
Describing and Analyzing Distributed
Software System Designs

GEORGE S. AVRUNIN and JACK C. WILEDEN
University of Massachusetts

In this paper we outline an approach to describing and analyzing designs for distributed software
systems. A descriptive notation is introduced, and analysis techniques applicable to designs expressed
in that notation are presented. The usefulness of the approach is illustrated by applying it to a
realistic distributed software-system design problem involving mutual exclusion in a computer
network.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming;
D.2.2 [Software Engineering]: Tools and Techniques; D.2.4 [Software Engineering]: Program
Verification; D.3.2 [Programming Languages]: Language Classifications; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning about Programs

General Terms: Design, Languages, Theory, Verification

Additional Key Words and Phrases: Analysis of software design, design notation, distributed mutual
exclusion, distributed software systems, software design tools.

1. INTRODUCTION

Motivated by the increasing demand for highly complex, yet highly reliable,
distributed computing systems, we have been investigating tools and techniques
to aid in the preimplementation stages of distributed software system develop-
ment. In this paper we present a notation appropriate for describing designs of
distributed software systems, and techniques for analyzing the behavior of
systems whose designs are expressed in this notation. The notation describes
systems as collections of sequential processes communicating entirely via message
transmission, and hence is well suited for use in developing the design for
distributed system software. The analysis techniques employ methods derived
from basic algebra. Our experience has shown that these techniques provide
valuable assistance in uncovering even very subtle flaws in designs expressed in
the notation. Moreover, these techniques can also be used to rigorously demon-
strate that certain aspects of a design are correct.

This work was supported in part by National Aeronautics and Space Administration grant NAG l-
115.
Authors’ addresses: G. S. Avrunin, Dept. of Mathematics and Statistics, University of Massachusetts,
Amherst, MA 01003; J. C. Wileden, Dept. of Computer and Information Science, University of
Massachusetts, Amherst, MA 01003.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1985 ACM 0164-0925/85/0700-0380 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July 1985, Pages 380-403

Describing and Analyzing Distributed System Designs 381

The role that we envision for these techniques in preimplementation distrib-
uted software development is illustrated by the following scenario: A designer-
early in the development of a large, complex, distributed software system-
conceives a modularization for the system. The designer can then use our notation
to describe this modularization, identifying the individual processes comprising
the system and specifying how those processes will interact. Continued develop-
ment of the system, eventually culminating in an implementation, will involve a
great deal of time and effort, much of which would be wasted if any error were
made at this early preimplementation stage. Therefore, before proceeding with
the development, the designer employs our analysis techniques, expressly tailored
for preimplementation use, to check for design flaws. Specifically, these tech-
niques can be used to determine whether or not certain patterns of behavior
occur, given the specified processes and process interactions. The patterns of
interest may represent desirable properties of system behavior, such as mutually
exclusive utilization of a shared resource, or graceful degradation and continued
operation following the failure of one or more system components. Alternatively,
the patterns might represent pathological behaviors such as deadlocks. Through
use of these analysis techniques, the designer could gain confidence in the
suitability of a design before proceeding to later stages of the software develop-
ment process.

Although this paper focuses on the design stage of distributed software system
development, it is worth noting that, with appropriate modifications, the analysis
techniques presented here could be applied during later stages as well. Such
generalized usage of these techniques would contribute to uniformity of analysis
methods, and hence to increased integration of the development process for
distributed software systems. After restricting our attention to the design stage
in most of what follows, we return in the paper’s concluding section to a
consideration of the broader applicability of our approach to distributed system
description and analysis.

We describe both our notational framework and our approach to analysis,
illustrating their use and usefulness with a realistic example. The next section
discusses our design notation framework, and compares our approach with some
related work by other researchers. This is followed by a short section in which
we discuss the distributed mutual exclusion problem that serves as the basis of
our example. Section 4 presents the first part of the example in which we
illustrate the use of our notation in developing a design for a distributed system.
In Section 5 we describe the analysis techniques that we have developed, specif-
ically showing how they can be applied to designs expressed in the notation
introduced in Section 2. We continue our example in Section 6, showing how our
analysis techniques can be used both to uncover design errors and to demonstrate
the correctness of aspects of a design. We conclude the paper with an assessment
of the applicability of our work and prospects for future progress.

2. FRAMEWORK FOR A DESIGN NOTATION

Our work on techniques for describing and analyzing distributed systems has
been guided by our interest in contributing to the production of practical,
automated tools applicable to the preimplementation stages of distributed soft-

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July 1985.

382 l G. S. Avrunin and J. C. Wileden

ware system development, We believe that this goal imposes two basic con-
straints. First, it requires that we base our techniques on a descriptive formalism
(with accompanying notation) that not only is precise enough to be unambiguous,
but is also appropriate for use by developers of distributed software who may
have no special mathematical or theoretical training. Second, it requires that we
provide practical analysis methods that can be applied to descriptions phrased
in that formalism and that can answer the types of questions arising most
crucially during the design of distributed software systems.

Our choice of a descriptive formalism reflects our view of the distributed
software development process. We believe that the designer of distributed soft-
ware needs tools that will support descriptions of a modularization for the system,
identifying the component processes of the system and specifying the ways in
which those components will interact. Such a description must be sufficiently
abstract to allow the designer to focus on just the properties of interest, namely
modularity and interaction, without being distracted by details concerning other
properties that are irrelevant at this stage. At the same time, the description
must be sufficiently rigorous so that it can be analyzed.

In addition to providing abstraction and rigor, we feel that a preimplementation
descriptive formalism must be relatively easy to understand and use. Specifically,
it must be amenable to use by software designers who may have little or no
training in advanced mathematics or theoretical computer science. Therefore, an
appropriate formalism should bear a reasonable relationship to standard software
specification and design techniques. Ideally, it should be possible to provide an
automated version of the formalism to permit its use in a distributed software
development environment [5]. Finally, a formalism can only be appropriate for
general use in designing distributed software if it is applicable to a wide range of
distributed system organizations.

The descriptive formalism that we have chosen to use as a basis for our work
is the Dynamic Process Modeling Scheme (DPMS) and its Dynamic Modeling
Language (DYMOL). This formalism, described in detail in [35], was originally
developed for studying distributed systems with dynamic structure [33]. It evolved
from the PPML formalism [31] that served as the foundation for the DREAM
software development system [30, 341. One component of DPMS is a modeling
language, called DYMOL, that can be used to formulate precise, high-level,
procedural descriptions of constituent processes in a distributed system [35]. A
second component of the modeling scheme, called constrained expressions [6,
361, is a closed-form, nonprocedural, representation for all the possible behaviors
that could be realized by some distributed system. For an important subset of
dynamically structured distributed systems, these two components of DPMS are
related by an effective procedure for deriving the constrained expressions describ-
ing the potential behavior of a given system described in DYMOL. In the
remainder of this section we summarize the relevant features of the Dynamic
Process Modeling Scheme. We first describe the computational model on which
DPMS is based, then discuss the DYMOL language and relate it to other
languages for describing distributed systems.

In DPMS, a dynamically structured distributed system is considered to be
composed of individual sequential processes, communicating with one another
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July 1985.

Describing and Analyzing Distributed S$stem Designs 383

by means of messageqansmission. Each individual process is an instance of a
class of potential processes. Each class is described by a template (i.e., a generic
program written in DYMOL). This DYMOL template precisely specifies the
ways in which processes of the class may interact with other processes, through
(asynchronous) message transmission or by creating or destroying processes, but
only abstractly describes the local, internal activities of the process itself. Thus,
DPMS descriptions focus on process organization and interaction, which is the
appropriate orientation for design description and analysis, rather than on
internal process activity.

