

(resame(P, 0.charge)l
beg rend(C1, P.finish)l

beg rend(C2, P.finish)l

I kill rend(P.finish) I
(starve,(P , 0.charge) I

(beg.rend(Ci, P.finish)l

I starve,(€‘.finish) I
(end-rend(Ci, P.start)l

I starve,(P.s tar t) I
lend rend(0 , P.act)l

(starve, (P.act) I

I

t

(beg.rend(Ci, P.finish)l
1

-IF

- 1 ~ 4 1

(end rend(Ci, P.start)l
t

I beg.rend(C1, P.start)l
I beg .rend(C2, P .start) I
lend.rend(0, P.act)l - JP31

(beg rend(0, P.act,)J

lend rend(Ci, P.finisIi)l
1

i I ~ (F’21

I resume(P, Oxhargc) I

Icall(P, O.charge)/
lend rend(C1, P.finish)(

lend rend(C2, P.finish)l

1 ~ 5 1
I killLrend(€‘.finish) I
I starve,(P , 0.charge)

1 ~ 4 1

1 ~ 3 1

Istarue,(P.finish)l

(starne,(P.start)l

IP21.
Since exactly one of the alternatives P2 through PS occurs, we
must also have

/P21 + IP31 + IP4l + IP51 = 1.

354

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:47:50 UTC from IEEE Xplore. Restrictions apply.

These inequalities represent the unconstrained behavior of
t,he PUMP task. In a similar fashion, we can generate inequalities
from the other task expressions,

The constraints in a CEDI, constrained expression represen-
tation enforce the appropriate synchronization between tasks,
as well as other aspects of the sernant,ics of CEDL that are
not conveniently represented in the task expressions. These
constraints are used to generate addit>ional inequalities. For
example, a constraint that represents the semantics of the ren-
dezvous between the PUMP task and the OPERATOR task a t the
entry PUMP. ACTIVATE implies that

J c a l l (0 , P.act)l = Jbeg-rend(0, P.act)J and
lend.rend(0, P.act)l = (resume(0, I’.act)l.

Ot,her constraints lead t‘o similar inequalities.
Having generated the ful l system of equations and inequal-

ities, we use a sta.ndard branrh-and-boiind integer linear pro-
gramming package (201 to determine whether its is consistent.
(For convenience, we usually choose the ohjective function t o
minimize t,he sum of t,he variables.) For the gas station exam-
ple described here, t,he system consists of roughly 100 equations
and ineqiialit,ies and the linear programming package finds a so-
lution t o the syst,em of inequalities corresponding to a behavior
in which the task CUSTOMER.1 starves because of a deadlock.
This requires approximately one minute of computer time on a
Celerity C1260. A similar analysis shows that , when the call
to the operator is moved out of the accept FINISH PUMPING
statement in the body of the PUMP task and the order of two
calls i n the body of the OPERATOR task is reversed, a rustomer
who prepays always gets to pump gas. The constrained expres-
sion ana.lysis thus detectss an error in t,he design and establishes
that a modification t,o the design eliminates the problem.

Tools Supporting Constrained Expression Analy-
sis

The constrained expressinn approach tjo analysis offers sev-
eral potentially significant advanbages. It can be applied a t a
number of stages of tlhe software development process, including
wpecially the pre-implementation stages of specification and
design, and it can be used with a wide variety of design no-
tations and programming languages [141. l h i s allows system
designers to work with the languages and notations they find
most appropriate without sacrificing the ability to do rigorous
analysis. Because analysis based on the constrained expression
formalism works wit.h whole classes of system behaviors and
ca.n be conducted in a highly directed fashion, the problem of
combinatorial explosion is ameliorated. Moreover, reporting of
spurious errors is reduced compared to most state-based analy-
sis methods, since constrained expression analysis methods can
take da ta dependency into account.

Preliminary experiments, like the one out,lined above, have
been extremely promising. Applied to a variety of small con-
current systems, these methods have been able to detect subtle
errors, and t o prove rigorously that, modifications to the sys-
tems eliminate t,hose errors (4,5,6,10] Itowever, considerable ex-
perienre with distributed systems of realistic size and complex-
it.y will be necessary before the constrained expression analysis
t,echniques can become practical tools for software developers.
Only through experimentation with such realistic examples cart

the strengths and weaknesses of the techniques, the classes of
prohlems for which they are best suited, and their most appro-
priate role in the software development process be accurately
determined.

