
Analyzing Partially-Implemented Real-Time Systems

George S. Avrunin* James C. Corbettt Laura K. Dillont
Department of Information and

University of Hawai'i

+1413 5454251 +18089566107 dillon@ cs.ucsb.edu

Department of Matha-"ics and

University of Massachusetts

Computer Science Department

Santa Barbara, CA 93 106 USA
Statistics Computer Science University of California

Amherst, MA 01003-4515 USA Honolulu, HI 96822 USA +18058933411

avrunin @math.umass.edu corbett @ hawaii.edu

ABSTRACT
We propose a method for analyzing partially-implemented
real-time systems. Here we consider real-time concurrent
systems for which some components are implemented in
Ada and some are partially specified using regular expres-
sions and Graphical Interval Logic (GIL), a real-time tempo-
ral logic. We show how to construct models of the partially-
implemented systems that account for such properties as
run-time overhead and scheduling of processes, yet support
tractable analysis of nontrivial programs. The approach can
be fully automated, and we illustrate it by analyzing a small
example.

Keywords
Real-time, concurrency, static analysis, Ada, temporal logic,
hybrid systems, Graphical Interval Logic

INTRODUCTION
The correctness of a real-time computer system depends not
only on the logical results of its computations but also on
whether those computations satisfy certain timing require-
ments. Developers of such systems, which are increasingly
embedded in safety-critical applications such as air traffic
control or patient monitoring, need to check that their sys-
tems do the right computations at the right times. Testing,
executing the system with inputs chosen to reflect the oper-
ational profile or to exercise various components and exe-
cution paths, is an essential part of this process, but testing
alone can consider only a relatively small subset of the pos-
sible behaviors of the system and is not adequate even for

*Research partially supported by the National Science Foundation under
Grant CCR-9407182 and by the Air Force Materiel Command, Rome Labo-
ratory, and the Defense Advanced Research Projects Agency under Contract

t Research partially supported by the National Science Foundation under

$Research partially supported by the National Science Foundation under
Grant CCR-9505392 and by the Regents of the University of California and
Hughes Electronics Corporation under MICRO Grant UCM-20880.

F30602-94-C-0137.

Grant CCR-9308067.

Permission to make digitalihard copies of all or p"? ofthis material for
personal or classroom use is granted without fee provided that the copies
are not made or distrihuted for profit or conuiiercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by pelmission of the ACM, Inc. To copy otheiwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee
ICSE 97 Boston MA USA
Copyright 1997 ACM 0-89791-914-9197105 ..$3.50

sequential systems. Many embedded systems are naturally
concurrent, and the non-deterministic behavior typically in-
troduced by concurrency means that the same set of inputs
may produce different behavior at different times. For con-
current systems, developers must supplement testing with
static analysis methods that consider all possible behaviors
of the system, rather than executing a small subset of those
behaviors.

Most of the static analysis methods that have been proposed
for use with real-time systems assume that all the compo-
nents of the system are at roughly the same stage of devel-
opment and can be naturally expressed in a single notation,
such as a specification or programming language or a math-
ematical formalism such as Petri nets. It is a software engi-
neering commonplace that analysis should begin at the early
design stages of software development-there is some evi-
dence that the majority of errors are introduced at this stage
and it is certainly true that errors caught at the design stage
can be corrected much more easily and cheaply than if they
are discovered in the later stages of development. Analy-
sis tools that work with specification and design languages
would therefore seem to be most appropriate. The perfor-
mance of a real-time system, however, may depend critically
on implementation details that cannot be captured in designs
(e.g., the scheduling of processes on the available proces-
sors), suggesting that analysis of fully-implemented systems
is more appropriate, at least for real-time properties. The
complexity of analyzing fully-implemented systems is, how-
ever, daunting even for relatively small systems, and a full
timing analysis of a large and complex system is almost cer-
tainly infeasible.

Thus, neither analysis of designs nor analysis of fully-
implemented systems is adequate for real-time systems. In
practice, developers of real-time systems typically restrict
the architectures of their systems so that system components
are highly structured and interact in very limited ways (e.g.,
periodic tasks with precedence constraints). These restric-
tions allow the use of special scheduling techniques and al-
gorithms, such as rate monotonic scheduling [14], to guaran-
tee that a system's timing requirements are satisfied [12,191.

In fact, there are many situations in which developers would
benefit from tools that could analyze partially-implemented

228

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:53:33 UTC from IEEE Xplore. Restrictions apply.

http://cs.ucsb.edu
mailto:math.umass.edu
http://hawaii.edu

systems, those for which some components are given only as
high-level specifications while others are fully implemented
in a programming language. These include:

Initial Development of Complex Systems: The de-
velopment of the various components of large systems
seldom proceeds at a uniform rate. Some compcs-
nents will have been fully implemented while others
remain only partially specified. Analysis at this stage,
before the system has been completely implemented,
can make use of the detailed information about im-
plemented components to verify that the system will
meet its requirements if the unimplemented compo-
nents meet their specifications, or point out the need for
modifications in the specifications or implementations.

Evolutionary Development: In order to understand the
implications of proposed modifications to an existing
system, developers necessarily confront a combination
of fully-implemented components, those that will not
be modified, and specifications for the new or modified
components. Indeed, specifications of the original com-
ponents of the system may not be available at all during
maintenance, so analysis using high-level specifications
of all components may be impractical.

Compositional Analysis: Although the performance of
the system may depend on some of the details of the im-
plementation, it may be possible to abstract much of the
implementation detail away without affecting the anal-
ysis of a particular aspect of the system. In this case,
some of the components of a fully-implemented system
could, for the purposes of analysis, be represented by a
high-level specification of their interfaces with the rest
of the system. Such compositional techniques can make
analysis practical for systems that would otherwise be
far too large for existing analysis methods.

Modeling the Environment of the System: Most
real-time systems are reactive-they interact repeatedly
with their environments, rather than simply computing
a value and terminating. Although the environment may
be another computer system, it may involve compo-
nents such as sensors that will not be implemented in
software. For the purpose of analyzing the behavior of
the system, it may be more appropriate to express the
possible behavior of the environment in a suitable high-
level specification than to fully implement a software
model with the same behaviors.

