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ABSTRACT 
We propose a method for analyzing partially-implemented 
real-time systems. Here we consider real-time concurrent 
systems for which some components are implemented in 
Ada and some are partially specified using regular expres- 
sions and Graphical Interval Logic (GIL), a real-time tempo- 
ral logic. We show how to construct models of the partially- 
implemented systems that account for such properties as 
run-time overhead and scheduling of processes, yet support 
tractable analysis of nontrivial programs. The approach can 
be fully automated, and we illustrate it by analyzing a small 
example. 

Keywords 
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INTRODUCTION 
The correctness of a real-time computer system depends not 
only on the logical results of its computations but also on 
whether those computations satisfy certain timing require- 
ments. Developers of such systems, which are increasingly 
embedded in safety-critical applications such as air traffic 
control or patient monitoring, need to check that their sys- 
tems do the right computations at the right times. Testing, 
executing the system with inputs chosen to reflect the oper- 
ational profile or to exercise various components and exe- 
cution paths, is an essential part of this process, but testing 
alone can consider only a relatively small subset of the pos- 
sible behaviors of the system and is not adequate even for 
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sequential systems. Many embedded systems are naturally 
concurrent, and the non-deterministic behavior typically in- 
troduced by concurrency means that the same set of inputs 
may produce different behavior at different times. For con- 
current systems, developers must supplement testing with 
static analysis methods that consider all possible behaviors 
of the system, rather than executing a small subset of those 
behaviors. 

Most of the static analysis methods that have been proposed 
for use with real-time systems assume that all the compo- 
nents of the system are at roughly the same stage of devel- 
opment and can be naturally expressed in a single notation, 
such as a specification or programming language or a math- 
ematical formalism such as Petri nets. It is a software engi- 
neering commonplace that analysis should begin at the early 
design stages of software development-there is some evi- 
dence that the majority of errors are introduced at this stage 
and it is certainly true that errors caught at the design stage 
can be corrected much more easily and cheaply than if they 
are discovered in the later stages of development. Analy- 
sis tools that work with specification and design languages 
would therefore seem to be most appropriate. The perfor- 
mance of a real-time system, however, may depend critically 
on implementation details that cannot be captured in designs 
(e.g., the scheduling of processes on the available proces- 
sors), suggesting that analysis of fully-implemented systems 
is more appropriate, at least for real-time properties. The 
complexity of analyzing fully-implemented systems is, how- 
ever, daunting even for relatively small systems, and a full 
timing analysis of a large and complex system is almost cer- 
tainly infeasible. 

Thus, neither analysis of designs nor analysis of fully- 
implemented systems is adequate for real-time systems. In 
practice, developers of real-time systems typically restrict 
the architectures of their systems so that system components 
are highly structured and interact in very limited ways (e.g., 
periodic tasks with precedence constraints). These restric- 
tions allow the use of special scheduling techniques and al- 
gorithms, such as rate monotonic scheduling [14], to guaran- 
tee that a system's timing requirements are satisfied [ 12,191. 

In fact, there are many situations in which developers would 
benefit from tools that could analyze partially-implemented 
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systems, those for which some components are given only as 
high-level specifications while others are fully implemented 
in a programming language. These include: 

Initial Development of Complex Systems: The de- 
velopment of the various components of large systems 
seldom proceeds at a uniform rate. Some compcs- 
nents will have been fully implemented while others 
remain only partially specified. Analysis at this stage, 
before the system has been completely implemented, 
can make use of the detailed information about im- 
plemented components to verify that the system will 
meet its requirements if the unimplemented compo- 
nents meet their specifications, or point out the need for 
modifications in the specifications or implementations. 

Evolutionary Development: In order to understand the 
implications of proposed modifications to an existing 
system, developers necessarily confront a combination 
of fully-implemented components, those that will not 
be modified, and specifications for the new or modified 
components. Indeed, specifications of the original com- 
ponents of the system may not be available at all during 
maintenance, so analysis using high-level specifications 
of all components may be impractical. 

Compositional Analysis: Although the performance of 
the system may depend on some of the details of the im- 
plementation, it may be possible to abstract much of the 
implementation detail away without affecting the anal- 
ysis of a particular aspect of the system. In this case, 
some of the components of a fully-implemented system 
could, for the purposes of analysis, be represented by a 
high-level specification of their interfaces with the rest 
of the system. Such compositional techniques can make 
analysis practical for systems that would otherwise be 
far too large for existing analysis methods. 