Message transmission as modeled in DPMS is both a communication and a
synchronization mechanism. A process may, by using a DYMOL instruction
whose syntax is

SEND (port-id),

send a message through an outbound port into a link associated with that port.
Each process template completely (and, in the present version of DYMOL,
implicitly) specifies the set of distinct inbound and outbound ports through which
processes of the given process class may communicate with other processes in
the system. Associated (again implicitly) with each outbound port is a link, which
is essentially an unbounded, unordered repository that is used to mediate the
asynchronous message transmission activity of DPMS processes. Performing a
SEND operation may be viewed as copying the current contents of the process’
buffer (a distinguished memory location within the process) into the designated
link, leaving the buffer’s contents unchanged (a nondestructive copy operation).
The buffer’s contents may be modified by receipt of a message (via the RECEIVE
instruction described below) or by using the buffer assignment instruction, whose
syntax is

SET BUFFER := (message-type).

Having sent a message, the sending process may continue with subsequent
activities as described by its DYMOL program.

Using a DYMOL instruction whose syntax is

RECEIVE (port -id)

a process may request receipt of a message through one of its inbound ports.
Such a request can be fulfilled whenever at least one link containing one or more
messages is connected to the designated inbound port by an interprocess com-
munication channel. When the request is fulfilled, the following steps are fol-
lowed: First, one link is nondeterministically selected from among those that
contain one or more messages and are connected to the designated port by
channels. Then, one message is chosen, again nondeterministically, from those
residing in the selected link. Finally, this message is removed from the link and
placed into the buffer of the requesting process. If no messages are currently
residing in any of the links currently connected to the designated inbound port
when a receive request is lodged, the requesting process simply waits. The wait
continues at least until a message becomes available in a link connected to the
designated inbound port, or until a link containing a message is connected to the

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July 1985.

384 l G. S. Avrunin and J. C. Wileden

designated port by a newly established channel. (Both of these must obviously
result from activities of processes other than the waiting process.) Neither the
appearance of a message nor the opening of a channel will necessarily end a wait,
however, since competing requests might be lodged in the interim and requests
need not be serviced in the order in which they were made. Clearly, a process
could wait for receipt of a message indefinitely.

In DPMS, the structure of a dynamically structured distributed system can be
altered either by adding or deleting processes or by adding or deleting interprocess
communication channels. Since the dynamic structure aspects of DPMS are not
used in this paper, we omit syntactic and other details of the corresponding
DYMOL instructions, but include a brief treatment of them for completeness.

The DYMOL instruction CREATE causes a new process of a specified class,
that is, a new instance of the process class described by a specified process
template, to be added to the system and assigned a unique name. The DESTROY
instruction is used to remove a particular process, specified by its unique name,
from the system. The DYMOL instruction ESTABLISH causes two specified
processes to become connected by a channel, which is simply a communication
pathway. In fact, the ESTABLISH instruction designates the specific outbound
port (and hence its associated link) of a specific process and the specific inbound
port of another (possibly the same) specific process that are to be connected.
Similarly, the CLOSE instruction is used to disconnect two specified ports by
removing the channel between them. Since the SEND instruction only designates
an outbound port through which a message is to be sent, and not a particular
recipient, the establishing and closing of ports provides the only means of
controlling message routing in DPMS. Finally, DPMS provides methods by
which a designer can stipulate an initial configuration for a dynamically struc-
tured distributed system. In this paper, for simplicity, tYe specify the initial
configuration of our DYMOL-described systems by using diagrams. Since our
examples do not require dynamic structure, none of the instructions discussed in
this paragraph are used in this paper, and the diagrams represent not just the
initial configuration but also the permanent process structure and interprocess
connectivity of the systems appearing in the examples.

The DYMOL language is a simple programming-like language whose syntax is
based on Algol60. In addition to the instructions for message transmission (SET,
SEND, and RECEIVE), communication channel manipulation (ESTABLISH
and CLOSE), and process creation and destruction (CREATE and DESTROY),
discussed above, it provides a standard set of control-flow constructs. Branching
within a DYMOL program can be based either on communications from other
processes, represented by the current contents of the process’ buffer, or on purely
internal process computations. Branching decisions based upon internal process
computation are modeled as nondeterministic choices (e.g., IF INTERNAL
TEST... or WHILE INTERNAL TEST DO. . .). Examples of DYMOL descrip-
tions appear in Section 4 of this paper, while further details on DYMOL can be
found in [35].

Since DYMOL bears a strong resemblance to a programming language, DPMS
models have a natural relationship to standard software specification and design
techniques and are easy for system developers to understand. Because its primi-
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July 1985.

Describing and Analyzing Distributed System Designs l 385

tives are message transmission and the creation and destruction of processes,
DPMS is suitable for describing a wide range of distributed system organizations.
DPMS focuses on process organization and interaction, and therefore addresses
precisely those issues most crucial during specification and design. For these
reasons we believe that the Dynamic Process Modeling Scheme is an appropriate
basis for both describing and analyzing designs of distributed software systems.

The DPMS descriptive formalism on which we are basing our work is similar
to several other approaches to describing distributed systems. It most closely
resembles the DDN design language of the DREAM software design system [30,
341, which can be considered its predecessor. It also resembles the numerous
other languages, such as PLITS [9], that use buffered (or asynchronous) message
transmission as their principal interprocess communication and synchronization
mechanism. DPMS differs from these other approaches primarily in its ability
to describe dynamically structured distributed systems, a capability not illus-
trated in this paper,’ and its close relationship to design-oriented analysis
techniques.

Of course, viewing a system as a collection of communicating sequential
processes is common to many description schemes. Hoare’s Communicating
Sequential Processes [13], Brinch Hansen’s Distributed Processes [3], and the
tasking facility in the Ada programming language [8] are three of the better
known examples of descriptive approaches that take this view. Unlike DPMS,
DDN, and PLITS, however, all three of these approaches (and many similar
ones) employ an interprocess communication protocol in which information is
transferred only when both the sender and the receiver are simultaneously
prepared to communicate. We find buffered message transmission a more natural
descriptive medium; it is easier to use, especially in formulating the high-level,
abstract descriptions appropriate during the design stage of distributed system
development. Thus, although it has been repeatedly pointed out that each style
of communication can be used to describe the other with minimal difficulty (e.g.,
[13, 23]), we have chosen to base our initial development of analysis techniques
on the DPMS descriptive scheme and its buffered communication constructs.

Alternative approaches that are explicitly intended for use in preimplementa-
tion development of distributed systems, and that provide for some analysis
during that process, include the COSY formalism [22] and the distributed system
specification technique of Ramamritham and Keller [27]. Both are based on
formal semantic models, the former on the theory of nets and path expressions
[21] and the latter on temporal logic [26]. Both also describe distributed systems
as collections of communicating sequential processes. These two approaches both
employ a descriptive style in which the behavior of individual processes is
specified and then added constraints are imposed to limit process interaction.
The resulting description seems further from a programmed solution, and hence
less natural for the design stage of a distributed software system’s development,
than a DPMS description. Nevertheless, these two approaches are potentially
very useful, especially if employed in conjunction with a language such as Path

1 See [35] or [36] for illustrations of DPMS’ application to dynamically structured systems.

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July 1985.

386 l G. S. Avrunin and J. C. Wileden

Pascal [4] that supports the same style of description at the implementation
level.

3. AN EXAMPLE DESIGN PROBLEM

To investigate the usefulness of our descriptive notation and associated analysis
techniques, we have applied them to several distributed software design problems.
In this paper we present the results of one such experiment in order to iliustrate
both the notation and the analysis techniques.

The distributed software design problem that we address in this example is
mutual exclusion in a distributed system. The basic problem is to create a
mechanism that will allow nodes in a distributed system to achieve mutual
exclusion when they have no common shared memory, but can communicate
only by message passing. This is a realistic problem of particular significance to
designers of computer networks, since nodes in a network normally do not have
access to a common shared memory, but can communicate only through messages.