In this paper, we propose a method for analyzing partially-
implemented real-time systems. We consider real-time con-
current systems for which some components are imple-
mented in Ada and some are partially specified using regular
expressions and Graphical Interval Logic (GIL) [9], a real-
time temporal logic with an intuitive graphical representation

similar to the time-lines typically used by system deveiop-
ers. We show how automata derived from the regular expres-
sions and the GIL specifications [111 can be combined with
hybrid automata constructed from the Ada code [8] to con-
struct models of the partially-implemented systems that ac-
count for such properties as run-time overhead and schedul-
ing, yet support tractable analysis of nontrivial programs.
Our method can be fully automated. We illustrate the ap-
proach with analysis of a small example.

In the next section, we briefly discuss some related work. In
the third section, we explain our approach and apply it to
i1 small example. Some additional details of the approach
are given in the fourth section, and the final section presents
some conclusions and directions for further research.

RELATED WORK
The main contribution of this paper is an approach to the
analysis of real-time concurrent systems that allows some
parts of a system to be specified in a temporal logic while
making use of detailed implementation information about
other components. The analysis thus involves combining in-
formation from very different sorts of formal models of real-
time systems.

Many formal models have been proposed for general real-
time concurrent systems. These include timed Petri nets,
communicating finite state machines, timed automata, timed
process algebras, and real-time logics. In this paper, we
rely on algorithms for converting GIL specifications into au-
tomata that were originally developed for producing oracles
to monitor executions of concurrent systems [11]. We be-
lieve that GIL's graphical representation, discussed and il-
lustrated below, makes it especially suitable as a high-level
specification formalism for use by developers of real-time
systems.

For the most part, the work on formal models of real-time
concurrent systems has been intended to represent specifi-
cations, not implementations. As such, it does not address
some of the difficult issues that arise in representing imple-
mentation details of real software. For example, resource
constraints are absent in most of these models and are awk-
ward to represent within them. Also, the effects of run-
time overhead, which can be significant, are not considered.
Thus, although many of these models may have the expres-
sive power needed to represent the detailed timing properties
of fully-implemented components of a system, researchers
generally have not addressed the problem of constructing
such representations from real software. Corbett [6-81 has
developed models for concurrent Ada programs that repre-
sent these detailed timing properties.

A number of authors (e.g., [4,5,22]) have proposed methods
for doing compositional analysis by decomposing a concur-
rent system into subsystems with simple interfaces and re-
placing some of the subsystems by simpler processes that
have the same interfaces to their environments. In most

229

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:53:33 UTC from IEEE Xplore. Restrictions apply.

of this work, however, the simpler processes that replace
subsystems are specified in the same formalism and nota-
tion used to describe the original system. The approach we
propose here composes systems whose components are de-
scribed in two very different notations, a graphical interval
logic and the Ada programming language.

Several researchers have considered the problem of integrat-
ing different types of notations for representing the com-
ponents of a system. For example, Zave and Jackson [23]
discuss the integration of different specification formalisms
by translating each formalism into predicate logic. This
work does not address the problem of analyzing the sys-
tems so specified. Pezzi: and Young [18] present an ap-
proach to building state-space analysis tools that accept sys-
tem descriptions involving several formalisms, but that work
is chiefly concerned with the generation of tools rather than
analysis of systems described in specific notations and does
not discuss the representation of real-time systems. The
work on Cabernet [17] involves the construction of an en-
vironment for the specification and analysis of real-time sys-
tems that uses a class of high-level Petri nets as the formal
kernel but provides features for customization that could sup-
port specifications written in a variety of other formalisms.

Perhaps the work closest in spirit to this paper is that of
Bagrodia and Shen [3,20]. They do stochastic performance
evaluation of real-time systems in which some components
are fully implemented and others are represented by discrete-
event simulation models. The main difference between this
work and ours is that their analysis is dynamic, executing the
models and assessing a particular set of executions, while
ours considers all possible executions.

APPROACH
We illustrate our approach using the following example. A
signal processing system consists of a sensor that produces
data sporadically and an Ada program that processes this
data as quickly and as accurately as possible. Figure 1
shows the structure of the program, which contains three Ada
tasks. The Sensor task is awakened by the sensor, reads
the sensor, and offers this reading to the Control task.
The Control task accepts a reading from the Sensor
task and gives it to the Tracking task for processing. The
Tracking task processes the sensor reading and returns a
trace to the Control task for display. Only the Sensor
and Control tasks are currently implemented; the specifi-
cation for the Tracking task consists of a list of its possible
interactions with the other tasks, a regular expression spec-
ifying the orders in which these interactions can occur, and
GIL specifications for some of the timing properties of those
interactions. The processing of the sensor reading is not de-
scribed in the specification. Further details on the program
are given below along with a description of the Ada and GIL
constructs used to express them.

trace

. ,

reading
/ Tracking /

*T'
Result

reading ~

.
: Sensor :
: Device ,:

Display j
Device :

. _ _ _ _ _ _ .
A

trace

Figure 1 : Structure of Example

Ada
The Ada source code for the two implemented tasks and
a specification of the interface for the unimplemented
Tracking task are shown in Figure 2. The program runs on
a uniprocessor, so the three tasks must share a single CPU.
Ada uses a preemptive priority scheduling policy for tasks.
The priority ordering of the tasks, from highest to lowest, is:
Control, Sensor, Tracking.

In Ada, two tasks may interact via a rendezvous, a syn-
chronous communication in which one task, the caller, calls
an entry of another task, the acceptor. The caller is blocked
until the acceptor accepts the entry call with an accept
statement naming the corresponding entry. After the ren-
dezvous completes, both tasks may continue executing in-
dependently. For example, a task may call entry E of task
T with the statement T . E, and task T may accept this call
with the statement accept E. Rendezvous may be nested:
if the body of an accept statement contains an entry call or
an accept (e.g., the accept statements for entry Data of task
Control in Figure 2), then the caller of this entry (e.g.,
task Sensor) remains blocked while the inner rendezvous
completes. Data may be exchanged during the rendezvous
through parameters, as in a procedure call.