Modeling the Environment of the System: Most 
real-time systems are reactive-they interact repeatedly 
with their environments, rather than simply computing 
a value and terminating. Although the environment may 
be another computer system, it may involve compo- 
nents such as sensors that will not be implemented in 
software. For the purpose of analyzing the behavior of 
the system, it may be more appropriate to express the 
possible behavior of the environment in a suitable high- 
level specification than to fully implement a software 
model with the same behaviors. 

In this paper, we propose a method for analyzing partially- 
implemented real-time systems. We consider real-time con- 
current systems for which some components are imple- 
mented in Ada and some are partially specified using regular 
expressions and Graphical Interval Logic (GIL) [9], a real- 
time temporal logic with an intuitive graphical representation 

similar to the time-lines typically used by system deveiop- 
ers. We show how automata derived from the regular expres- 
sions and the GIL specifications [ 111 can be combined with 
hybrid automata constructed from the Ada code [8] to con- 
struct models of the partially-implemented systems that ac- 
count for such properties as run-time overhead and schedul- 
ing, yet support tractable analysis of nontrivial programs. 
Our method can be fully automated. We illustrate the ap- 
proach with analysis of a small example. 

In the next section, we briefly discuss some related work. In 
the third section, we explain our approach and apply it to 
i1 small example. Some additional details of the approach 
are given in the fourth section, and the final section presents 
some conclusions and directions for further research. 

RELATED WORK 
The main contribution of this paper is an approach to the 
analysis of real-time concurrent systems that allows some 
parts of a system to be specified in a temporal logic while 
making use of detailed implementation information about 
other components. The analysis thus involves combining in- 
formation from very different sorts of formal models of real- 
time systems. 

Many formal models have been proposed for general real- 
time concurrent systems. These include timed Petri nets, 
communicating finite state machines, timed automata, timed 
process algebras, and real-time logics. In this paper, we 
rely on algorithms for converting GIL specifications into au- 
tomata that were originally developed for producing oracles 
to monitor executions of concurrent systems [11]. We be- 
lieve that GIL's graphical representation, discussed and il- 
lustrated below, makes it especially suitable as a high-level 
specification formalism for use by developers of real-time 
systems. 

For the most part, the work on formal models of real-time 
concurrent systems has been intended to represent specifi- 
cations, not implementations. As such, it does not address 
some of the difficult issues that arise in representing imple- 
mentation details of real software. For example, resource 
constraints are absent in most of these models and are awk- 
ward to represent within them. Also, the effects of run- 
time overhead, which can be significant, are not considered. 
Thus, although many of these models may have the expres- 
sive power needed to represent the detailed timing properties 
of fully-implemented components of a system, researchers 
generally have not addressed the problem of constructing 
such representations from real software. Corbett [6-81 has 
developed models for concurrent Ada programs that repre- 
sent these detailed timing properties. 

A number of authors (e.g., [4,5,22]) have proposed methods 
for doing compositional analysis by decomposing a concur- 
rent system into subsystems with simple interfaces and re- 
placing some of the subsystems by simpler processes that 
have the same interfaces to their environments. In most 
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of this work, however, the simpler processes that replace 
subsystems are specified in the same formalism and nota- 
tion used to describe the original system. The approach we 
propose here composes systems whose components are de- 
scribed in two very different notations, a graphical interval 
logic and the Ada programming language. 

Several researchers have considered the problem of integrat- 
ing different types of notations for representing the com- 
ponents of a system. For example, Zave and Jackson [23] 
discuss the integration of different specification formalisms 
by translating each formalism into predicate logic. This 
work does not address the problem of analyzing the sys- 
tems so specified. Pezzi: and Young [18] present an ap- 
proach to building state-space analysis tools that accept sys- 
tem descriptions involving several formalisms, but that work 
is chiefly concerned with the generation of tools rather than 
analysis of systems described in specific notations and does 
not discuss the representation of real-time systems. The 
work on Cabernet [17] involves the construction of an en- 
vironment for the specification and analysis of real-time sys- 
tems that uses a class of high-level Petri nets as the formal 
kernel but provides features for customization that could sup- 
port specifications written in a variety of other formalisms. 

Perhaps the work closest in spirit to this paper is that of 
Bagrodia and Shen [3,20]. They do stochastic performance 
evaluation of real-time systems in which some components 
are fully implemented and others are represented by discrete- 
event simulation models. The main difference between this 
work and ours is that their analysis is dynamic, executing the 
models and assessing a particular set of executions, while 
ours considers all possible executions. 