For two important reasons, however, even experimentation
with such examples reqnires robust implementations of con-
strained expression analysis tools. First, arit,omated support
is necessary for the application of the analysis techniques t o
systems much larger than the examples we have already stud-
ied. It, is not possible to cope with systems of Reveral hundred
inequalities with only paper and pencil. Second, the nt,ility of
constrained expression analysis tools in prart>ice will be affected
by such factors as the efficiency of their implementations and
the kind and quality of their interfaces with other tools and with
human analysts. These issues can only be explored through a
serious software engineering effort., involving the design, con-
struction, and evaluation of prototype tools. For these reasons,
we regard the construction of such tools, and their application
to realistic examples of concurrent systems, as an integral part
of our research on analysis techniques.

We have begun to construct a constrained expression toolset
t o slipport such experirnentat,ion. This t.oolset consists of three
main tools. The first of these is a deriver, which is essentially
a compiler used to produce constrained expression represent,a-
tions from designs given in some programming or design nota-
tion. We have nearly conipleted work on a prototype of this
t,ool for use with t,he CEUL design language. The prototype
is being written in Ada, using standard compiler const,tuction
tools and the Graph I)efinit,ion Language and Graphit,e proces-
sor that we have developed as pa.rt of t,he Arcadia project [9,30].
It was designed t,o make modification as straightforward as pos-
sible, so that enhancements to CEDL and the translation rules
used to produce constrained expression representat,ions would
be easy t o implement. Further development of this tool will be
the result of improvements in our translation rules for CEDL or
modifications t o the internal representation used for constrained
expressions. The deriver will be supplemented by constrained
expression simplification tools now under construction a t the
University of California, Santa Barbara.

The second tool is a behavior generator, which is used to
produce strings in the interpreted language of a constrained
expression. This tool is used in the initial exploration of a
concurrent syst,em, when the analyst “walks” tlirough the sys-
tem to get an idea of its funct.ioning. It is also used when
the inequalities produced in other stages of analysis are consis-
tent and the analyst hies to produce an actual system behavior
satisfying the inequalities. With a large system, this involves
a substantial amount of bookkeeping, and often a great deal
of backtracking as one tries t,o satisfy a large number of in-
equalities and constraints simultaneously. We have a complete
specification 131 for the behavior generator, and a partial imple-
mentation in LISP. Although we expect to continue to use LISP
for rapid prototyping, later versions of this tool will migrate t o
Ada for compatibility with t,he Arcadia project and other tools.

Finally, we will need an inequality generator to provide auto-
mated support for the generation of the inequalities in analysis
and their conversion to a form suitable for input to the integer
programming package. We have built a prototype inequality
generator using LISP that has been useful for some work with
small systems. This prototype, however, does not make use of
some import.ant types of constraint)s and generates inequalities

355

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:47:50 UTC from IEEE Xplore. Restrictions apply.

in a relatively undirected fashion compared to the heuristics we
have developed for use in hand analyses. Further development
of the inequality generator may involve attempts to integrate
the heuristics into our current prototype or the construction of
a separate tool based on those heuristics, and will certainly de-
pend on the results of ongoing theoretical work on modularizing
analysis and incremental generation of inequalities. As with the
behavior generator, we expect to continue to use LISP in early
versions of the inequality generator, with eventual migration to
Ada.

I t is apparent that interfaces between these tools, and he-
tween some of the tools and the analyst,, are extremely im-
portant, and we are concerned with both kinds of interfaces.
Intertool interfaces, in the context of our project, will primar-
ily consist of internal representations of constrained expressions
and representations of inequalities suitable for input to the in-
teger programming package. The latter will be dictated by the
particular integer programming package that we are using a t
any given time. We plan to implement the internal represen-
tation of constrained expressions using the Graph Definition
Language and Graphite processor (91. This will allow us to
explore alternatives or even adopt a completely new internal
representation with only minimal impact on the implementa-
t,ion of other aspeck of our tools.