Mutual exclusion in a distributed system has been studied by Lamport [19,20]
and by Ricart and Agrawala [28, 291, who have presented algorithms for solving
the problem. Our interest here is not in developing a new approach to solving
the problem of mutual exclusion in a distributed system. Rather, our goal is to
demonstrate the usefulness of our descriptive notation and analysis techniques
for developing solutions to this and other distributed software design problems.
We have therefore relied upon the approach developed by Ricart and Agrawala
as a basis for our example solution to the problem of mutual exclusion in a
distributed system. Hence, our example should not be construed as offering a
novel solution to the distributed mutual exclusion problem, but as presenting an
illustration of how a satisfactory solution to that problem might be developed.

Familiarity with the Ricart and Agrawala solution to the distributed mutual
exclusion problem is not required for understanding and appreciating the exam-
ple. A brief outline of their approach may, however, make the example easier to
follow. In essence, their distributed mutual exclusion algorithm requires that a
node wishing to obtain exclusive use of a shared resource send a request for such
use to each of the other nodes in the distributed system and then wait until all
of the other nodes have replied before proceeding to use the resource. Whenever
a node receives a request message from another node, it decides whether to reply
immediately, thereby granting its permission to use the resource, or to defer its
reply until after it has used the resource itself. This decision is based upon the
relative priority of the requesting node and the recipient of the request. Priorities
are determined in part by a sequence number sent as one portion of the request
message and in part by a fixed priority ordering on the nodes that is used in case
two sequence numbers are equal. The sequence numbers are generated by the
individual nodes and are similar to the numbers used in Lamport’s “bakery
algorithm” [171.

4. EXAMPLE DESIGN DEVELOPMENT PROCESS

Suppose that, at an early stage in designing a distributed software system, a
designer recognizes that mutually exclusive use of some system resource by the
nodes in the system would be necessary. Suppose further that the designer then

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July 1985.

Describing and Analyzing Distributed System Designs 387

chooses to focus temporarily on working out this aspect of the system’s design,
employing the notation outlined above. The remainder of this section describes
the first stage in a hypothetical design development process that this designer
might then follow. As mentioned previously, the actual solution to the distributed
mutual exclusion problem that results from this hypothetical design development
process is based on an algorithm due to Ricart and Agrawala.

As a first step in the design development process, the designer chooses to
decompose the distributed mutual exclusion aspect of a node’s computation into
three cooperating subparts. These subparts can be represented as processes, and
might even be implemented on separate processors if the nodes of the overall
distributed system were themselves networks of processors. One process in this
decomposition would primarily be responsible for generating requests for use of
the shared resource, and then performing the critical section processing involving
that resource once exclusive use of it had been granted. This process is referred
to as the invoker. A second process, designated the reply-handler, would receive
the replies from other nodes in the distributed system indicating that they had
received the invoker’s request for mutually exclusive use of the shared resource
and were prepared to grant that request. Upon receiving such replies from all
other nodes in the distributed system, the reply-handler process would inform
the invoker process that it had been granted exclusive use of the shared resource
and could proceed with its critical section processing. Finally, a set of processes
would be responsible for receiving and responding to the requests for mutually
exclusive use of the shared resource that will be generated by other nodes in the
distributed system. Each such process, referred to as a request-handler, would
receive and respond to the requests of one of the distributed system’s other nodes.
Under certain circumstances a request-handler process might decide to defer a
reply, in which case it would inform the invoker process of this decision so that
the invoker could later send a reply. This modularization of the node’s activity
closely parallels the decomposition used in the Ricart and Agrawala distributed
mutual exclusion algorithm ([28]).

Figures 1, 2, and 3 are DYMOL programs that the designer might use to
describe the behavior of the invoker, reply-handler, and request-handler pro-
cesses, respectively. Taken together, these three DYMOL programs describe one
node (specifically node 1) in a distributed system consisting of three nodes. The
designer must also specify how the processes are interconnected by communica-
tion linkages and indicate the communication linkages joining them with the
other nodes in the distributed system. These linkages are shown in Figure 4,
where processes are depicted as labeled circles, inbound and outbound ports are
represented by inbound and outbound arcs, respectively, and links are represented
by boxes. This figure also shows the messages assumed to be initially available
through communication linkages. A character string such as “no-def”, inside a
link, represents an available message, while an empty box indicates that no
message currently resides in that link.

It must be emphasized that these DYMOL programs are not intended to be a
complete description of all aspects of the node’s activity. That is, although they
have the form of programs, they by no means represent an implementation of
the processes they describe. Instead, they should be viewed as a model offering
only an incomplete and abstract description of the behavior of the processes.

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July 1985.

388 l G. S. Avrunin and J. C. Wileden

INVOKER:
INl: WHILE INTERNAL TEST DO

BEGIN
RECEIVE get-status; --announce intention to

--enter critical section
SET BUFFER := true;
SEND put-status;
SEND listen;
SET BUFFER := sequence-number;
SEND ask-2; --now send requests
SEND ask-3; --. . . to other nodes
RECEIVE ok; --permission to enter

--critical section granted
SET BUFFER := critical; --enter critical section
RECEIVE get-status; --announce exit from
SET BUFFER := false; -- . . . critical section
SEND put-status;
RECEIVE from-rq2; --deal with any deferred

--requests from other nodes
IF BUFFER = def THEN

BEGIN
SET BUFFER := true;
SEND resp-2;
SET BUFFER := no-def

END
SEND to-rq2;
RECEIVE from-rq3;
IF BUFFER = def THEN

BEGIN
SET BUFFER := true;
SEND resp-3;
SET BUFFER := no-def

END
SEND to-rq3

END

IN2:

IN3:
IN4:
IN5:
IN6:
IN7:
IN&
IN9:

IN10:
INll:
IN12:
IN13:
IN14:

IN15:

IN16:
IN17:
IN18:

IN19:
IN20:
IN21:

IN22:
IN23:
IN24:

IN25

Fig. 1. Invoker DYMOL program.

REPLY HANDLER:
RPl: DO FOREVER

BEGIN
RECEIVE get-reps;

RP3: RECEIVE reply-2;
RP4: RECEIVE reply-3;
RP5: SEND got-reps

END

--invoker has sent requests
--to other nodes; get replies

Fig. 2. Reply-handler DYMOL program.

Here, in keeping with the designer’s decision to concentrate on the distributed
mutual exclusion aspect of the system, the DYMOL programs focus on just that
aspect. Other aspects are represented in only the most abstract fashion or are
omitted altogether. We feel that such selective description is both appropriate
and necessary during early stages in the design of a complex, distributed software
system.
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July 1985.

Describing and Analyzing Distributed System Designs l 389

REQUEST-HANDLER-l-Z:
RQl: DO FOREVER

BEGIN
RQ2: RECEIVE req-2; --receive request from node 2
RQ3: RECEIVE Z-status-in; --check status of invoker
RQ4: SEND B-status-out;
RQ5: IF BUFFER = true AND INTERNAL TEST THEN

BEGIN
RQ6: RECEIVE 2-from-inv; --defer reply
RQ7: SET BUFFER := def

END
ELSE

BEGIN
RQ8: SEND resp-to-2; --send reply
RQ9: RECEIVE 2-from-inv;
RQlO: SET BUFFER := no-def

END
RQll: SEND 2-to-inv

END

Fig. 3. Request-handler DYMOL program.