APPROACH 
We illustrate our approach using the following example. A 
signal processing system consists of a sensor that produces 
data sporadically and an Ada program that processes this 
data as quickly and as accurately as possible. Figure 1 
shows the structure of the program, which contains three Ada 
tasks. The Sensor task is awakened by the sensor, reads 
the sensor, and offers this reading to the Control task. 
The Control task accepts a reading from the Sensor 
task and gives it to the Tracking task for processing. The 
Tracking task processes the sensor reading and returns a 
trace to the Control task for display. Only the Sensor 
and Control tasks are currently implemented; the specifi- 
cation for the Tracking task consists of a list of its possible 
interactions with the other tasks, a regular expression spec- 
ifying the orders in which these interactions can occur, and 
GIL specifications for some of the timing properties of those 
interactions. The processing of the sensor reading is not de- 
scribed in the specification. Further details on the program 
are given below along with a description of the Ada and GIL 
constructs used to express them. 

trace 

. . . . . . . . . . . , 

reading 
/ Tracking / 

*T' 
Result 

reading ~ 

. . . . . . . . . 
: Sensor : 
: Device ,: . . . . . . . . . .  

Display j 
Device : 

. _ _ _ . . . . _ _ _ .  
A ............. 

trace 

Figure 1 : Structure of Example 

Ada 
The Ada source code for the two implemented tasks and 
a specification of the interface for the unimplemented 
Tracking task are shown in Figure 2. The program runs on 
a uniprocessor, so the three tasks must share a single CPU. 
Ada uses a preemptive priority scheduling policy for tasks. 
The priority ordering of the tasks, from highest to lowest, is: 
Control, Sensor, Tracking. 

In Ada, two tasks may interact via a rendezvous, a syn- 
chronous communication in which one task, the caller, calls 
an entry of another task, the acceptor. The caller is blocked 
until the acceptor accepts the entry call with an accept 
statement naming the corresponding entry. After the ren- 
dezvous completes, both tasks may continue executing in- 
dependently. For example, a task may call entry E of task 
T with the statement T . E, and task T may accept this call 
with the statement accept E. Rendezvous may be nested: 
if the body of an accept statement contains an entry call or 
an accept (e.g., the accept statements for entry Data of task 
Control in Figure 2), then the caller of this entry (e.g., 
task Sensor) remains blocked while the inner rendezvous 
completes. Data may be exchanged during the rendezvous 
through parameters, as in a procedure call. 

The sporadic nature of the sensor complicates the 
program. The sensor device awakens the Sensor 
task with an interrupt that causes the entry call on 
SensorDevice. Interrupt to complete. We do not 
model SensorDevice explicitly, but simply assume that 
this entry call can complete at any time. The Sensor task 
then constructs a reading and offers it to the Control task. 
If the sensor reading is not accepted within a certain time 
(ReadingExpire), then it is discarded. This timeout is 
implemented in Ada using a timed entry call, a version of 
the select statement that bounds the amount of time a task 
will wait for an entry call to be accepted. 

The Control task adapts to the rate at which the sensor is 
producing data by switching between two modes: fast and 
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task Sensor is -- reads sensor 

end Sensor; 

task body Sensor is 

begin 

pragma Priority(l0); -- middle priority 

R : Reading; 

loop 
SensorDevice.Interrupt; -- accepted on interrupt 
ReadSensor(R); -- read the sensor 
select 

or -- but after ReadingExpire 

end select: 

Control.Data(R); -- offer data to control task 

delay ReadingExpire; -- discard the reading 

end loop; 
end Sensor; 

task Control is -- controls other tasks 
pragma Priority(l5); -- highest priority task 
entry Data(R : in Reading); -- data from sensor task 
entry ReSult(R : in Trace): -- trace from tracking task 

end Control; 

task body Control is 
begin 
loop 
select 
accept Data(R : in Reading) do -- if Data ready 

end Data; 

accept Data(R : in Reading) do -- wait for Data 

end Data; 
end select; 
accept Result(T : in Trace) do -- wait for result 
Update-Di sp lay ( T ) ; -- update display 

end Result; 

Tracking.FastData(R1; -- use fast mode 

else -- otherwise 

Tracking.SlowData(R); -- use slow mode 

end loop; 
end Control; 

task Tracking is -- computes trace 
pragma Priority(5); -- lowest priority task 
entry FastData(R : in Reading); -- data to process fast 
entry SlowData(R : in Reading); -- data to process Slow 

end Tracking; 

task stub Tracking is -- not real Ada 
T : Trace; 

begin -- stub is just list of interactions 
-- Interaction 1: accept data at SlowData or FastData 
interaction 
event "Ready" ; 
select -- accept call on SlowData or FastData 
accept SlowData(R : in Reading); 
event "Slow"; -- accepted call on SlowData 

accept FastData(R : in Reading); 
event "Fast"; -- accepted call on FastData 

or 

end select; 
end interaction; 
-- Interaction 2: call entry Result of task Control 
interaction 
event "Result" ; 
Control.Result(T); 

end interaction; 
end Tracking; 