The user interfaces to the existing, exploratory versions of
our tools are far from friendly. In the long term, we envision
a sophisticated user interface employing multiple windows and
a pointing device. Initially, however, we need to address more
basic concerns such as appropriate forms in which to report
the activity of the deriver, the inequality generabr, the integer
programming package and the behavior generator. Eventually,
we will want to hide the constrained expressions from the tool
user as much as possible, so that developers of concurrent soft-
ware will be able to reap the benefits of using the tools without
having t o understand the constrained expression formalism. We
have tentative ideas in this direction, and will be exploring them
further as we build the protot#ype toolset.

Conclusion

Developing large-scale, rrliahle software capable of exploit-
ing the potential of distributed hardware systems will demand
the support of powerful automated tools, especially analysis
tools. Our Constrained ezpression approach to analyzing such
software systems seems to have several advantages, including
broad applicability and reasonable efficiency, relative to other
proposed approaches. In this paper we have outlined the con-
strained expression approach, indicated i ts relationship to some
alternative approaches, and described our experimental use of
the approach in analyzing a simple but nontrivial example of a
distributed software system design.

Results of initial experiments with our approach, based on
manual application and preliminary prototypes of some of the
needed tools, have been encouraging. They have also demon-
s t n t e d the need for us, and all researchers working on dis-
tributed software analysis, to undertake more extensive exper-
imentation with larger, more realist,ic examples.

In this paper, we have outlined our plans for consf,ructing
the more robust, flexible and efficient protot.ype tool implemen-
tations needed to slipport. more extensive experimentation. We
look forward to the completion of this implementation activ-

ity, and to the availability of similarly robust implementations
of tools supporting alternative approaches to analysis of dis-
tributed software. Serious experimentation, leading to mean-
ingful assessments and coinparisions of the various approaches,
their practical utility and particular shortcomings, will then be
possible. This process should eventually result in a collection
of analysis tools with complement,ary capabilities that. together
will support analysis across a wide range of problem classes and
phases of the software development process. Such a collection of
tools would be extremely valubabk to developers of distributed
software.

REFERENCES

M. W. Alford. SREM at the age of eight; the distributed
computing design system. Computr t , 18:36-46, April 1985.

K. R. Apt. A static analysis of CSP programs. In Froceed-
ings of the Workshop on Program Logic, Pittsburgh, June
1983.

S. Avery. Development of a Behavior Generator for Con-
strained Ezpressions. Technical Report SDLM84-2, Soft-
ware Development Laboratory, Ilepartment of Computer
and Information Science, University of Massachusetts,
Amherst, June 1984.

G . S. Avrunin. Ezperiments in Constrained Ezpres-
sion Analysis. Technical Report 87-125, Department of
Computer and Information Science, University of Mas-
sachusetts, 1987.

[5] G. S. Avrunin, 1,. K. Dillon, J. C. Wileden, and W. E. Rid-
dle. Constrained expressions: adding aiialysis capabilities
to design methods for concnrrent software systems. IEEE
Transactions on Software Engineering, SE-12(2):278-292,
1986.

G . S. Avriinin and J . C. Wileden. Descrihing and analyzing
distributed software system designs. A C M Transactions on
Programming Languages and Systems, 7(3):380- 403, July
1985.

P. C. Rates and J. C. Wileden. High-level debugging of
distributed systems: the hehavioral abstraction approach.
Journal of Systems and Software, 3:255-264, 1983.

A. F. Brindle, R. N. Taylor, and D. F. Mart,in. A Debug-
ger for Ada Tasking. Technical Report A'I'R-85(8033)-1,
Aerospace Corporation, 1985.

L. A. Clarke, J . C . Wileden, and A. L. Wolf. GRAPHITE:
a meta-tool for Ada environment development. In Proceed-
ings of 2nd International Conference on Ada Applications
and Environments, pages 81-90, April 1986.

L. I<. Dillon. Analysis of Distributed Systems Using Con-
strained Ezpressions. PhD thesis, University of Mas-
sachusetts, Amherst, 1984.

L. K. Dillon. A Constrained Ezpression Formslation of
CEDL. Technical Report TRCS86-22, Department of
Computer Science, Universi1.y of California, Santa Bar-
bara, November 1986. Revised July 1987.

