$S_k = I + A + A^2 + \ldots + A^k$

$\text{ecc}(v_i)$ is smallest $k \geq 0$ where the ith row of S_k is all nonzero

Trees: connected, acyclic graph

A leaf is a vertex of degree 1

A forest is a graph where each connected component is a tree (a collection of one or more trees)

Theorem 1.12: A connected graph of order n is a tree if and only if its size is $n-1$

Pf: \leq Induction on n

If every vertex has degree ≥ 2

$2 \cdot \text{size} = \sum_{v \in V} \deg(v) \geq 2n$

\Rightarrow size $\leq n$ but size $= n-kn$

delete vertex v of degree 1. $G-v$ has size $n-1$ & order $n-2$

By induction $G-v$ is a tree

vertex v not in a cycle since $\deg(v) = 1$

So G has no cycles

Assume G has a cycle, delete edge on a cycle, G still connected

n vertices, $n-1$ edges, not connected!
Induction

Base cases \(n = 1, 2 \) easy.
Suppose true if \(n < k \) consider tree of order \(k \). Want to show size is \(k - 1 \).

Remove edge: get connected components \(T_1 \) and \(T_2 \).
\(T_1 \) and \(T_2 \) are trees of order \(< k \).
So, \(T_1 \) has size \(k_1 - 1 \) and \(T_2 \) has size \(k_2 - 1 \).
\(G \) has size \(k_1 - 1 + k_2 - 1 + 1 = k_1 + k_2 - 1 \).

Theorem 1.14. A tree of order \(n \geq 2 \) has at least \(2 \) leaves.

Pf. true if \(n = 2 \).
Suppose true for \(n < k \). Suppose we have tree \(G \) of order \(k \geq 3 \).
If every edge is incident with a leaf, done.
If not, choose an edge where neither edge vertex is a leaf and delete the edge. \(G - e \) is a forest with \(2 \) components \(T_1, T_2 \).
\(u \in T_1, v \in T_2 \) orders \(k_1, k_2 \) respectively \(k_1, k_2 \geq 2 \).