Figure 2: Source Code for Example 

slow. If a sensor reading is ready when the Control task 
reaches its select statement (i.e., if the Sensor task is 
blocked calling the entry Control .Data), the Control 
task switches to fast mode. The Control task indicates 
that it is in fast mode by calling the FastData entry of 
the Tracking task, which then performs a faster but less 

precise calculation to produce the trace. If a sensor reading 
is not ready when the Control task reaches its select 
statement, the task switches to slow mode and communicates 
the reading to the Tracking task via the SlowData entry. 
The mode is set on each iteration of the Control task's 
loop by the conditional select statement, which will choose 
the else alternative if a rendezvous at entry Data cannot 
begin immediately. 

The behavior of the unimplemented Tracking task is spec- 
ified by the stub in Figure 2 and by the regular expression and 
GIL formulas discussed below. The stub of the Tracking 
task lists its possible interactions with the other tasks; in par- 
ticular, it lists all of the communication statements the task 
will contain (e.g., entry calls, accepts). The Tracking task 
has two possible interactions with the other tasks: it can use a 
select statement to block waiting for an entry call on entry 
FastData or SlowData, or it can call the Result entry 
of the Control task. Note that the order in which these in- 
teractions are listed in the stub does not constrain the order 
in which they might occur in an execution of the system- 
the stub simply lists the possible interactions. We label the 
two interactions with the events Ready and Result, and also 
label the two communication statements in the first interac- 
tion with the events Fast and Slow. These labels are used 
to specify the order and timing of the events, as illustrated 
below. (Additional event labels could be inserted into a stub 
for any events whose order or timing is to be specified.) The 
stub does not specify any of the complex signal processing 
actually carried out by the Tracking task. 

We model an unimplemented task (whose possible interac- 
tions are listed in a stub) with a normal task that alternates 
between performing an arbitrary amount of internal com- 
putation and nondeterministically selecting an interaction in 
which to engage. Although this provides a conservative ab- 
straction of the fully implemented task, the resulting model 
is unlikely to be accurate enough to allow verification of in- 
teresting properties. Therefore, we specify additional con- 
straints on the order and timing of the events in the task in 
order to improve the accuracy of the model. When the task is 
eventually implemented, we must verify that the implemen- 
tacion satisfies these constraints. 

Regular Expressions 
We restrict the order of stub task interactions using regu- 
lar expressions. Each expression specifies a language over 
the event labels annotating the stub task interactions; such 
a language constrains the legal orderings of the event la- 
bels it contains. For example, the Tracking task alter- 
nates between accepting sensor readings and producing re- 
sults, which we specify with the expression 

(Ready Result)* 

The order of interactions could also be specified by providing 
a skeleton of the task's control flow or a GIL formula. In our 
example, we could simply place a loop statement around the 
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two interactions. In general, however, regular expressions 
may be preferable for specifying simple ordering properties 
due to their straightforward and familiar semantics. They 
can express regular patterns of interactions very concisely, 
and can be easier to read and write than code skeletons or 
GIL formulas. 

GIL 
We specify the timing constraints of stub tasks using a vari- 
ant of GIL, a real-time temporal logic with an intuitive 
graphical representation. The GIL specifications for a stub 
task constrain the order and timing of the events that label 
the stub’s interactions. We therefore use an event-based in- 
terpretation for GIL, rather than the customary state-based 
interpretation. GIL formulas are given in a graphical form 
similar to the time-lines frequently used by system develop- 
ers. We explain the features of GIL used in this example as 
we discuss the specifications shown in Figure 3. 

Recall that our example program runs on a uniprocessor. 
Processor sharing complicates the specification of a task’s 
timing constraints-if a preemptible code region takes at 
most 3 seconds to execute, then the task runs for at most 
3 seconds between the events representing the beginning and 
the end of the code region; however, the task may be pre- 
empted for part of this time, so the actual elapsed time may 
exceed 3 seconds. When specifying the timing constraints 
of a task, we employ two different kinds of time: local time 
advances only when a task is running and is useful for speci- 
fying bounds on the execution time of code regions, while 
global time always advances and is useful for specifying 
timeouts and other intervals in absolute time. We illustrate 
the use of these different kinds of time below. 