The DYMOL program representing the invoker process (Figure 1) consists of
a nondeterministic (WHILE INTERNAL TEST) loop. This corresponds to the
designer’s view of this process activity as it relates to mutual exclusion, namely
that it will repeatedly attempt to enter its critical section, but may eventually
decide to stop doing so. Each pass through the loop begins with the invoker’s
announcing its intention to enter the critical section (statements IN2 through
IN5). The invoker makes this announcement by replacing the currently available
message in the links connected to the get-status inbound port (which are also
connected to the inbound ports 2-status-in and 3-status-in) with the message
“true”, then sending a “true” message to the reply-handler via the listen port.
(Since SEND does not destroy the contents of the buffer, no SET is needed after
the “SEND put-status” instruction.) After announcing its intention, the invoker
process requests permission to use the shared resource by sending messages to
each of the other nodes in the distributed system (statements IN6 to IN8). The
“SET BUFFER := sequence-number” instruction (IN6) abstractly models the
detailed internal processing that the invoker process uses in selecting the se-
quence number portion of its message. Such details are irrelevant at the current
stage of the design development process, although they clearly must be addressed
in later stages.

Having announced its intention to enter the critical section and having sent
requests for use of the shared resource to the other nodes in the distributed
system, the invoker awaits (at statement IN9) a message from the reply-handler
indicating that it can proceed. Upon receiving that message, the invoker performs
its critical section processing, abstractly modeled in Figure 1 by the “SET
BUFFER := critical” instruction (INlO). It then announces completion of its
critical section processing by replacing the message currently available in the
links connected to the get -status (and 2-status-in and 3-status-in) inbound
port with a “false” message (IN11 to IN13). Finally, the invoker checks to see if

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July 1985.

(fr
om

no

de

2)

\

fro
m

no

de

3)

17
-J

re

P
lL

‘O

P
fY

.
3

/
\

re
p,

ye

U
nd

le
r

1

(to

no
de

2)

(to

no

de
3)

in
vo

ke
r

rrq
ue

st
-h

an
dl

er
-l-

2
re

qu
es

t-h
an

dl
er

-.-

Fi
g.

 4
.

In
iti

al

co
nf

ig
ur

at
io

n
of

 n
od

e
1.

Describing and Analyzing Distributed System Designs 391

any replies were deferred while it was performing critical section processing. The
current contents of the links attached to ports from-rq2 and from -rq3 indicate
whether request _ handler - l-2 or request-handler _ l-3, respectively, has de-
ferred a request. The invoker inspects the contents of these links (at IN14 and
IN15 and IN20 and IN21, respectively), returning the “no-def” message to the
link immediately (IN19 and/or IN25) if it finds that no request is deferred.
Should the invoker find a “def” message, indicating that a request has been
deferred in either link, it dispatches the deferred replies (IN16 and IN17 and/or
IN22 and IN23) and updates the appropriate link contents (IN18 and IN19 and/
or IN24 and IN25) to indicate that no replies remain deferred. The invoker is
then ready to repeat the instructions in its WHILE loop if it chooses to do so.

The DYMOL program representing the reply-handler process for node 1
(Figure 2) consists of a nonterminating (DO FOREVER) loop. Upon being
informed (via its get-reps port) that the invoker has requested use of the shared
resource, the reply-handler awaits messages from the other nodes in the distrib-
uted system granting their permission for such use. When both other nodes have
given their permission, the reply-handler so informs the invoker by sending a
message through its got-reps port. Here, since the message (“true”) received as
a reply at RP4 will serve as an appropriate message for the invoker, a SET
instruction replacing the present contents of the reply-handler’s buffer is not
used.

Figure 3 is the DYMOL program for one of the two request-handler processes
in node 1. The program for the other request-handler in node 1 (i.e., request-
handler-l-3) is identical except for the replacement of port names containing
2’s with port names containing 3’s. The request-handler shown in Figure 3
monitors port req-2 (at RQ2) awaiting a request from node 2 for use of the
shared resource. Upon receiving such a request, the request-handler checks the
current status of the invoker process by obtaining the message currently available
through its 2-status-in port (at RQ3). After returning this message (at RQ4) so
that it can be inspected by the other request-handler or updated by the invoker,
the request-handler decides whether to send an immediate reply or to defer its
reply. The decision (made at statement RQ5) depends in part upon the current
status of the invoker (recall that SEND does not alter buffer contents) and in
part upon a priority comparison, abstractly represented at this stage in the design
as an INTERNAL TEST. If the invoker is attempting to enter its critical section
and it has priority over the other requesting node, then the reply will be deferred
(RQ6 and RQ7). Otherwise, the reply is sent through the request-handler’s resp-
to-2 port (RQ8). In either case, an appropriate message (composed at RQ6 and
RQ7 or RQ9 and RQlO) is made available to the invoker indicating whether or
not the reply was deferred (RQll).

The design description contained in Figures 1 through 4 represents a reasonable
and realistic first step toward designing a distributed software system in which
mutual exclusion plays an important role. In fact, this description is an accurate
abstract version of the Ricart and Agrawala solution to the distributed mutual
exclusion problem [28]. Further iterative refinement &eps would elaborate the
design by detailing the priority determination, used in the distributed mutual
exclusion mechanism, and gradually introducing other aspects of the overall
function of the distributed software system.

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July 1985.

392 l G. S. Avrunin and J. C. Wileden

Before proceeding with further elaboration steps, however, our hypothetical
designer decides to first analyze the design as it currently stands. One objective
of such an analysis is to uncover any errors made to this point so that they can
be corrected now rather than being incorporated into later, more detailed, versions
of the design. Alternatively, this analysis effort may serve to increase the
designer’s confidence in various portions of the current design by demonstrating
that they will produce appropriate patterns of system behavior. The next section
describes the analysis techniques that we have developed for use with our design
notation. Section 6 illustrates these techniques by applying them to the example
design that we have developed in this section.

5. AN APPROACH TO ANALYSIS

For the purpose of analysis, we regard the possible behaviors of a system modeled
in DPMS as a set of strings of symbols representing events involving the internal
computations of the component processes of the system and the transmission of
messages between those processes. This view resembles the “trace” perspective
used, for example, by Hoare in studying the semantics of CSP [14, 151. In our
setting, the events of interest include those involving the execution of a statement
in the DYMOL program of some process in the system and the normal termi-
nation or starvation of such a process. To analyze a design for a distributed
system expressed in DPMS, we determine whether a particular symbol, or pattern
of symbols, appears in a string representing a possible behavior of the system.
The symbols in question may correspond to some desirable property of the
system, such as graceful degradation, or may represent a pathology, such as
deadlock.

Our analysis techniques begin with a collection of rules which are used to
iteratively generate inequalities involving the numbers of occurrences of partic-
ular symbols that can appear in various segments of a string representing an
actual behavior of the system. These rules are based on the underlying semantics
of DPMS, on the description of the given system in DPMS, and on the particular
symbols in question. If the assumption that a certain pattern of symbols occurs
in such a behavior string leads, at any stage of the iterative process, to an
inconsistent system of inequalities, we have reached a contradiction. We may
then conclude that our assumption is incorrect and that the given pattern does
not occur in a behavior. Otherwise, we continue to generate inequalities until we
have enough information to construct a behavior containing the given pattern.

Our approach can be viewed as a generalization of the technique employed by
Habermann [ll] in analyzing a semaphore solution to a producer-consumer
problem. Other related approaches applied to different aspects of the problem of
analyzing distributed software systems include Taylor’s method for static analysis
of Ada programs [32] and Holzmann’s technique for protocol validation [16].
Numerous researchers have investigated the alternative of using proof techniques
[lo] and proof rules [E] for establishing properties of distributed software
systems (e.g., [l, 18, 20, 24, 251). While all these approaches have their strengths
and weaknesses, we believe that the approach described in this paper is particu-
larly promising as a practical tool for use in the design of realistic, full-scale,
distributed software systems.
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July 1985.