356

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:47:50 UTC from IEEE Xplore. Restrictions apply.

L. K. Dillon. Overview of the Constrained Ezpression Ue-
sign Language. Technical Report TRCS86-21, Department
of Computer Science, University of California, Santa Bar-
bara, October 1986.

L. K. Dillon. Simplification and Reduction of CEDL Con-
strained Ezpressions. Technical Report, Department of
Computer Science, University of California, Santa Bar-
bara, October 1986.

L. K. Dillon, G . S. Avrrrnin, and J. C. Wileden. Con-
strained Expressions: Toward Broad Applicability of Anal-
ysis Methods for Distributed Software Systems. To appear
in A CM Transactions on Programm.ing Languages and Sys-
tems.

A. N. Habermann. Synchronization of communicating pro-
cesses. Communications of the ACM, 15(3):171-176,1972.

D. Ilelmbold and D. Luckham. Debugging Ada tasking
programs. IEEE Software, 2(2):47-57, March 1985.

[17) C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall International. 1985.

R. M. Karp and R. E. Miller. Parallel program schemata.
Journal of Computer and Systems Science, 3(4):167-195,
May 1969.

L. Lamport.
in a distributed system.

Time, clocks, and the ordering of events
Communications of the ACM,

21(7):558-565, July 1978.

A. H. Land and S. Powell. Fortran Codes for Mathemat-
iral Programming: Linear, Quadratic and Discrete. John
Wiley & Sons, Ltd., Lolidon, 1973.

P. Lauer, P. Torrigiani, and M. Shields. COSY: a system
specificalion language based on paths and processes. Acta
In for matica, 12(2):45 1-503, 1979.

R. J. Leblanc and A. D. Robbins. EventJriven moni-
toring of distributed programs. In Proceedings of the 5th
International Conference on Distributedomputing Systems,
pages 515-522, May 1985.

C. H. LeDoux and D. S . Parker. Saving traces for Ada
debugging. In Proceedings of the Ada International Con-
ference, pages 97-108, May 1985.

[24] B. P. Miller, C. Macrander, and S. Sechrest. A distributed
program monitor fOT Berkeley unix. In Proceedings of
the 5th International CoRference on Distributed Computing
Systems, pages 43-54, May 1985.

[25] R. Milner. A Calculrrs of Conmimicaling Systems. Vol-
ume 92 of Lecture Notes in Computer Science, Springer-
Verlag, Berlin, 1980.

1261 S . Owicki and D. Gries. An axiomatic proof techniqrre for

[27] S. Owicki and L. Lamport. Proving liveness properties of
concurrent programs. A CM Transactions on Programming
Languages and Systems, 4:455-495, July 1982.

parallel programs. Acta Informatica, 6(4):319-340, 1976.

1281 K. Ramamritham and R. M. Keller. Specification and syn-
thesis of synchronizers. In Proceedings of the 1980 Inter-
national Conference on Parallel Processing, pages 311-321,
August 1980.

[29] R. N. Taylor. A general-purpose algorithm for analyz-
ing concrirrent programs. Communications of the ACM,
26(5):362-376, May 1983.

[30] R. N. Taylor, L. A. Clarke, L. J . Osterweil, J . C. Wileden,
and M. Young. Arcadia: a software development environ-
ment research project. In Proceedings of the 2nd Interna-
tional Conference on Ada Applications and Environments,
pages 137- 149, April 1986.

[31] J . C. Wileden. Applying event based analysis to speci-
fications and designs. In H. Krrgler, editor, Information
Processing 86, pages 577-58 1 , Elsevier Science Publishers,
Amsterdam, September 1986.

[32] P. Zave. An operat,ional approach to requirements specifi-
cation for embedded systems. IEEE Transactions on Soft-
ware Engineering, SE-8(3):250-269, May 1982.

1331 P. Zave and W. Schell. The PAISLey software tools: an
environment for executable specifications. In Proceedings
of the Workshop on Software Engineering Environments
for Programming-in-the-Large, pages 54-63, June 1985.

357

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:47:50 UTC from IEEE Xplore. Restrictions apply.