GIL formulas for the timing constraints of the Tracking 
task are shown in Figure 3. We label individual formulas 
for convenience in referring to them below. The GIL for- 
mulas are read from top to bottom and left to right. The 
horizontal dimension shows the progression of time, which 
advances to the right. An outermost interval represents a le- 
gal sequence of (timed) events; the (sub)formula below it de- 
scribes constraints on the ordering of events and on the times 
at which they occur. More generally, an interval represents 
the interval of time between two events, which designate its 
“endpoints”; the formula nested directly below an interval 
describes real-time properties of the events that occur within 
this time interval. A formula that must hold at the beginning 
of an interval is left justified below the start of the interval 
and a formula that must hold invariantly (at all times in) an 
interval is left justified below a henceforth operator (0). Spe- 
cial duration predicates place bounds on the amount of time, 
either global or local, that can elapse between the endpoints 
of intervals. 

GIL provides search operators for specifying the endpoints 
of intervals. A dotted arrow denotes a search to one of the 
target events that appear (left justified) immediately below 

Runl: 

[ 1 I *........__..........~~ 

Fas t  / S1 ow 

L1 <= l o c a l  <= U1 

Run2: 

F n I 
L Y .-____ 

R e s u l t  
L-...........-..-...-.H 

E - - - - - + F a s t ‘ S 1 o w  
L2 <= l o c a l  <= U2 

SMode: 

L U I 

1 
.-____ 

S l o w  
L......--...........-..~ 

L3 <= l o c a l  <= U 3  

FModel: 

FMode2: 

Figure 3: GIL Specifications for Tracking Task 

the right arrowhead. For example, the nested interval in the 
formula Runl consists of all events in a legal event sequence 
up to (but excluding) either the earliest Fast event or the ear- 
liest Slow event, depending on which, if any, occurs first. A 
search is said to succeed if its target event is located; other- 
wise, it fails. If a search fails, evaluation of the remaining 
searches is abandoned, and the formula being evaluated is 
true if the failed search is weak (indicated by a single arrow- 
head) or false if the failed search is strong (indicated by a 
double arrowhead). Thus, Runl specifies that, if the tracking 
task eventually reaches either Fast or Slow, then it must do 
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so within L1 to U1 microseconds (psec) after the start of the 
program. The duration predicate in Runl uses local time-it 
bounds the time that the Tracking task can run before ac- 
cepting a call on entry FastData or SlowData. There is 
no bound on the actual (global) time from the start of the pro- 
gram until the Tracking task accepts a call at FastData 
or SlowData since the sensor device might never fire. 

The formula Run2 describes an invariant property. It speci- 
fies that the tracking task always reaches either Fast or Slow 
within Lz to U2 psec (local time) after reaching Result, 
unless one or both of the searches fails. The weak searches 
in Runl and Run2 allow for the possibility of deadlock. 
This specification thus bounds the time that the task can run 
between calling Control. Result and receiving the next 
reading at entry FastData or SlowData. Similarly, the 
formula SMode bounds the (local) time between receiving a 
reading at entry SlowData and calling the Result entry 
of the control task to within L3 to U3 psec. 

The last two formulas FModel and FMode2 specify the 
time to produce a result when the system is in fast mode. The 
task priorities ensure that the first set of data is processed in 
slow mode. Thus, there are two cases: 1) if a reading is re- 
ceived in fast mode and the previous reading was processed 
in slow mode less than K (global) psec ago, then some of 
the information cached from that previous computation can 
be used to speed the processing of the current reading, so 
the time to produce the result is from L4 to U4 psec; 2) 
if the previous reading was not processed in slow mode or 
was processed more than K psec ago, then the time to pro- 
duce the result is from LF, to Us psec (U4 < Us < U3). In 
graphical formulas, we use a vertical layout with the classi- 
cal boolean operators, e.g., implication (+) in FModel and 
FMode2, and disjunction (V) in FMode2. The searches in 
the antecedents of the implications are strong, since the time 
from a Fast to the next Result depends on the events in the an- 
tecedent actually occurring within the specified time bounds. 
The bi-directional search arrow in FModel further restricts 
the event located by the first search to be the last Slow that 
precedes a Fast, and in FMode2 it restricts the event located 
by the first search to be the last Fast or Slow that precedes a 
Fast. The antecedent of FMode2 asserts that either the ac- 
tual time of the interval exceeds K or the event that starts the 
interval is a Fast. 