Describing and Analyzing Distributed System Designs 393

The rules we use to generate the systems of inequalities for analysis fall into
three general classes. The first of these classes consists of rules that reflect the
sequential nature of each of the component processes of the system. The rules in
the second class are based on the message transmission protocol of DPMS. The
third class reflects the dependence of branching on buffer contents, and so
involves both the flow of control in the individual processes and the communi-
cation between processes. In the remainder of this section, we describe these
rules and the way they lead to inequalities. We have chosen to present the rules
in a somewhat informal fashion. A fully formal description would involve the
introduction of a great deal of notation and the substitution of several mathe-
matical statements for each of the rules stated here. Although the full formality
is necessary to automate the analysis, the discussion given here more closely
resembles the way that a human would use the techniques without automated
assistance, and is therefore much easier to read and understand. Nevertheless,
the discussion has been kept sufficiently formal to indicate the rigor of our
approach.

The rules in the first class impose the requirements that, in an actual behavior
of the system, statements from each individual process are executed in the correct
order and that a process can halt only by terminating normally or by starving.
We list the rules below, and indicate the types of inequalities they generate. We
use the symbol r(p, Q, m) to represent the receipt of message m through inbound
port q from the link associated with outbound port p, and the symbol s(p, m) to
represent the transmission of message m through outbound portp to its associated
link.

Rule 1.1. Statements in a given process are executed in order, as specified by
DYMOL control constructs.

This rule implies, for example, that statement RQ3 in the request-handler-l-
2 process is executed only after statement RQ2 in each pass through the loop.
We state this conclusion in terms of the number of occurrences of symbols in a
behavior string as

)r(*,S-status-in, *)I 5 lr(*,req-2,*)1 I lr(*, S-status-in, *)I + 1

where we use 1 symbol 1 to denote the number of occurrences of “symbol” in the
string under consideration, and the asterisks (*) are a shorthand indicating “don’t
care” with respect to links and message types. Equality on the left holds in any
initial segment of a behavior containing an r(*, req-2, *) not followed by an r(*,
2_status_in, *), while equality holds on the right in any initial segment of a
behavior containing an r(*, 2~status-in, *) not followed by an r(*, req-2, *).

Rule 1.2. Once a process halts, either by normal termination or starvation, no
further events from that process occur.

For a fixed behavior of the system, this rule implies that the number of
occurrences of a symbol representing an event in a given process is the same for
all initial segments of the behavior that contain a termination or starvation

. symbol for that process.

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July 1985.

394 ’ G. S. Avrunin and J. C. Wileden

Rule 1.3. A complete behavior includes exactly one termination or starvation
symbol for each process in the system.

This rule implies that each process must continue to execute statements until
it starves or terminates normally. This can be used to show that certain events
must occur. For example, every execution of statement RQ3 in the request-
handler-l-2 program must eventually be followed by an execution of statement
RQ4. (Note that this uses Rule I.1 as well.) This can be stated as an inequality
in a number of ways. Perhaps the simplest is

1 s(2_status_out, *) 1 seg C 1 s(2-status-out, *) 1

where 1 s(2-status-out, *) 1 seg denotes the number of occurrences of the symbol
s(2-status-out, *) in any initial segment ending with an r(*, 2-status-in, *) and
1 s(2-status-out, *) 1 denotes the number of occurrences of s (2-status-out, *) in
the whole behavior.

We remark here that, while an automated analysis would presumably rely
entirely on the systems of inequalities, it is often convenient to formulate some
steps in the analysis verbally, using the mathematics only when it is necessary.
Thus, we usually simply say that an s(2-status-out, *) must occur after each r(*,
2_status_in, *) in a behavior, without writing down an inequality.

The rules in the second class are based on the message transmission protocol
of DPMS. The first of these is

Rule 11.1. In order for a message from the link associated with outbound port
p to be received at inbound port q, there must be a channel connecting the link
and port q and there must be a message available in the link.

This rule leads to inequalities of the form

I r(p, 4, *)I 5 I sb, *)I + np - 2 I r(p, 4’, *I I
q’+q

where n, is the number of messages in the link associated with p at the start of
the behavior. This says that the number of messages from p received at q is less
than or equal to the number of messages sent through p plus the number of
messages initially in the link associated with p minus the number of messages
received from p at ports other than q.

Rule 11.2. In order for a process to starve while waiting to receive a message at
port q, there must be no messages available in links connected to q at the time
the process last reaches a “RECEIVE q” instruction and also at the end of the
behavior.

We regard this last attempt to receive at q, which results in the process waiting
forever, as the starvation event, and represent it by the symbol w(q). Note that
messages which could be received at port q might become available after the last
attempt to receive at q. The rule asserts that if the process starves while waiting
to receive at q, all these messages must be received by other processes before the
end of the behavior. This rule gives equalities of the form

I r(*, 9, *) I = C (I s(p, *) I + 4 - C I rb, 4’, *) I
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July 1985.

Describing and Analyzing Distributed System Designs 395

where the first summation ranges over the outbound ports p connected to q, n,
is again the number of messages initially available in the link associated with p,
and the second summation ranges over the pairs (p, q’) with p an outbound port
connected to q, and q’ an inbound port connected top. The rule asserts that such
an equality must hold for any initial segment of a behavior ending with the
symbol w(q) as well as for any complete behavior containing a w(q).

The third class of rules involves both the flow of control in the individual
processes and the messages transmitted between those processes.

Rule 111.1. Branching depends, correctly, on buffer contents.

This rule implies that certain events must be preceded by the placing of
particular messages in a process’s buffer. For example, if statement IN16 of the
invoker DYMOL program is executed in a behavior of the system, the message
received at the immediately preceding execution of statement IN14 must have
been “def”. Thus we know that the r(*, from-rq2, *) symbol representing that
execution of IN14 must have been an r(*, from-rq2, def). This rule is used not
to directly generate inequalities but to provide additional information to guide
the process of producing the inequalities.

6. ANALYSIS OF AN EXAMPLE DESIGN

In this section we illustrate the analysis technique based on the rules and
associated inequalities we have just described by applying it to the design of
Section 4. This example shows how our analysis technique can be used both to
detect errors in a design and to establish that a proposed system will function as
intended.

The design described in Section 4 uses the message in the links connected to
the port from-rq2 to inform the invoker process when the request-handler-l-2
process has deferred a reply. When the invoker completes its critical section
processing, it can then send that reply. Thus it is essential that, while either the
invoker or request-handler-l-2 is examining or updating the message in these
links, the other process does not use either of the links. We begin our analysis
by checking that these links are indeed used correctly.

Recall that in order to determine whether some property holds for the behaviors
of a system, we first interpret that property in terms of the appearance of a
pattern of event symbols in behavior strings. In this case we would like to show
that, between the time one of the processes receives a message from a link
connected to the port from-rq2 and the time it next sends a message to one of
those links, the other process makes no use of those links. In terms of symbols
in a behavior string, we would like to show that the next symbol representing a
use of the links, following a symbol representing the receipt of a message from
one of them, must represent the transmission of a message by the process which
has just received.

We suppose to the contrary that the next symbol represents a use of the links
by the other process. From Rule I.1 and statements IN14 and IN19 we know that

(I) 1 s(to-rq2, *) 1 5 1 r(*, from-rq2, *) 1 5 (s(to-rq2, *) (+ 1

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July 1985.

396 l G. S. Avrunin and J. C. Wileden

while Rule I.1 and statements RQ6 or RQ9 and RQll give us

(2) 1 s(2_to_inv, *) 1 5 1 r(*, 2-from-inv, *) 1 5 I s(2-to-inv, *) I + 1

with equality on the left for any prefix of a behavior containing the send symbol
not followed by the appropriate receive symbol, and equality on the right for any
prefix of a behavior containing the receive symbol not followed by the appropriate
send symbol.