The sporadic nature of the sensor complicates the
program. The sensor device awakens the Sensor
task with an interrupt that causes the entry call on
SensorDevice. Interrupt to complete. We do not
model SensorDevice explicitly, but simply assume that
this entry call can complete at any time. The Sensor task
then constructs a reading and offers it to the Control task.
If the sensor reading is not accepted within a certain time
(ReadingExpire), then it is discarded. This timeout is
implemented in Ada using a timed entry call, a version of
the select statement that bounds the amount of time a task
will wait for an entry call to be accepted.

The Control task adapts to the rate at which the sensor is
producing data by switching between two modes: fast and

230

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:53:33 UTC from IEEE Xplore. Restrictions apply.

task Sensor is -- reads sensor

end Sensor;

task body Sensor is

begin

pragma Priority(l0); -- middle priority

R : Reading;

loop
SensorDevice.Interrupt; -- accepted on interrupt
ReadSensor(R); -- read the sensor
select

or -- but after ReadingExpire

end select:

Control.Data(R); -- offer data to control task

delay ReadingExpire; -- discard the reading

end loop;
end Sensor;

task Control is -- controls other tasks
pragma Priority(l5); -- highest priority task
entry Data(R : in Reading); -- data from sensor task
entry ReSult(R : in Trace): -- trace from tracking task

end Control;

task body Control is
begin
loop
select
accept Data(R : in Reading) do -- if Data ready

end Data;

accept Data(R : in Reading) do -- wait for Data

end Data;
end select;
accept Result(T : in Trace) do -- wait for result
Update-Di sp lay (T) ; -- update display

end Result;

Tracking.FastData(R1; -- use fast mode

else -- otherwise

Tracking.SlowData(R); -- use slow mode

end loop;
end Control;

task Tracking is -- computes trace
pragma Priority(5); -- lowest priority task
entry FastData(R : in Reading); -- data to process fast
entry SlowData(R : in Reading); -- data to process Slow

end Tracking;

task stub Tracking is -- not real Ada
T : Trace;

begin -- stub is just list of interactions
-- Interaction 1: accept data at SlowData or FastData
interaction
event "Ready" ;
select -- accept call on SlowData or FastData
accept SlowData(R : in Reading);
event "Slow"; -- accepted call on SlowData

accept FastData(R : in Reading);
event "Fast"; -- accepted call on FastData

or

end select;
end interaction;
-- Interaction 2: call entry Result of task Control
interaction
event "Result" ;
Control.Result(T);

end interaction;
end Tracking;

Figure 2: Source Code for Example

slow. If a sensor reading is ready when the Control task
reaches its select statement (i.e., if the Sensor task is
blocked calling the entry Control .Data), the Control
task switches to fast mode. The Control task indicates
that it is in fast mode by calling the FastData entry of
the Tracking task, which then performs a faster but less

precise calculation to produce the trace. If a sensor reading
is not ready when the Control task reaches its select
statement, the task switches to slow mode and communicates
the reading to the Tracking task via the SlowData entry.
The mode is set on each iteration of the Control task's
loop by the conditional select statement, which will choose
the else alternative if a rendezvous at entry Data cannot
begin immediately.

The behavior of the unimplemented Tracking task is spec-
ified by the stub in Figure 2 and by the regular expression and
GIL formulas discussed below. The stub of the Tracking
task lists its possible interactions with the other tasks; in par-
ticular, it lists all of the communication statements the task
will contain (e.g., entry calls, accepts). The Tracking task
has two possible interactions with the other tasks: it can use a
select statement to block waiting for an entry call on entry
FastData or SlowData, or it can call the Result entry
of the Control task. Note that the order in which these in-
teractions are listed in the stub does not constrain the order
in which they might occur in an execution of the system-
the stub simply lists the possible interactions. We label the
two interactions with the events Ready and Result, and also
label the two communication statements in the first interac-
tion with the events Fast and Slow. These labels are used
to specify the order and timing of the events, as illustrated
below. (Additional event labels could be inserted into a stub
for any events whose order or timing is to be specified.) The
stub does not specify any of the complex signal processing
actually carried out by the Tracking task.

We model an unimplemented task (whose possible interac-
tions are listed in a stub) with a normal task that alternates
between performing an arbitrary amount of internal com-
putation and nondeterministically selecting an interaction in
which to engage. Although this provides a conservative ab-
straction of the fully implemented task, the resulting model
is unlikely to be accurate enough to allow verification of in-
teresting properties. Therefore, we specify additional con-
straints on the order and timing of the events in the task in
order to improve the accuracy of the model. When the task is
eventually implemented, we must verify that the implemen-
tacion satisfies these constraints.

Regular Expressions
We restrict the order of stub task interactions using regu-
lar expressions. Each expression specifies a language over
the event labels annotating the stub task interactions; such
a language constrains the legal orderings of the event la-
bels it contains. For example, the Tracking task alter-
nates between accepting sensor readings and producing re-
sults, which we specify with the expression

(Ready Result)*

The order of interactions could also be specified by providing
a skeleton of the task's control flow or a GIL formula. In our
example, we could simply place a loop statement around the

231

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:53:33 UTC from IEEE Xplore. Restrictions apply.

two interactions. In general, however, regular expressions
may be preferable for specifying simple ordering properties
due to their straightforward and familiar semantics. They
can express regular patterns of interactions very concisely,
and can be easier to read and write than code skeletons or
GIL formulas.

GIL
We specify the timing constraints of stub tasks using a vari-
ant of GIL, a real-time temporal logic with an intuitive
graphical representation. The GIL specifications for a stub
task constrain the order and timing of the events that label
the stub’s interactions. We therefore use an event-based in-
terpretation for GIL, rather than the customary state-based
interpretation. GIL formulas are given in a graphical form
similar to the time-lines frequently used by system develop-
ers. We explain the features of GIL used in this example as
we discuss the specifications shown in Figure 3.