In addition to specifying the timing properties of unimple- 
mented tasks, we can also use GIL to specify constraints on 
the environment in which the program executes. For exam- 
ple, the sensor device in our example can generate interrupts 
at most every F psec. We express this constraint with the 
GIL formula IntFreq in Figure 4. 

Hybrid Automata 
In order to perform analysis, we translate the various specifi- 
cations of the program into a common abstract model: con- 
stant slope linear hybrid automata [l, 21. Hybrid automata 

IntFreq: 

Figure 4: GIL Specification of Constraint on Environment 

combine a finite-state control with a set of real-valued vari- 
ables. The values of these variables change continuously 
while the automaton remains at a control location, and may 
change discretely with an instantaneous transition from one 
control location to another. We use the real-valued variables 
of the hybrid automaton to enforce timing constraints on its 
transitions. 

We first construct a hybrid automaton representing the pro- 
gram using the method of [8]. Each control location in this 
automaton is an abstraction of the program’s state, and each 
transition represents the execution of a code region trans- 
forming that state. The execution time of a code region is 
modeled with an appropriate delay before its transition; the 
transition occurs instantaneously when execution of the code 
region completes. The length of this delay must fall in the in- 
terval [L, U ]  given by the bounds on the region’s execution 
time and is measured using a stopwatch-like mechanism. A 
real-valued variable, x, which advances continuously as time 
passes, is reset to zero when the location representing the be- 
ginning of the code region is reached. We attach the guard 
condition x >_ L to the transition that prevents its occurrence 
until at least L time units have passed, and we attach the in- 
variant condition z < U to the location that requires it to be 
exited before more than U time units have passed. 

Figure 5 shows a slightly simplified’ part of the hybrid au- 
tomaton constructed from the (partial) program in Figure 2. 
The full automaton has 70 locations. Each location is labeled 
with the task that is running there, an invariant, and the rate 
at which each real-valued variable is changing. The rate of 
variable x is denoted 2.  Each transition is labeled with a 
guard, a synchronization label, and a set of assignments to 
the variables. 

The stopwatch-like mechanism used to specify the bounds of 
code regions is illustrated in location 2 of Figure 5. Location 
2 represents the program state where the Sensor task has 
just been awakened by the sensor device’s interrupt and has 
preempted the Tracking task, which is still processing the 
previous reading (which the Control task is blocked wait- 
ing to receive). The QueueData transition from location 2 to 
3 represents the code region that reads the sensor, queues a 
call on entry Control. Data, sets a timer to expire after 

lCertam sequences of transitions have been collapsed into single trm- 

sitions and certam vanables not relevant to this part of the automaton have 
been omitted 
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SensorInt 
xs := 0 

2 In all locations: 
ndw = 1 
j l = O  x s  2 L a  

QueueData 
'y := n o w t  CancelData t '  2 s  ? Lb 

Figure 5: Part of Hybrid Automaton for Program 

ReadingExpire seconds, and then blocks the task. We 
denote the bounds of this interval with [La, Ua]  and use vari- 
able x, to record the CPU time allocated to the Sensor 
task. Variable x, is reset by the transition into location 2,  
where it advances at rate 1 (and hence records the amount 
of time spent in the location). After La psec, x, is at least 
La, so the QueueData transition may be taken; the transi- 
tion must be taken before more than U, psec have elapsed. 
Similar constraints are generated for the CancelData transi- 
tion from location 4, which represents the code region that 
cancels the entry call on Control .Data and blocks wait- 
ing for the sensor's interrupt. The bounds Li and Uj would 
be derived from the code represented by the transitions, as 
discussed below. 

The SensorInt and Timer transitions represent the execution 
of code in interrupt handlers rather than in specific tasks. The 
Timer transition represents the timer interrupt that awakens 
the Sensor task ReadingExpire psec after the call on 
Control. Data is queued. Its timing constraints are spec- 
ified using the variable now, which records the current time, 
and the variable y, which records the time of the pending 
timer signal. Note that y = 0 and nbw = 1 in all locations. 
The constant A accounts for the inaccuracy of the timer 
mechanism. The SensorZnt transition represents the interrupt 
caused by the sensor device that awakens the Sensor task. 
This transition has no timing constraints and thus may occur 
at any time. 

In location 1, the Tracking task has just received a sensor 
reading to process in slow mode (event Slow) after comput- 
ing a result. After a stub completes an interaction, it then 
performs some amount of computation and chooses its next 
interaction. The Ready and Result transitions represent this 
computation and the two possible interactions that might fol- 
low. Note that there are no timing constraints on these tran- 
sitions since a stub does not specify any timing properties. 