Rule II.1 implies that for any prefix of a behavior we have

I r(*, fromxq2, *) I 5 I s(to-rq2, *) I + I s(2-to-inv, *) I - I r(*, 2-from-inv, *)) + 1

(the 1 arising from the initial message in one of the links connected to 2_from-
inv), from which it follows that

I r(*, from-rq2, *) (+ I r(*, 2-from-inv, *)I 5 Is(to-rq2,*)I + Is(2-to-inv,*)l +l

But adding (1) and (2), and combining with this last inequality, we have

(3) I s(to-rq2, *) I + I s(2-to-inv, *) I 5 I r(*, from-rq2, *) I + I r(*, 2-from-inv, *) I I
I s(to-rq2, *) I + I s(2-to-inv, *)) + 1

In a prefix of a behavior containing one of the receive symbols, not followed by
the corresponding send symbol, we have equality on the right in at least one of
(1) and (2). But (3) implies that this cannot be true for both (1) and (2). Thus
two receive symbols cannot occur in a behavior without an intervening send
symbol.

Suppose a symbol representing a use of the links occurs between an r(*, from-
rq2, *) and the next s(to-rq2, *) in some behavior. We have just seen that the
first such symbol must be an s(2-to-inv, *), since an r(*, 2-from-inv, *) cannot
follow an r(*, from-rq2, *) without an intervening send symbol. Consider the
prefix of the behavior ending with this s(2-to-inv, *). For this prefix, we have

I r(*, from-rq2, *) I = I s(to-rq2, *) I + 1 by (1)

and

I r(*, 2-from-inv, *) I = I s (2~to-inv, *) I

so

by (2)

I r(*, from-rq2, *) I + I r (*, 2-from-inv, *) (= I s(to-rq2, *)I + I s(2-to-inv, *) I + 1

Since the s(2_to_inv, *) represents the first use of the links following the r(*,
from-rq2, *), we have

I r(*, from-rq2, *) I + I r(*, 2-from-inv, *) I = I s(to-rq2, *) I + I s(2Ao_inv, *) (+ 2

for the prefix ending with our r(*, from-rq2, *). This contradicts (3), so our
system of inequalities is inconsistent and the assumption that a use of the links
occurs between an r(*, from-rq2, *) and the next s(to-rq2, *) must be false. A
similar argument shows that no use of the links occurs between an r(*, 2-from-
inv, *) and the next s(2_to_inv, *).

This demonstrates that the aspect of the design involving mutually exclusive
use of the links connected to from-rq2 is indeed sound. Arguments of the same
type, which we omit here, show that the links connected to the get-status port
and the from-rq3 ports are also used in the proper mutually exclusive fashion.

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July 1985.

Describing and Analyzing Distributed System Designs 397

Having shown that the messages in these links are used properly, we next
consider whether any of the processes in the design starve unexpectedly. Since
the reply-handler and request-handler DYMOL programs consist of nontermi-
nating loops, we expect that these processes will eventually starve while waiting
to receive at statements RP2 and RQ2 respectively. This is the intended behavior
of the system after the invoker processes of the various nodes have terminated.
But we would like to be sure that the processes of our system never starve under
other circumstances. In the design described in Section 4 we have concentrated
on a single node. We retain that perspective here, and for the moment we simply
assume that every request from node 1 eventually receives replies from the other
nodes of the system. We are then concerned with the possibility that one of the
processes in node 1 suffers starvation while waiting for a message from another
process in that node.

Suppose, for example, that request-handler-l-2 starves while waiting to re-
ceive at port 2-from-inv, that is, while waiting to execute statement RQ6 or
RQ9. Clearly, we can interpret this simply as the appearance of the symbol w(2-
from-inv) in a behavior. If a w (2-from-inv) appears, Rule II.2 implies that

1 F(*, from-rq2, *) 1 + 1 F(*, P-from-inv, *) 1 = I s(toxq2, *) I + I s(2-to-inv, *) 1 + 1

(the 1 arising from the initial message in one of the links connected to 2-from-
inv), and Rule I.1 implies that

) F(*, 2-from-inv, *) 1 = 1 s(2Ao_inv, *) I,

both conditions applying to the complete behavior string. Combining these, we
see that

I F(*, from-rq2, *) I = I s(toxq2, *) I + 1

at the end of the behavior. This is only possible if the invoker process halts
between statements IN14 and IN13 Rules I.2 and I.3 imply that a process can
halt only at a RECEIVE statement (by starvation) or at a STOP statement.
Since none of statements IN15, IN16, or IN17 is a RECEIVE or STOP statement,
we see that the invoker cannot halt between IN14 and IN18, contra&cting the
last inequality. We may therefore conclude that no w (2-from-inv) appears in a
behavior.

Again, arguments of a similar nature apply to the rest of the design, showing
that none of the processes in node 1 starves while waiting for a message from
another process in the node. We would now like to determine whether a node
will in fact eventually send a reply for each request it receives. We begin by
assuming that node 1 receives a reply for each request it sends and determining
whether node 1 replies to each request from other nodes. We then consider the
problems of interaction among nodes.

Suppose that node 1 eventually receives a reply for each request it sends, but
that it permanently defers a reply destined for some other node, say node 2. We
can interpret this as the appearance of an r(*, req-2, *) in a behavior which is
not followed by an s(resp-to-2, *) from request-handler-l-2 or an s(resp-2, *)
from the invoker.

Since the request-handler does not starve while waiting for a message from
inside node 1, the rules of class I imply that any r(*, req-2, *) is followed by an

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July 1985.

398 l G. S. Avrunin and J. C. Wileden

s(respAo-2, *) and then an s(2_to_inv, no-def), or by an s(2-to-inv, def). Our
assumption that the reply to node 2 is permanently deferred eliminates the first
possibility, so a behavior in which a reply to node 2 is permanently deferred
contains an r(*, req-2, *) followed by an s(2_to_inv, def), but not by an s(resp-
to-2, *) or an s(resp-2, *).

Since node 2 waits for a reply to its request before initiating any additional
requests, no further r(*, req-2, *) symbols occur in the behavior, and thus the
rules of class I imply that request-handler-l-2 makes no further use of the links
connected to port 2-from-inv after sending the “def” message. We saw earlier
that the use of these links alternates between sends and receives, so the next use
of the links after the s(2..to_inv, def) must be a receive. Since the request-
handler does not use the links again, that receive must be an r(2_to_inv, from-
rq2, def). But the rules of classes I and III imply that any r(*, from-rq2, def) will
be followed by an s(resp-2, true), which would contradict our hypothesis. So our
hypothesis can hold only if the “def” message sent by the request-handler is
never received, and the s(2Ao_inv, def) represents the last use of the links
connected to 2-from-inv by any process in the system.

The fact that request-handler-l-2 sends a “def” message implies, by Rule
111.1, that the last r(*, 2-status-in, *) in the behavior was an r(*, 2-status-in,
true), indicating that the invoker process was in its critical section. Our assump-
tion that node 1 eventually receives a reply for each request it sends, together
with our earlier observation that none of the processes starves while waiting for
a message from within node 1, implies that the invoker will exit the critical
section after this last r(*, B-status-in, *). The rules of class I and the fact that
no process in node 1 starves while waiting for a message from within the node
tell us that, after the invoker exits the critical section, it receives whatever
message is then available in the links connected to the port 2-from-inv. We have
seen that the last “def” message sent by the request-handler is never received,
so we conclude that, if our hypothesis is true, the invoker must exit the critical
section and take the message in one of those links before request-handler-l-2
sends the “def” message. That is, if there is a behavior fulfilling our hypothesis,
then that behavior ends with a segment of the form:

s(put-status, true) . . r(*, Z-status-in, true) . . s(2-status-out, true) . .
r(*, get-status, true) . . s(put-status, false) . . r(*, from-rq2, no-def) . .
s(to-rq2, no-def) . . r(*, 2-from-inv, no-def) . . s(!Ltooinv, def) . . .

