Section 6.1

2. Find the eigenvalues and eigenvectors of these two matrices:

\[A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} \quad \text{and} \quad A + I = \begin{bmatrix} 2 & 4 \\ 2 & 4 \end{bmatrix}. \]

\(A + I \) has the ___eigenvectors as \(A \). Its eigenvalues are ___by 1.

\[\det(A - \lambda I) = (1 - \lambda)(3 - \lambda) - 8 = 3 - 4\lambda + \lambda^2 - 8 = \lambda^2 - 4\lambda - 5 - (\lambda - 5)(\lambda + 1). \] So the eigenvalues are \(\lambda_1 = 5 \) and \(\lambda_2 = -1 \).

Setting \(\lambda = 5 \) and we see that the nullspace of \(A - 5I \) consists of all multiples of \((1, 1)\), so the eigenvectors with eigenvalue 5 are those multiples. And the nullspace of \(A + I \) consists of all multiples of the vector \((-2, 1)\), so those are the eigenvectors with eigenvalue -1.

If \(Av = \lambda v \), then \((A + I)v = \lambda v + v = (\lambda + 1)v \). So the eigenvalues of \(A + I \) are \(5 + 1 = 6 \) and \(-1 + 1 = 0 \). But the eigenvectors of \(A + I \) are the same as the eigenvectors of \(A \).

3. Compute the eigenvalues and eigenvectors of \(A \) and \(A^{-1} \). Check the trace.

\[A = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad A^{-1} = \begin{bmatrix} -\frac{1}{2} & 1 \\ 1 & 0 \end{bmatrix}. \]

\(A^{-1} \) had the ___eigenvectors as \(A \). When \(A \) has eigenvalues \(\lambda_1 \) and \(\lambda_2 \), its inverse has eigenvalues ___.

There are a couple of ways to see that the eigenvectors of \(A \) are 2 and -1. The straightforward way is to observe that \(\det(A - \lambda I) = \lambda(1 - \lambda) - 2 = (\lambda + 1)(\lambda - 2) \), but you can also observe that the determinant of \(A \) (the product of the eigenvalues) is -2 and the trace of \(A \) (the sum of the eigenvalues) is 1. So the product of the two eigenvalues is -2 and their sum is 1. Corresponding eigenvectors are \((1, 1)\) and \((2, -1)\), respectively.

For \(A^{-1} \), we can compute the eigenvalues and eigenvectors directly, but it’s better to think about what they really mean. If \(v \) is an eigenvector of \(A \) with eigenvalue \(\lambda \), then \(Av = \lambda v \). So \(v = A^{-1}Av = A^{-1}(\lambda v) = \lambda A^{-1}v \). It follows that \(A^{-1}v = \frac{1}{\lambda}v \). (Note that all eigenvalues of an invertible matrix must be nonzero, since the determinant is the product of the eigenvalues.) So if \(v \) is an eigenvector of \(A \) with eigenvalue \(\lambda \), \(v \) is also
an eigenvector of A^{-1} with eigenvalue $\frac{1}{\lambda}$. Thus, A^{-1} has the same eigenvectors as A and its eigenvalues are the reciprocals of the eigenvalues of A.

7. Elimination produces $A = LU$. The eigenvalues of U are on its diagonal; they are the λ. The eigenvalues of L are on its diagonal; they are all 1. The eigenvalues of A are not the same as λ.

The eigenvalues of U are the pivots (together with 0, if A is singular). The eigenvalues of L are all 1. The eigenvalues of A are not (necessarily) the same as the pivots.

9. What do you do to the equation $Ax = \lambda x$, in order to prove (a), (b), and (c)?

(a) λ^2 is an eigenvalue of A^2, as in Problem 4.

If $Ax = \lambda x$, then you multiply both sides by A: $A^2x = A(Ax) = A(\lambda x) = \lambda (Ax) = \lambda^2 x$.

(b) λ^{-1} is an eigenvalue of A^{-1}, as in Problem 3.

You multiply both sides by A^{-1}: $A^{-1}(Ax) = A^{-1}(\lambda x)$ as in the solution to Problem 3 above.