Slow 

Figure 6: Hybrid Automaton from Formula SMode in Fig- 
ure 3 

The hybrid automaton generated from Figure 2 is a con- 
servative abstraction of (any full implementation of) the 
program, in the sense that its behaviors are a superset of 
those of any implementation, but is not accurate enough 
to verify many interesting properties. For example, with- 
out constraining the order of the stub task's interactions, 
the model contains a deadlock; in the location reached by 
taking the Ready transition from location 1 or 3 in Fig- 
ure 5,  the Control and Tracking tasks are in a deadly 
embrace (the Control task is waiting for a call on entry 
Result while the Tracking task waits for a call on en- 
tries FastData or SlowData). To filter out these spurious 
locations, we convert the regular expression constraining the 
order of the stub task interactions which was given earlier 
into an automaton and intersect this automaton with the au- 
tomaton in Figure 5.  (Intersection is performed using the 
standard product operator for hybrid automata [ 11 in which 
transitions sharing the same event label must be taken to- 
gether.) The resulting intersection eliminates the transitions 
on Ready from locations 1 and 3. 

Even without deadlocks, the resulting model is still not ac- 
curate enough for timing analysis without incorporating the 
timing constraints of the stub task specified with the GIL for- 
mulas (e.g., the Tracking task may run arbitrarily long be- 
fore reaching the Ready interaction). To filter out behaviors 
that violate these timing constraints, we convert each GIL 
formula into a hybrid automaton that accepts only (timed) 
event sequences satisfying the constraint. We then inter- 
sect these automata with the automata generated from the 
program and the regular expression. The resulting hybrid 
automaton accepts only timed event sequences that satisfy 
the timing and sequence constraints of the implemented Ada 
tasks, the sequence constraints of the regular expression, and 
the timing constraints of the GIL formulas. 

For example, consider the GIL formula SMode in Figure 3, 
which specifies the CPU time to produce a trace in slow 
mode. Using the method outlined in the next section, we 
convert this formula into the hybrid automaton in Figure 6. 
Since the formula specifies a local timing constraint for 
the Tracking task, we use variables xtl and x t z  that ad- 
vance in locations where the Tracking task is running 
(xtl is used to enforce the upper bound, x t 2  is used to en- 
force the lower bound). Each local timing constraint for the 

234 

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:53:33 UTC from IEEE Xplore.  Restrictions apply. 



Tracking task uses its own variable (e.g., x t l , x t z , .  . .). 
Intersecting the automaton in Figure 6 with the automaton 
in Figure 5 effectively combines their timing constraints: 
the transition on Slow now resets xtl and x t z ,  the condi- 
tion xtl 5 U3 is conjoined to the invariants of locations 1- 
4 (which appear between events Slow and Result), and the 
condition xtz 2 L3 is conjoined to the guard of the Result 
transitions. 

The ability to stop clocks allows a simple representation of 
timing constraints in the presence of preemption. For exam- 
ple, if code region Result is interrupted in location 1 by the 
preemption of the Sensor task, then when the Tracking 
task resumes the execution of Result in location 3,  the vari- 
ables ztl and zt2 will still contain the CPU time expended 
on Result in location 1, but not the time spent in location 2 
while the Sensor task was running. In fact, the Tracking 
task may be preempted many times (represented by the cycle 
through locations 1-4) before it accumulates enough CPU 
time (recorded in x t z ,  which is compared with the lower 
bound) to produce a result. 

Table 1 gives the bounds we used for the (implemented and 
unimplemented) code regions, as well as the values of sev- 
eral constants used in the specification and implementation. 
Since we have not integrated our model building tool for Ada 
with a sequential timing analysis tool, we estimated plausi- 
ble durations for the implemented code regions, as well as 
for the overhead of various run-time operations. 

We note that a single transition might represent a sequence 
of code regions and that the time bounds for each transition 
are polished to be multiples of a constant m. We polish con- 
straints in such a way that they are weakened-the set of runs 
of the automaton with the polished constraints is a superset 
of the set of runs of the original automaton. In particular, all 
lower bounds are rounded down to the nearest multiple of m, 
and all upper bounds are rounded up to the nearest multiple 
of m. The constant m controls the accuracy of the analy- 
sis, but also affects the cost. In general, larger values of m 
will degrade the accuracy (i.e., tightness) of the bounds, but 
speed up the analysis. For our example, we set m = 25.  