Recall that our example program runs on a uniprocessor.
Processor sharing complicates the specification of a task’s
timing constraints-if a preemptible code region takes at
most 3 seconds to execute, then the task runs for at most
3 seconds between the events representing the beginning and
the end of the code region; however, the task may be pre-
empted for part of this time, so the actual elapsed time may
exceed 3 seconds. When specifying the timing constraints
of a task, we employ two different kinds of time: local time
advances only when a task is running and is useful for speci-
fying bounds on the execution time of code regions, while
global time always advances and is useful for specifying
timeouts and other intervals in absolute time. We illustrate
the use of these different kinds of time below.

GIL formulas for the timing constraints of the Tracking
task are shown in Figure 3. We label individual formulas
for convenience in referring to them below. The GIL for-
mulas are read from top to bottom and left to right. The
horizontal dimension shows the progression of time, which
advances to the right. An outermost interval represents a le-
gal sequence of (timed) events; the (sub)formula below it de-
scribes constraints on the ordering of events and on the times
at which they occur. More generally, an interval represents
the interval of time between two events, which designate its
“endpoints”; the formula nested directly below an interval
describes real-time properties of the events that occur within
this time interval. A formula that must hold at the beginning
of an interval is left justified below the start of the interval
and a formula that must hold invariantly (at all times in) an
interval is left justified below a henceforth operator (0). Spe-
cial duration predicates place bounds on the amount of time,
either global or local, that can elapse between the endpoints
of intervals.

GIL provides search operators for specifying the endpoints
of intervals. A dotted arrow denotes a search to one of the
target events that appear (left justified) immediately below

Runl:

[1 I *........__..........~~

Fas t / S1 ow

L1 <= l o c a l <= U1

Run2:

F n I
L Y .-____

R e s u l t
L-...........-..-...-.H

E - - - - - + F a s t ‘ S 1 o w
L2 <= l o c a l <= U2

SMode:

L U I

1
.-____

S l o w
L......--...........-..~

L3 <= l o c a l <= U 3

FModel:

FMode2:

Figure 3: GIL Specifications for Tracking Task

the right arrowhead. For example, the nested interval in the
formula Runl consists of all events in a legal event sequence
up to (but excluding) either the earliest Fast event or the ear-
liest Slow event, depending on which, if any, occurs first. A
search is said to succeed if its target event is located; other-
wise, it fails. If a search fails, evaluation of the remaining
searches is abandoned, and the formula being evaluated is
true if the failed search is weak (indicated by a single arrow-
head) or false if the failed search is strong (indicated by a
double arrowhead). Thus, Runl specifies that, if the tracking
task eventually reaches either Fast or Slow, then it must do

232

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:53:33 UTC from IEEE Xplore. Restrictions apply.

so within L1 to U1 microseconds (psec) after the start of the
program. The duration predicate in Runl uses local time-it
bounds the time that the Tracking task can run before ac-
cepting a call on entry FastData or SlowData. There is
no bound on the actual (global) time from the start of the pro-
gram until the Tracking task accepts a call at FastData
or SlowData since the sensor device might never fire.

The formula Run2 describes an invariant property. It speci-
fies that the tracking task always reaches either Fast or Slow
within Lz to U2 psec (local time) after reaching Result,
unless one or both of the searches fails. The weak searches
in Runl and Run2 allow for the possibility of deadlock.
This specification thus bounds the time that the task can run
between calling Control. Result and receiving the next
reading at entry FastData or SlowData. Similarly, the
formula SMode bounds the (local) time between receiving a
reading at entry SlowData and calling the Result entry
of the control task to within L3 to U3 psec.

The last two formulas FModel and FMode2 specify the
time to produce a result when the system is in fast mode. The
task priorities ensure that the first set of data is processed in
slow mode. Thus, there are two cases: 1) if a reading is re-
ceived in fast mode and the previous reading was processed
in slow mode less than K (global) psec ago, then some of
the information cached from that previous computation can
be used to speed the processing of the current reading, so
the time to produce the result is from L4 to U4 psec; 2)
if the previous reading was not processed in slow mode or
was processed more than K psec ago, then the time to pro-
duce the result is from LF, to Us psec (U4 < Us < U3). In
graphical formulas, we use a vertical layout with the classi-
cal boolean operators, e.g., implication (+) in FModel and
FMode2, and disjunction (V) in FMode2. The searches in
the antecedents of the implications are strong, since the time
from a Fast to the next Result depends on the events in the an-
tecedent actually occurring within the specified time bounds.
The bi-directional search arrow in FModel further restricts
the event located by the first search to be the last Slow that
precedes a Fast, and in FMode2 it restricts the event located
by the first search to be the last Fast or Slow that precedes a
Fast. The antecedent of FMode2 asserts that either the ac-
tual time of the interval exceeds K or the event that starts the
interval is a Fast.

In addition to specifying the timing properties of unimple-
mented tasks, we can also use GIL to specify constraints on
the environment in which the program executes. For exam-
ple, the sensor device in our example can generate interrupts
at most every F psec. We express this constraint with the
GIL formula IntFreq in Figure 4.

Hybrid Automata
In order to perform analysis, we translate the various specifi-
cations of the program into a common abstract model: con-
stant slope linear hybrid automata [l, 21. Hybrid automata

IntFreq:

Figure 4: GIL Specification of Constraint on Environment

combine a finite-state control with a set of real-valued vari-
ables. The values of these variables change continuously
while the automaton remains at a control location, and may
change discretely with an instantaneous transition from one
control location to another. We use the real-valued variables
of the hybrid automaton to enforce timing constraints on its
transitions.