(c) $\lambda + 1$ is an eigenvalue of $A + I$, as in Problem 2.

You add $Ix = x$, as in the solution to Problem 2 above.

16. The determinant of A equals the product $\lambda_1 \lambda_2 \ldots \lambda_n$. Start with the polynomial $\det(A - \lambda I)$ separated into its n factors (always possible [at least when working over the complex numbers]). The set $\lambda = 0$:

$$\det(A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \ldots (\lambda_n - \lambda)$$

so $\det A = \lambda$. Check this rule in Example 1 where the Markov matrix has $\lambda = 1$ and $\frac{1}{2}$.

If we set $\lambda = 0$ in the factored expression for $\det(A - \lambda I)$, we get $\det(A) = \det(A - 0I) = \lambda_1 \lambda_2 \ldots \lambda_n$.

In Example 1, the determinant of A is $(.8)(.7) - (.2)(.3) = .5$ and the eigenvalues are 1 and .5.

Section 6.2

1. (a) Factor these two matrices into $A = XAX^{-1}$:

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix}.$$
For the first matrix, the eigenvalues are obviously 1 and 3, with corresponding eigenvectors \(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \) and \(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \), respectively.

So we have \(X = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \) with \(X^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \) and \(\Lambda = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \). You can check that \(A = XAX^{-1} \).

We see that the second matrix is singular since the second row is a multiple of the first row. So the determinant is 0. Since the trace is 4, we know that one eigenvalue is 0 and the other is 4. (Of course, you can do this by taking the determinant of \(A - \lambda I \), too.) An eigenvector with eigenvalue 0 is \(\begin{bmatrix} -1 \\ 1 \end{bmatrix} \) and an eigenvalue with eigenvector 4 is \(\begin{bmatrix} 1 \\ 3 \end{bmatrix} \). So we can take \(X = \begin{bmatrix} -1 & 1 \\ 1 & 3 \end{bmatrix} \) with \(X^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix} \) and \(\Lambda = \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix} \). Again, you can check that \(A = XAX^{-1} \).

(b) If \(A = XAX^{-1} \) then \(A^3 = (XAX^{-1})(XAX^{-1})(XAX^{-1}) = X(A^3)X^{-1} \) and, using the fact that the inverse of a product is the product of the inverses in reverse order, \(A^{-1} = X\Lambda^{-1}X^{-1} \).

2. If \(A \) has \(\lambda_1 = 2 \) with eigenvector \(x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \) and \(\lambda_2 = 5 \) with eigenvector \(x_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \), use \(A = X\Lambda X^{-1} \) to find \(A \). No other matrix has the same \(\lambda \)'s and \(x \)'s.

The diagonal matrix with the eigenvalues on the diagonal is \(\Lambda = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix} \). We can take \(X \) to be \(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \), the matrix with the eigenvectors as its columns. Then \(X^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \) and we have \(A = X\Lambda X^{-1} = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} \).

3. Suppose \(A = X\Lambda X^{-1} \). What is the eigenvalue matrix for \(A + 2I \)? What is the eigenvector matrix? Check that \(A + 2I = (X\Lambda)(X^{-1})^{-1} \).

The eigenvalue matrix for \(A + 2I \) is \(\Lambda + 2I \). The eigenvector matrix is \(X \). We have \(X(\Lambda + 2I)X^{-1} = X\Lambda X^{-1} + X(2I)X^{-1} = A + 2I \).

Section 8.1
3. Which of these transformations are not linear? The input is $v - (v_1, v_2)$.

(a) $T(v) = (v_2, v_1)$

This is linear. It can be represented by the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, so $T(v) = Av$. We know that any transformation defined by multiplication by a matrix this way must be linear.

(b) $T(v) = (v_1, v_1)$

This is linear, with standard matrix $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$.

(c) $T(v) = (0, v_1)$

This is linear, with standard matrix $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$.

(d) $T(v) = (0, 1)$

This is not linear. For instance $T((0, 0) + (0, 0)) = (0, 1)$ but $(T((0, 0)) + T((0, 0)) = (0, 1) + (0, 1) = (0, 2)$

(e) $T(v) = v_1 - v_2$

This is linear, with matrix $\begin{bmatrix} 1 & -1 \end{bmatrix}$.

