Graph Theory

graph - set of things (points, vertices)
2 related to each other (edge connecting the 2 things)

Def: A graph G is a pair (V, E) where V is a finite set of vertices and E is a set of 2 element subsets of V. A 2 element subset $\{u, v\}$ is called an edge connecting the vertices $u \in V$, $v \in V$

- graph G can't have this subset w/ element more than once

Directed graph (digraph)
ordered pair (u, v)

(the picture's not the graph)

A graph is planar if you can draw it w/o any edges crossing

Graph isomorphism problem
$V(G)$, $E(G)$ multiple graphs

Def. the order of G is the # of elements (cardinality) of V (|V|)
The size of G is $1E1$
$$n \binom{n-1}{2} = \binom{n}{2}$$ for max # edges (size) where n is the order

Directed graph $D(n-1)$
$\{u, v\}$ edge "uv"
If there's an edge say $u \in V$ adjacent
u is incident with $\{u, v\}$

The degree of v is the # of edges that contain v
$\Delta(G)$: max degree $\Delta(G)$ min degree