We first construct a hybrid automaton representing the pro-
gram using the method of [8]. Each control location in this
automaton is an abstraction of the program’s state, and each
transition represents the execution of a code region trans-
forming that state. The execution time of a code region is
modeled with an appropriate delay before its transition; the
transition occurs instantaneously when execution of the code
region completes. The length of this delay must fall in the in-
terval [L, U] given by the bounds on the region’s execution
time and is measured using a stopwatch-like mechanism. A
real-valued variable, x, which advances continuously as time
passes, is reset to zero when the location representing the be-
ginning of the code region is reached. We attach the guard
condition x >_ L to the transition that prevents its occurrence
until at least L time units have passed, and we attach the in-
variant condition z < U to the location that requires it to be
exited before more than U time units have passed.

Figure 5 shows a slightly simplified’ part of the hybrid au-
tomaton constructed from the (partial) program in Figure 2.
The full automaton has 70 locations. Each location is labeled
with the task that is running there, an invariant, and the rate
at which each real-valued variable is changing. The rate of
variable x is denoted 2. Each transition is labeled with a
guard, a synchronization label, and a set of assignments to
the variables.

The stopwatch-like mechanism used to specify the bounds of
code regions is illustrated in location 2 of Figure 5. Location
2 represents the program state where the Sensor task has
just been awakened by the sensor device’s interrupt and has
preempted the Tracking task, which is still processing the
previous reading (which the Control task is blocked wait-
ing to receive). The QueueData transition from location 2 to
3 represents the code region that reads the sensor, queues a
call on entry Control. Data, sets a timer to expire after

lCertam sequences of transitions have been collapsed into single trm-

sitions and certam vanables not relevant to this part of the automaton have
been omitted

233

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:53:33 UTC from IEEE Xplore. Restrictions apply.

SensorInt
xs := 0

2 In all locations:
ndw = 1
j l = O x s 2 L a

QueueData
'y := n o w t CancelData t ' 2 s ? Lb

Figure 5: Part of Hybrid Automaton for Program

ReadingExpire seconds, and then blocks the task. We
denote the bounds of this interval with [La, Ua] and use vari-
able x, to record the CPU time allocated to the Sensor
task. Variable x, is reset by the transition into location 2,
where it advances at rate 1 (and hence records the amount
of time spent in the location). After La psec, x, is at least
La, so the QueueData transition may be taken; the transi-
tion must be taken before more than U, psec have elapsed.
Similar constraints are generated for the CancelData transi-
tion from location 4, which represents the code region that
cancels the entry call on Control .Data and blocks wait-
ing for the sensor's interrupt. The bounds Li and Uj would
be derived from the code represented by the transitions, as
discussed below.

The SensorInt and Timer transitions represent the execution
of code in interrupt handlers rather than in specific tasks. The
Timer transition represents the timer interrupt that awakens
the Sensor task ReadingExpire psec after the call on
Control. Data is queued. Its timing constraints are spec-
ified using the variable now, which records the current time,
and the variable y, which records the time of the pending
timer signal. Note that y = 0 and nbw = 1 in all locations.
The constant A accounts for the inaccuracy of the timer
mechanism. The SensorZnt transition represents the interrupt
caused by the sensor device that awakens the Sensor task.
This transition has no timing constraints and thus may occur
at any time.

In location 1, the Tracking task has just received a sensor
reading to process in slow mode (event Slow) after comput-
ing a result. After a stub completes an interaction, it then
performs some amount of computation and chooses its next
interaction. The Ready and Result transitions represent this
computation and the two possible interactions that might fol-
low. Note that there are no timing constraints on these tran-
sitions since a stub does not specify any timing properties.

Slow

Figure 6: Hybrid Automaton from Formula SMode in Fig-
ure 3

The hybrid automaton generated from Figure 2 is a con-
servative abstraction of (any full implementation of) the
program, in the sense that its behaviors are a superset of
those of any implementation, but is not accurate enough
to verify many interesting properties. For example, with-
out constraining the order of the stub task's interactions,
the model contains a deadlock; in the location reached by
taking the Ready transition from location 1 or 3 in Fig-
ure 5, the Control and Tracking tasks are in a deadly
embrace (the Control task is waiting for a call on entry
Result while the Tracking task waits for a call on en-
tries FastData or SlowData). To filter out these spurious
locations, we convert the regular expression constraining the
order of the stub task interactions which was given earlier
into an automaton and intersect this automaton with the au-
tomaton in Figure 5. (Intersection is performed using the
standard product operator for hybrid automata [11 in which
transitions sharing the same event label must be taken to-
gether.) The resulting intersection eliminates the transitions
on Ready from locations 1 and 3.

Even without deadlocks, the resulting model is still not ac-
curate enough for timing analysis without incorporating the
timing constraints of the stub task specified with the GIL for-
mulas (e.g., the Tracking task may run arbitrarily long be-
fore reaching the Ready interaction). To filter out behaviors
that violate these timing constraints, we convert each GIL
formula into a hybrid automaton that accepts only (timed)
event sequences satisfying the constraint. We then inter-
sect these automata with the automata generated from the
program and the regular expression. The resulting hybrid
automaton accepts only timed event sequences that satisfy
the timing and sequence constraints of the implemented Ada
tasks, the sequence constraints of the regular expression, and
the timing constraints of the GIL formulas.

For example, consider the GIL formula SMode in Figure 3,
which specifies the CPU time to produce a trace in slow
mode. Using the method outlined in the next section, we
convert this formula into the hybrid automaton in Figure 6.
Since the formula specifies a local timing constraint for
the Tracking task, we use variables xtl and x t z that ad-
vance in locations where the Tracking task is running
(xtl is used to enforce the upper bound, x t 2 is used to en-
force the lower bound). Each local timing constraint for the

234

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:53:33 UTC from IEEE Xplore. Restrictions apply.

Tracking task uses its own variable (e.g., x t l , x t z , . . .).
Intersecting the automaton in Figure 6 with the automaton
in Figure 5 effectively combines their timing constraints:
the transition on Slow now resets xtl and x t z , the condi-
tion xtl 5 U3 is conjoined to the invariants of locations 1-
4 (which appear between events Slow and Result), and the
condition xtz 2 L3 is conjoined to the guard of the Result
transitions.