(f) $T(v) = v_1 v_2$

This is not linear. $T((1, 2)) = 2$ but $T(3(1, 2)) = T((3, 6)) = 18 \neq 3 \cdot T((1, 2))$.

4. If S and T are linear transformations, is $T(S(v))$ linear or quadratic?

(a) (Special case) If $S(v) = v$, then $T(S(v)) = v$ or v^2?

We have $T(S(v)) = T(v)$

(b) (General case) $S(v_1 + v_2) = S(v_1) + S(v_2)$ and $T(v_1 + v_2) = T(v_1) + T(v_2)$ combine into $T(S(v_1 + v_2) = T(S(v_1) + T(v_2))$, so the composition $T \circ S$ satisfies the additive condition for linearity. (It’s easy to see that it also satisfies the scalar multiplication condition.)

6. Which of these transformations satisfy $T(v + w) = T(v) + T(w)$ and which satisfy $T(cv) = cT(v)$?

(a) $T(v) = \frac{v}{\|v\|}$

This doesn’t satisfy either condition. (And it’s not even defined if $v = 0$.) Note that $T(v)$ is a unit vector in the direction of v. A unit vector in the direction of a sum $v_1 + v_2$ is not the sum of unit vectors in the direction of v_1 and v_2. And if we take a unit vector in the direction of $2v$, we get the same thing as if we take a unit vector in the direction of v, not 2 times that unit vector.
(b) \(T(\mathbf{v}) = v_1 + v_2 + v_3 \)

This \(T \) is a linear transformation with matrix \[
\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}.
\]

(c) \(T(\mathbf{v}) = (v_1, 2v_2, 3v_3) \)

This \(T \) is also a linear transformation, with matrix \[
\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}.
\]

(d) \(T(\mathbf{v}) = \) largest component of \(\mathbf{v} \)

This doesn’t satisfy either condition. Observe that \(T((1,0)+(0,1)) = 1 \neq T((1,0)+T((0,1)). \) And \(T((-1)(1,0)) = T((-1,0)) = 0 \neq -T((1,0)) = -1. \)

12. Suppose \(T \) transforms \((1,1)\) to \((2,2)\) and \((2,0)\) to \((0,0)\). Find \(T(\mathbf{v}) \):

(a) \(\mathbf{v} = (2,2) \)

Since \((2,2) = 2(1,1) \), we know that \(T((2,2)) = 2T((1,1)) = 2(2,2) = (4,4). \)

(b) \(\mathbf{v} = (3,1) \)

\[
(3,1) = (1,1)+(2,0) \text{ so } T((3,1)) = T((1,1))+T((2,0)) = (2,2).
\]

(c) \(\mathbf{v} = (-1,1) \)

\[
(-1,1) = (1,1)-(2,0) \text{ so } T((-1,1)) = T((1,1))-T((2,0)) = (2,2).
\]

(d) \(\mathbf{v} = (a,b) \)

\[
(a,b) = b(1,1)+\frac{a-b}{2}(2,0) \text{ so } T((a,b)) = b(2,2)+\frac{a-b}{2}(0,0) = b(2,2).
\]

13. \(M \) is any \(2 \times 2 \) matrix and \(A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \). The transformation \(T \) is defined by \(T(M) = AM \). What rules of matrix multiplication show that \(T \) is linear?

The distributive property (page 73 in the text) says that \(A(M_1+M_2) = AM_1+AM_2 \), so \(T(M_1+M_2) = T(M_1)+T(M_2). \)

For scalar multiplication, we need the property that \(A(cM) = (cA)M = c(AM). \) I don’t think the textbook gives this a name, but the definition of matrix multiplication as the dot product of a row and a column implies this property (since \((cv) \cdot \mathbf{w} = c(v \cdot \mathbf{w}). \)

14. Suppose \(A = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} \). Show that the range of \(T \) is the whole matrix space \(\mathbf{V} \) and the kernel is the zero matrix:

(a) If \(AM = 0 \), prove that \(M \) must be the zero matrix.