The rules of class I give no further information about these events, since the
events within individual processes occur in the correct orders. We have used the
rules of class I together with those of class II to show that the various links are
used in a mutually exclusive fashion, and we have used rule III.1 to show that
the behavior must end with a segment of the form given above. Seeing no way to
generate further inequalities that would be inconsistent with this conclusion, and
thus show that a reply cannot be permanently deferred, the designer might now
attempt to construct an actual behavior in which a reply is indeed permanently
deferred.

It is easy to write down a behavior in which request-handler-l-2 executes its
“RECEIVE 22statussin” and “SEND 2-status-out” instructions between the

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July 1985.

Describing and Analyzing Distributed System Designs 399

execution of the “SET BUFFER := critical” instruction and the “RECEIVE get-
status” instruction by the invoker. If this behavior continues with the invoker
executing its “SET BUFFER := false”, “SEND put-status”, “RECEIVE from-
rq2”, and (after skipping past the conditional because it received a “no-def”
message through from-rq2) “SEND to-rq2” instructions before request-handler-
l-2 executes a “RECEIVE 2-from-inv” instruction, a reply will be permanently
deferred. Because request-handler-l-2 got a “true” message through port 2-
status-in, it can (assuming that the nondeterministic INTERNAL TEST eval-
uates to true) eventually execute its “SET BUFFER := def” and “SEND 2-to-
inv” instructions. If the invoker now decides to exit from its WHILE loop, that
“def” message will never be received by the invoker, and thus a reply will be
permanently deferred.

The design error that has been revealed by this analysis is rather subtle.
Indeed, essentially this same error appeared in the first published version of the
Ricart and Agrawala algorithm ([28]), necessitating the publication of a revised
version a few months later ([29]). The problem is that, although each message is
used in a proper, mutually exclusive fashion (as the designer’s previous analysis
had demonstrated), it is possible for request-handler-l-2 to inspect one message
and use that information in deciding what information to send in a subsequent
message, but not manage to send that second message until the invoker has
already invalidated the information used in making the decision and inspected
an outdated, erroneous version of the message that request-handler-l-2 is about
to replace. Our experience indicates that subtle errors like this one, which are
very difficult to discover by simply studying the programs for a distributed
system, are generally uncovered with surprising ease using these analysis tech-
niques.

At this point we have established that some aspects of the design are sound,
but that it also contains a serious error. The next step in the development of the
design would be to modify it so as to eliminate the error and then analyze the
new design to assure that the modification does indeed correct the error and
introduces no further errors. A modification that appears to eliminate the problem
in our example is to change request-handler-1-2’s DYMOL program so that
request-handler-l-2 removes the message available through its 2-from-inv port
as soon as it receives a request. The new DYMOL program is given in Figure 5.

Most of the analysis of the original system carries over to the modified one,
and we do not describe it here. We do, however, show that node 1 of the modified
system does not permanently defer requests, as long as its own requests receive
replies.

Assume that a request from node 2 is permanently deferred. Proceeding exactly
as before, we see that the behavior must have the form:

s(put-status, true) . .r(*, 2-status-in, true) . . s(2-status-out, true) . .
r(*, get-status, true) . . s(put-status, false) . . r(*, from...rq2, no-def) . .
s(to-rq2, no-def) . . r(*, 2-from-inv, no-def) . . s(2_to_inv, def) . . .

Rule I.1 implies that request-handler-1-2’s last r(*, 2_from_inv, *) precedes
its last r(*, 2-status-in, true) and invoker’s last r(*, from-rq2, *) precedes its

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July 1985.

400 l G. S. Avrunin and J. C. Wileden

REQUEST-HANDLER-I-2:
Rl: DO FOREVER

BEGIN
RQ2: RECEIVE req-2; --receive request from node 2
R&3: RECEIVE 2-from-inv; --prevent invoker from

--reading deferral message
RQ4: RECEIVE P-status-in; --check status of invoker
RQ5: SEND Z-status-out;
RQ6: IF BUFFER = true AND INTERNAL TEST THEN
RQ7: SET BUFFER := def --defer reply

ELSE
BEGIN

RQ8: SEND resp-to-2; --send reply
RQ9: SET BUFFER := no-def

END
RQlO: SEND 22tooinv --make deferral message

--available again
END

Fig. 5. Revised request-handler DYMOL program.

last s(to-rq2, no-def). But then an r(*, from-rq2, *) appears between an r(*, 2-
from-inv, *) and the succeeding s(2_to_inv, *). Since the argument showing
mutually exclusive use of these links applies to the new system as well as the old
one, this is a contradiction. Therefore, node 1 does not permanently defer a reply.

This discussion of the deferral of replies has assumed that all requests from
node 1 eventually receive replies. This assumption is appropriate at this stage of
the development process, when the designer is primarily concerned with the
structure of a single node. Since the decision to defer a reply is described at this
stage in the design as being based in part on the nondeterministic INTERNAL
TEST, it is possible, according to this description, that node 1 does not receive
a reply to each of its requests, leading to a deadlock with all replies being deferred.
In the completed system this possible source of deadlock is avoided by the priority
comparison used by the Ricart and Agrawala algorithm. Further elaboration of
the design would introduce this priority comparison, and analysis at that later
stage would then be able to confirm that no aspect of the design would allow
deadlocks to occur.

7. CONCLUSION

In this paper we have outlined an approach to describing and analyzing designs
for distributed software systems. A descriptive notation has been introduced and
analysis techniques applicable to designs expressed in that notation have been
presented. We have given an example of the application of this approach to a
realistic distributed software design problem. In the example, application of the
analysis techniques to a design description makes it possible to uncover a subtle
design error at a very early stage in the design development process. This permits
the designer to repair the error, and subsequently to demonstrate that the repaired
design is sound, before proceeding with refinement of the design.

Although we believe that the foregoing demonstrates that our approach can be
a significant aid to designers of distributed software systems, several additional
issues should be considered in assessing its potential as a practical software

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July 1985.

Describing and Analyzing Distributed System Designs 401

development tool. First, is the approach applicable to a wide range of problems
or is its usefulness restricted to problems similar to the example considered in
this paper? Second, how compatible is the approach with other stages of the
software development process? Third, can the approach be successfully auto-
mated?

While our approach to describing and analyzing designs of distributed systems
was originally developed to attack problems peculiar to concurrent systems, such
as synchronization problems, it is potentially useful for a much wider class of
problems. Since the fundamental analysis technique is determining whether some
specific event or sequence of events can occur as part of a system’s behavior, the
approach applies to any problem that can be described in those terms. Thus, it
is clearly applicable to almost any problem related to the functionality of a
system. In fact, a related project has used the same fundamental event-based
approach to observing system behavior as the basis for a general purpose
debugging tool [2]. We also believe that with appropriate extensions, such as
adding events that correspond to the elapsing of time intervals, the approach
might be extended to problems related to system performance. To date we have
only done preliminary work in this direction, however.

As presented in this paper, our approach is expressly tailored for use in the
design phase of software development. In particular, the DYMOL notation is a
modeling language meant for describing the intended behavior of a system, not
a programming language meant for defining the declarative and imperative
structure of an implementation that will achieve that behavior. (In fact, the
DYMOL design notation presented in this paper is only a research vehicle.
Improved syntax and additional constructs would be desirable in any design
notation intended for practical use.) Nevertheless, the approach is certainly
applicable to much more than just the design stage of development. One could,
for example, conceive of extending DYMOL into an implementation language
or, equivalently, of implementing its SEND, RECEIVE, CREATE, DESTROY,
OPEN and CLOSE operations as services in an underlying operating system.
This would permit fundamentally similar notations to be used in both design and
implementation, and would also make our analysis techniques applicable to
implementation as well as design descriptions of a system. Even if the design
and implementation languages are quite dissimilar, however, the same basic
analysis technique is still applicable at both stages. For instance, as part of her
dissertation research [6], our student, Laura K. Dillon, demonstrated the appli-
cability of event sequence-based behavior description to languages such as CSP
[13] and Ada [8], whose interprocess communication primitives are fundamen-
tally different from those of DYMOL. As a consequence, suitably modified
versions of the analysis technique described here could be applied to programs
implemented in those languages. In fact, Dillon has used such techniques to
analyze the behavior of a small CSP system.