The ability to stop clocks allows a simple representation of
timing constraints in the presence of preemption. For exam-
ple, if code region Result is interrupted in location 1 by the
preemption of the Sensor task, then when the Tracking
task resumes the execution of Result in location 3, the vari-
ables ztl and zt2 will still contain the CPU time expended
on Result in location 1, but not the time spent in location 2
while the Sensor task was running. In fact, the Tracking
task may be preempted many times (represented by the cycle
through locations 1-4) before it accumulates enough CPU
time (recorded in x t z , which is compared with the lower
bound) to produce a result.

Table 1 gives the bounds we used for the (implemented and
unimplemented) code regions, as well as the values of sev-
eral constants used in the specification and implementation.
Since we have not integrated our model building tool for Ada
with a sequential timing analysis tool, we estimated plausi-
ble durations for the implemented code regions, as well as
for the overhead of various run-time operations.

We note that a single transition might represent a sequence
of code regions and that the time bounds for each transition
are polished to be multiples of a constant m. We polish con-
straints in such a way that they are weakened-the set of runs
of the automaton with the polished constraints is a superset
of the set of runs of the original automaton. In particular, all
lower bounds are rounded down to the nearest multiple of m,
and all upper bounds are rounded up to the nearest multiple
of m. The constant m controls the accuracy of the analy-
sis, but also affects the cost. In general, larger values of m
will degrade the accuracy (i.e., tightness) of the bounds, but
speed up the analysis. For our example, we set m = 25.

Analysis
Once we have combined the hybrid automata constructed
from the Ada code, the regular expressions, and the GIL
formulas (including the formula IntFreq of Figure 4 that
constrains the behavior of the environment) into a single hy-
brid automaton M s capturing the behavior of the system, we
can use standard techniques for analyzing hybrid automata
to verify that the system has certain properties. To verify
the system has a property P, we construct a hybrid automa-
ton M p that accepts timed event sequences violating P. We
then compose M p with MS and check to see whether M p
is in an accepting location for any states of the composi-
tion reachable from the initial state (the reachable states of‘
a hybrid automaton are computed using a fixpoint calcula-

UpdatelDisplay

DuratiodDelay I Rangemdue
Readsensor I f100.2001

[75,100]
I ReadingExpire

Code to complete call in caller (after being signaled)
Code to begin rendezvous in acceptor (before body)
Code to complete rendezvous in acceptor (after body)
Code to set timer request
Code to process timer expiration

Cache life (K)

Start to first data ([L I , U l])
Result to next data ([Lz , U z])
Process slow data ([L3, U3])
Process fast data (with cache) ([L4, U4])
Process fast data (without cache) ([Ls , Us])

Timer interrupt period (A)

Max Sensor Frequency (F)

I L ’ 1506

[io , 20j
~ 5 , 5 0 1
~ 5 , 5 0 1
125,501
[25,501

100
2500
2000

[60,120]
[60,120]

[IOOO, 15001
[200,400]
[400,600]

Table 1 : Durations Used in Example (microseconds)

fion; see [l] for details). The property automaton M p does
not constrain the behavior of Ms; it simply observes the be-
havior (via synchronizing transitions) and accepts violations
of P.

The system designer would specify the property P with a
GIL formula, which is then negated and converted into a hy-
brid automaton. We use the HyTech verifier for hybrid sys-
tems [13] to analyze the hybrid automata we construct. We
illustrate our technique by verifying several properties of our
example.

First, we verify that the Sensor task will never time out
waiting to deliver the data to the Control task. We label
a d transitions in M s representing this timeout with the event
label Expire and construct the automaton Expire in Fig-
ure 8 from the negation of the GIL formula NeverExpire
in Figure 7. Using HyTech, we determine that there are no
reachable states of the composition of M s and automaton
Expire in which Expire is in an accepting location. This
result proves that no data can be dropped by the Sensor
task.

An analyst evaluating the performance of the system may
be concerned about the possible degradation of the quality
of tracking if two or more consecutive sensor readings are
processed in fast mode. To determine whether this can oc-
cur, we compose M s with the automaton TwoFas t in Fig-
ure 8, which was constructed from the negation of the for-
mula NeverTwoFast in Figure 7. (The 0 is the standard
“eventually” operator of temporal logic, so this specification
asserts that a Slow event occurs between any two occurrences
of Fast). This time, HyTech reports that there are reachable
states of the composition in which automaton TwoFas t is
accepting and displays a time-stamped sequence of transi-
tions containing two Fast events without an intervening Slow
event. This sequence can help the analyst understand how
such degraded tracking can occur, and perhaps suggest ways

235

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:53:33 UTC from IEEE Xplore. Restrictions apply.

NeverExpire

L Y I

1 Expire

NeverTwoFast

r n 1 I *...

..............
F a s t
Y.... H

f++---iFdS
s l o w

MaxResponse

[rl
U 1

1

.---H
SensorInt
L

global < M

Time A Ready Running Blocked
....... 1 Event

4 176 192 203 96 107

7 1 1 1 1 7
Co"uo, I..I..-.I... . I. .-.

6 80 94 I l l 164 190 207 240 256

1 1 1 7 1
-----.I

1 1 1 1
Sensor 4..-

A A A
Se"SOr1"t IY7 Sensorlnt 283

1 1
r" Sensor1nt IO1

1
... -

A A A A
Result Result Ready Slaw Ready Sluw

Figure 9: Behavior Illustrating Bound on Time From Sensor
Interrupt to Result (time in units of 25 psec)

Property Time (sec)
Expire
TwoFas t
MaxResponse

Figure 7 : GIL Specifications of Properties
Table 2: Analysis Times for Example (seconL,)

Expire :

+O=O
TwoFast :

Slow
Fast

ViolMaxResponse:

Sensorint
Result

Figure 8: Automata for Properties

to modify the program to avoid it.