The matrix \(A \) is invertible. If \(AM = 0 \), then \(A^{-1}AM = IM = M \) must also be 0.
(b) Find a solution to $AM = B$ for any 2×2 matrix B.

The solution is $M = A^{-1}B$, since $A(A^{-1}B) = B$. In this case, $A^{-1} = \begin{bmatrix} -5 & 2 \\ 3 & -1 \end{bmatrix}$.

8.2

1. The transformation S takes the second derivative. Keep $1, x, x^2, x^3$ as the input basis v_1, v_2, v_3, v_4 and also as the output basis w_1, w_2, w_3, w_4. Write $S(v_1), S(v_2), S(v_3), S(v_4)$ in terms of the w's. Find the 4×4 matrix A_2 for S.

So $S(v) = \frac{d^2 v}{dx^2}$. Then $S(v_1) = S(v_2) = 0, S(v_3) = 2v_1,$ and $S(v_4) = 6v_2$. The matrix for S with respect to these bases is

$$
\begin{bmatrix}
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 6 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}.
$$

5. With bases $v_1, v_2, v_3,$ and $w_1, w_2, w_3,$ suppose $T(v_1) = w_2$ and $T(v_2) = T(v_3) = w_1 + w_3$. T is a linear transformation. Find the matrix A and multiply by the vector $(1, 1, 1)$. What is the output from T when the input is $v_1 + v_2 + v_3$?

The matrix A is

$$
\begin{bmatrix}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{bmatrix}.
$$

Multiplying A by $(1, 1, 1)$ gives $(2, 1, 2)$, and the output from T when the input is $v_1 + v_2 + v_3$ is $T(v_1) + T(v_2) + T(v_3) = 2w_1 + w_2 + 2w_3$.

6. Since $T(v_2) = T(v_3)$, the solutions to $T(v) = 0$ are $v = \underline{}$. What vectors are in the nullspace of A? Find all solutions to $T(v) = w_2$.

Since $T(v_2 - v_3) = T(v_2) - T(v_3) = 0$, there are nonzero solutions to $T(v) = 0$, and hence infinitely many solutions. The nullspace of A consists of the vectors of the form $(0, c, -c)$. The solutions to $T(v) = w_2$ are all the vectors of the form $v_1 + c(v_2 - v_3)$.

8. You don’t have enough information to determine T^2. Why is its matrix not necessarily A^2? What more information do you need?

To determine T^2, we’d need to know the $T(w_i)$, and we’re only given the $T(v_i)$ (as linear combinations of the w_i). Of course, if the bases are the same (with $v_i = w_i$ for $i = 1, 2, 3$), then the matrix for T^2 is just A^2.

10. Suppose \(T \) (assumed to be invertible) with \(T(v_1) = w_1 + w_2 + w_3 \) and
\(T(v_2) = w_2 + w_3 \) and \(T(v_3) = w_3 \). Find the matrix \(A \) for \(T \) using these
basis vectors. What input vector \(v \) gives \(T(v) = w_1 \)?

The matrix \(A \) is
\[
\begin{bmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{bmatrix}
\]

Since \(A \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \), we see
that \(T(v_1 - v_2) = w_1 \).

14. (a) What matrix \(B \) transforms \((1, 0)\) into \((2, 5)\) and transforms \((0, 1)\) into
\((1, 3)\)?

\[
\begin{bmatrix}
2 & 1 \\
5 & 3
\end{bmatrix}
\]

(b) What matrix \(C \) transforms \((2, 5)\) to \((1, 0)\) and \((1, 3)\) to \((0, 1)\)?

\[
C = B^{-1} = \begin{bmatrix}
3 & -1 \\
-5 & 2
\end{bmatrix}
\]

(c) Why does no matrix transform \((2, 6)\) to \((1, 0)\) and \((1, 3)\) to \((0, 1)\)?

For any matrix \(A \), \(A \begin{bmatrix} 2 \\ 6 \end{bmatrix} = 2A \begin{bmatrix} 1 \\ 3 \end{bmatrix} \). (Multiplication by a
matrix is a linear transformation.) So no matrix can trans-
form \((2, 6)\) to \((1, 0)\) and \((1, 3)\) to \((0, 1)\).