In this paper, we have given a prose description of the analysis performed on
our example distributed software design. The analysis that we describe, however,
can be expressed entirely in terms of the consistency or inconsistency of systems
of inequalities. We therefore believe that many aspects of this analysis can be
automated. Such automation must, of course, confront the problem of combina-
torial explosion. In this regard, Dillon’s work on constrained expressions [6, 361

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July 1985.

402 l G. S. Avrunin and J. C. Wileden

is especially promising. The constrained expression formalism gives a closed
form description of all the possible behaviors of a distributed system, and the
approach to analysis described here carries over naturally to the constrained
expression setting. In that context, however, closed form descriptions allow large
classes of behaviors to be handled simultaneously, rather than on a case-by-case
basis, thereby greatly reducing the problem of combinatorial explosion.

In sum, we believe that the approach outlined in this paper provides a basis
for tools that will be extremely useful to distributed software system developers.
In particular, this approach is well suited for use in a systematic, iterative
refinement style of distributed software system development. Our approach
facilitates production of the incomplete and abstract descriptions that are appro-
priate during the early stages of the development process and is also compatible
with various implementation languages. Moreover, it provides a means for
rigorously analyzing the incomplete and abstract descriptions arising in early
stages of development as well as the more complete and detailed descriptions
that appear later in the process. Thus, it offers the prospect of a development
process guided from its earliest stages by continual assessment of the evolving
design. Such a carefully guided development process could dramatically increase
the productivity of developers of distributed software systems.

ACKNOWLEDGMENTS

We are grateful to Laura Dillon, Alexander Wolf, and William Riddle for their
comments on earlier versions of this paper. We also thank the referees for their
useful advice.

REFERENCES

1. APT, K., FRANCEZ, N., AND DEROEVER, W. A proof system for communicating sequential
processes. ACM Trans. Program. Lang. Sysl. 2, 3 (July 1980), 359-385.

2. BATES, P., AND WILEDEN, J. High-level debugging of distributed systems. J. Syst. Softw. (Dec.
1983), 255-264.

3. BRINCH HANSEN, P. Distributed processes: A concurrent programming concept. Commun. ACM
(Nov. 1978), 934-941.

4. CAMPBELL, R., AND KOLSTAD, R. Path expressions in Pascal. In Proceedings of the 4th
InternationaL Conference on Software Engineering (Munich, Sept. 1979).

5. CLARKE, L., GRAHAM, R., AND WILEDEN, J. Thoughts on the design phase of an integrated
software development environment. In Proceedings of the 14th Hawaii International Conference
on Systems Science (Honolulu, Jan. 1981).

6. DILLON, L. Analysis of distributed systems using constrained expressions. Ph.D. dissertation,
Computer and Information Science Dept., Univ. of Massachusetts, Aug. 1984.

7. DILLON, L., AVRUNIN, G., AND WI~EDEN, J. Analyzing distributed systems using constrained
expressions. SDLM 83-3, Univ. of Massachusetts, Feb. 1983.

8. DOD. United States Department of Defense. Reference Manual for the Ada Programming
Language. ANSI/MIL-STD-1815A, Jan. 1983.

9. FELDMAN, J. High-level programming for distributed computing. Commun. ACM (June 1979),
353-368.

10. FLOYD, R.W. Assigning meaning to programs. In Proceedings of Symposia in Applied Mathe-
matics, Mathematical Aspects of Computer Science (1967), 19-32.

11. HABERMANN, A.N. Synchronization of communicating processes. Commun. ACM (Mar. 1972),
171-176.

12. HOARE, C.A.R. An axiomatic basis of computer programming. Commun. ACM (Oct. 1969), 576-
580, 583.

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July 1985

Describing and Analyzing Distributed System Designs 403

13. HOARE, C.A.R. Communicating sequential processes. Commun. ACM (Aug. 1978), 666-677.
14. HOARE, C.A.R. Some properties of predicate transformers. J. ACM (July 1978), 461-480.
15. HOARE, C.A.R. A model for communicating sequential processes. In On the Construction of

Programs, McKeag and McNaghton, Eds., Cambridge University Press, 1980, 229-243.
16. HOLZMAN&, G.L. A theory for protocol validation. IEEE Trans. Comput. (Aug. 1982), 730-738.
17. LAMPORT, L. A new solution of Dijkstra’s concurrent programming problem. Commun. ACM

(Aug. 1974), 453-455.
18. LAMPORT, L. Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng. (Mar.

1977), 125-143.
19. LAMPORT, L. Time, clocks and the ordering of events in a distributed system. Commun. ACM

(July 1978), 558-565.
20. LAMPORT, L. A new approach to proving the correctness of multiprocess programs. ACM Trans.

Program. Lang. Syst. I, 3 (July 1979), 84-97.
21. LAUER, P.E., AND CAMPBELL, R.H. Formal semantics for a class of high-level primitives for

coordinating concurrent processes. Acta Inf. (1975), 247-332.
22. LAUER, P.E., TORRIGIANI, P.R., AND SHIELDS, M.W. COSY: A system specification language

based on paths and processes. Acta Inf. (1979), 4X-503.
23. LISKOV, B. Primitives for distributed computing. In Proceedings of the 7th Symposium on

Operating Systems Principles (Dec. 1979), 33-42.
24. MISRA, J., AND CHANDY, K.M. Proofs of networks of processes. IEEE Trans. Soft. Eng. (July

1981), 417-426.
25. OWICKI, S., AND GRIES, D. Verifing properties of parallel programs: An axiomatic approach.

Commun. ACM (May 1976), 279-285.
26. PNUELI, A. The temporal semantics of concurrent programs. In Semantics of Concurrent

Computation, Kahn, Eds., Springer-Verlag, New York, 1979, I-20.
27. RAMAMRITHAM, K., AND KELLER, R.M. Specifying and proving properties of sentinel processes.

In Proceedings of the 5th International Conference on Software Engineering (1981), 374-382.
28. RICART, G., AND AGRAWALA, A. K. An optimal algorithm for mutual exclusion in computer

networks. Commun. ACM (Jan. 1981), 9-17.
29. RICART, G., AND AGRAWALA, A.K. Corrigendum. Commun. ACM (Sept. 1981), 578.
30. RIDDLE, W., WILEDEN, J., SAYLER, J., SEGAL, A., AND STAVELY, A. Behavior modeling during

software design. IEEE Trans. Softw. Eng. (July 1978), 283-292.
31. RIDDLE, W. An approach to software system modeling and analysis. J. Comput. Lang. (1979),

49-66.
32. TAYLOR, R.N. A general purpose algorithm for analyzing concurrent programs. Commun. ACM

(May 1983), 362-376.
33. WILEDEN, J. Modeling parallel systems with dynamic structure. COINS Tech. Rep. 78-4, Univ.

of Massachusetts, Jan. 1978.
34. WILEDEN, J. DREAM-an approach to the design of large-scale concurrent software systems.

In Proceedings of the 1979 National Conference of the ACM (Oct. 1979), ACM, New York, 88-94.
35. WILEDEN, J. Techniques for modeling parallel systems with dynamic structure. J. Digital Syst.

4, 2 (Summer 1980), 177-197.
36. WILEDEN, J. Constrained expressions and the analysis of designs for dynamically structured

distributed systems. In Proceedings of the 1982 International Conference on Parallel Processing
(Aug. 1982), 340-344.

Received September 1983; revised October 1984; accepted April 1985

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 3, July 1985.