We can also verify timing requirements. One common tim-
ing requirement is that the time from a stimulus to a response
is bounded by a given constant. In our example, we verify
that the time from a sensor interrupt (event Sensorlnt) to a re-
sult being produced (event Result) is less than M psec. We
specify this property using the GIL formula MaxResponse
in Figure 7, whose negation can be converted to the hybrid
automaton ViolMaxResponse in Figure 8. Although we
could fix M at a specific value and proceed with the analy-
sis as before, we instead instruct HyTech to perform a para-

metric analysis to determine the longest time from a Sen-
sorInt event to the following Result event. In particular,
HyTech can solve for the (weakest) constraints on M that are
required for the composition of ViolMaxResponse and
M s to reach an accepting location of ViolMaxResponse.
HyTech reports that this constraint is M 5 3,075, thus an
upper bound on the time between these events is 3,075 psec.
HyTech also produces a time-stamped sequence of transi-
tions illustrating this bound, which we diagram in Figure 9.
Note that the implementation of the rendezvous mechanism
and the priority scheduling of the tasks on a single CPU pro-
duces a fairly complex behavior.

In the analyses described above, we used the model building
tool for Ada described in [8] to construct the hybrid automa-
ton representing the program from an Ada-like specification'
of the code in Figure 2. The time bounds of the code regions
are specified using special computation events embedded in
this specification; in a real timing analysis tool, these dura-
tions would be derived from the sequential code comprising
these regions using techniques like [16]. The automata for
the GIL formulas are constructed by hand using an extension
of the algorithm in [1 11. These automata are fed to HyTech,
which takes their product and computes the set of reachable
states. The performance of HyTech (version 1.02b) on the
analyses described above is given in Table 2. Times are in
seconds on a Sun SPARCstation 10 with 96 MB of memory
and include both user and system time.

DETAILS
The approach presented here combines two separate bodies
of work: Corbett's method for constructing timed models of

20ur specification language contains (a subset 00 Ada's constructs,
For example, we write but in a Lisp-like syntax to facilitate parsing.

(ca l l T E) ratherthanT.E.

236

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:53:33 UTC from IEEE Xplore. Restrictions apply.

Ada tasking programs [8] and Dillon et al.’s method for us-
ing Graphical Interval Logic to construct test oracles [10,111.
Although space limitations preclude presentation of the com-
plete details of our approach, in this section we sketch the
modifications and extensions that were necessary to com-
bine the two methods. A full presentation of our approach
is in preparation and will be published separately.

Ada to Hybrid Automata
In order to construct models of partially implemented pro-
grams, we modified the translation of Ada to hybrid au-
tomata described in [8] to allow stub tasks. A stub task
is given by the communication statements it contains. The
control flow of the stub task is constructed to nondeterminis-
tically select a sequence of interactions; the stub on the left
below would be translated into the task body on the right:

task stub T is
begin

interaction

end interaction;
interaction -->

end interaction;

A;

B;

end T;

task body T is
begin

loop
if . . . then
A;

elsif . . . then
B;

end if;
end loop;

end T;

The . . . is an additional language primitive recognized by
the tool that generates the hybrid automata and represents a
nondeterministic choice. We suppress generation of timing
constraints for stub tasks. Instead, we specify a set of vari-
ables for each stub task that are to be advanced when the stub
task is running; these variables can be used by the automata
generated from GIL formulas to specify the local timing con-
straints of the stub task.

GIL to Hybrid Automata
The standard interpretation for GIL formulas is state-based:
a GIL formula is evaluated at a state within a linear se-
quence of states, where a state maps primitive propositions to
boolean values and has an associated duration (the amount of
time spent in the state). To model timed event sequences by
timed state sequences, we introduce a primitive proposition
for each event, which is true in “states” immediately follow-
ing the event. The durations associated with states indicate
the amount of time that elapses between event occurrences.

Hybrid automata are produced from GIL formulas by a
tableau procedure like that described in [111, but extended
to handle duration predicates and bi-directional searches.
A tableau procedure for a propositional temporal logic de-
pends on semantic rules that reduce a formula to be verified
into one or more alternatives, where each alternative pairs a
propositional formula with a formula that must hold at the
next state in the state sequence [15,21]. To handle duration
predicates, semantic rules must also describe clock activi-
ties. The semantic rules for full GIL therefore produce alter-
natives that contain various non-logical terms, which signify
that a transition activates a new timer, checks an active timer,

andlor deactivates a timer.

Bi-directional searches are not expressible in standard GIL,
which was designed to be insensitive to finite repetition of
states in order to facilitate refinement of specifications. How-
ever, when specifying properties of event sequences, we of-
ten want to express properties relating to the frequency of
event occurrences, e.g., IntFreq. To express such prop-
erties, a logic must be able to detect repeated events. Bi-
directional searches are defined in terms of the standard GIL
operators and the next state operator of propositional tempo-
ral logic. When describing event sequences, we also allow
very general duration predicates, which are not permitted
when using a state-based interpretation for GIL. We allow
any bound to be strict or non-strict, whereas lower bounds
rnust be strict and upper bounds non-strict when interpret-
ing GIL over more general timed state sequences. The se-
rnantic rules for GIL are easily extended to accommodate bi-
directional searches and to check both strict and non-strict
duration predicates.

CONCLUDING REMARKS
Existing static analysis methods for real-time systems as-
sume that all the components of the system can be expressed
iin the same notation, typically a specification or program-
ming language. For many reasons, however, analysts would
benefit from static analysis techniques that can be applied
to partially-implemented systems. These reasons include the
different rates of development of different components, evo-
lutionary modification or maintenance in which new or mod-
ified components are added to an existing system, the use of
compositional analysis methods, and the need to model the
environment of the system.

In this paper, we have presented a method for analyzing
partially-implemented systems for which some components
are written in Ada and others are specified using the real-
time temporal logic GIL. Our method combines Corbett’s
method for constructing timed models of Ada tasking pro-
grams and Dillon and Yu’s method for producing test oracles
fiom specifications in GIL. We believe that the basic idea of
our method is quite general and that it could be extended to
apply to systems in which the fully implemented components
were written in a programming language other than Ada and
the high-Sevel specifications were given in a specification for-
malism other than GIL. To carry out such an extension, it
would be necessary to develop a method for building hybrid
automata reflecting the concurrency and timing constructs of
the programming language and to produce an algorithm for
producing hybrid automata from the specifications. Such a
project would certainly involve some significant challenges
(though the work o f Dillon and Ramakrishna [101 might sim-
plify the generation of automata from temporal logic specifi-
cations), but there is nothing in our basic approach that limits
its applicability to Ada and GIL.

We have illustrated our method by analyzing a small, but

237

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:53:33 UTC from IEEE Xplore. Restrictions apply.

nontrivial, example. Our method for analyzing partially-
implemented systems is itself only partially-implemented at
this time: we are still in the process of automating our al-
gorithm for generating hybrid automata from GIL specifica-
tions. When that is completed, we will be able to apply the
method to a variety of larger examples and get a better idea of
its practical performance. A paper describing the full details
of our approach and its application to some of these larger
examples is in preparation.

REFERENCES

[11 R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger,
P. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine.
The algorithmic analysis of hybrid systems. Theoreti-
cal Computer Science, 13813-34, 1995.

[2] R. Alur, T. A. Henzinger, and P.-H. Ho. Automatic
IEEE symbolic verification of embedded systems.

Trans. So@. Eng., 22(3):181-201, Mar. 1996.

[3] R. L. Bagrodia and C.-C. Shen. MIDAS: Integrated de-
sign and simulation of distributed systems. IEEE Trans.
Softw. Eng., 17(10):1042-1058, Oct. 1991.

[4] S. C. Cheung and J. Kramer. Enhancing composi-
tional reachability analysis with context constraints. In
D. Notkin, editor, Proceedings of the First ACM SIG-
SOFT Symposium on the Foundations of Software En-
gineering, pages 115-125, Dec. 1993.

[SI E. Clarke, D. Long, and K. McMillan. Compositional
model checking. In Proceedings of the Fourth Annual
IEEE Symposium on Logic in Computer Science, pages
3S3-362,1989.

[6] J. C. Corbett. Modeling and analysis of real-time Ada
tasking programs. In Proceedings Real-Time Systems
Symposium, pages 132-141, San Juan, Puerto Rico,
Dec. 1994. IEEE Computer Society Press.

[7] J. C. Corbett. Constructing abstract models of con-
current real-time software. In S. J. Zeil, editor, Pro-
ceedings of the I996 International Symposium on Soft-
ware Testing and Analysis (ISSTA), pages 250-260,
San Diego, Jan. 1996. ACM Press.

[8] J. C. Corbett. Timing analysis of Ada tasking programs.
IEEE Trans. Softw. Eng., 22(7), July 1996.

[9] L. K. Dillon, G. Kutty, L. E. Moser, P. M. Melliar-
Smith, and Y. S. Ramakrishna. A graphical interval
logic for specifying concurrent systems. ACM Trans.
So&. Eng. Meth., 3(2):131-165, Apr. 1994.

[lo] L. K. Dillon and Y. S. Ramakrishna. Generating ora-
cles from your favorite temporal logic specifications. In
Proceedings of the Fourth ACM SIGSOFT Symposium
on Foundations of Software Engineering, Oct. 1996. To
appear.

[1 I] L. K. Dillon and Q. Yu. Oracles for checking temporal
properties of concurrent systems. In D. Wile, editor,
Proceedings of the Second ACM SIGSOFT Symposium
on Foundations of SofhYare Engineering, pages 140-
153, New Orleans, Dec. 1994. ACM Press (Proceed-
ings appeared in Softwure Engineering Notes, 19(5)).

[I21 M. G. Harbour, M. H. Klein, and J. P. Lehoczky. Tim-
ing analysis for fixed-priority scheduling of hard real-
time systems. IEEE Trans. So@. Eng., 20(1):13-28,
1994.

[13] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech:
the next generation. In Proceedings of the Real-Time
Systems Symposium, pages 56-65. IEEE Computer So-
ciety Press, 1995.

[141 C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. J.
Assoc. Comput. Mach., 20(1):46-61, 1973.

[15] Z. Manna and A. Pnueli. Temporal Verijication of Re-
active Systems: Safety. Springer-Verlag, New York,
1995.

[161 C. Y. Park and A. C. Shaw. Experiments with a program
timing tool based on source-level timing schema. IEEE
Computer, pages 48-57, May 1991.

[I71 M. Pezze. A formal approach to the development of
high integrity programmable electronic systems. High
Integrity Systems, 1996. To appear.

[18] M. Pezzk and M. Young. Generation of multi-
formalism state-space analysis tools. In S. J. Zeil, ed-
itor, Proceedings of the 1996 International Symposium
on Software Testing and Analysis (ISSTA), pages 172-
179, San Diego, Jan. 1996. ACM Press.

[19] L. Sha and J. B. Goodenough. Real-time scheduling
IEEE Computer, 23:53-62, April theory and Ada.

1990.

[20] C.-C. Shen and R. L. Bagrodia. Parallel hybrid models
in system design. In G. W. Evens, M. Mollaghasemi,
E. C. Russell, and W. E. Biles, editors, Proceedings
of the Winter Simulation Conference-WSC '93, pages
589-594, Dec. 1993.

[21] P. Wolper. The tableau method for temporal logic: An
overview. In Logique et Analyse, volume 1 10-1 11,
pages 119-136, June-September 1985.

[22] W. J. Yeh and M. Young. Compositional reachabil-
ity analysis using process algebra. In Proceedings of
the Symposium on Testing, Analysis, and Verification
(TAV4), pages 178-187, New York, Oct. 1991. ACM
SIGSQFT, Association for Computing Machinery.

[23] P. Zave and M. Jackson. Conjunction as composition.
ACM Trans. So@. Eng. Meth., 2(4):379-411, 1993.

238

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:53:33 UTC from IEEE Xplore. Restrictions apply.