Analysis 
Once we have combined the hybrid automata constructed 
from the Ada code, the regular expressions, and the GIL 
formulas (including the formula IntFreq of Figure 4 that 
constrains the behavior of the environment) into a single hy- 
brid automaton M s  capturing the behavior of the system, we 
can use standard techniques for analyzing hybrid automata 
to verify that the system has certain properties. To verify 
the system has a property P,  we construct a hybrid automa- 
ton M p  that accepts timed event sequences violating P. We 
then compose M p  with MS and check to see whether M p  
is in an accepting location for any states of the composi- 
tion reachable from the initial state (the reachable states of‘ 
a hybrid automaton are computed using a fixpoint calcula- 

UpdatelDisplay 

DuratiodDelay I Rangemdue 
Readsensor I f100.2001 

[75,100] 
I ReadingExpire 

Code to complete call in caller (after being signaled) 
Code to begin rendezvous in acceptor (before body) 
Code to complete rendezvous in acceptor (after body) 
Code to set timer request 
Code to process timer expiration 

Cache life ( K )  

Start to first data ( [ L I ,  U l ] )  
Result to next data ( [Lz ,  U z ] )  
Process slow data ([L3, U3]) 
Process fast data (with cache) ( [L4,  U4]) 
Process fast data (without cache) ( [Ls ,  Us]) 

Timer interrupt period (A) 

Max Sensor Frequency ( F )  
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~ 5 , 5 0 1  
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125,501 
[25,501 

100 
2500 
2000 

[60,120] 
[60,120] 

[IOOO, 15001 
[200,400] 
[400,600] 

Table 1 : Durations Used in Example (microseconds) 

fion; see [l] for details). The property automaton M p  does 
not constrain the behavior of Ms;  it simply observes the be- 
havior (via synchronizing transitions) and accepts violations 
of P. 

The system designer would specify the property P with a 
GIL formula, which is then negated and converted into a hy- 
brid automaton. We use the HyTech verifier for hybrid sys- 
tems [13] to analyze the hybrid automata we construct. We 
illustrate our technique by verifying several properties of our 
example. 

First, we verify that the Sensor task will never time out 
waiting to deliver the data to the Control task. We label 
a d  transitions in M s  representing this timeout with the event 
label Expire and construct the automaton Expire in Fig- 
ure 8 from the negation of the GIL formula NeverExpire 
in Figure 7. Using HyTech, we determine that there are no 
reachable states of the composition of M s  and automaton 
Expire in which Expire is in an accepting location. This 
result proves that no data can be dropped by the Sensor 
task. 

An analyst evaluating the performance of the system may 
be concerned about the possible degradation of the quality 
of tracking if two or more consecutive sensor readings are 
processed in fast mode. To determine whether this can oc- 
cur, we compose M s  with the automaton TwoFas t in Fig- 
ure 8, which was constructed from the negation of the for- 
mula NeverTwoFast in Figure 7. (The 0 is the standard 
“eventually” operator of temporal logic, so this specification 
asserts that a Slow event occurs between any two occurrences 
of Fast). This time, HyTech reports that there are reachable 
states of the composition in which automaton TwoFas t is 
accepting and displays a time-stamped sequence of transi- 
tions containing two Fast events without an intervening Slow 
event. This sequence can help the analyst understand how 
such degraded tracking can occur, and perhaps suggest ways 
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Figure 9: Behavior Illustrating Bound on Time From Sensor 
Interrupt to Result (time in units of 25 psec) 

Property Time (sec) 
Expire 
TwoFas t 
MaxResponse 

Figure 7 :  GIL Specifications of Properties 
Table 2: Analysis Times for Example (seconL,) 

Expire : 

+O=O 
TwoFast : 

Slow 
Fast 

ViolMaxResponse: 

Sensorint 
Result 

Figure 8: Automata for Properties 

to modify the program to avoid it. 

We can also verify timing requirements. One common tim- 
ing requirement is that the time from a stimulus to a response 
is bounded by a given constant. In our example, we verify 
that the time from a sensor interrupt (event Sensorlnt) to a re- 
sult being produced (event Result) is less than M psec. We 
specify this property using the GIL formula MaxResponse 
in Figure 7, whose negation can be converted to the hybrid 
automaton ViolMaxResponse in Figure 8. Although we 
could fix M at a specific value and proceed with the analy- 
sis as before, we instead instruct HyTech to perform a para- 

metric analysis to determine the longest time from a Sen- 
sorInt event to the following Result event. In particular, 
HyTech can solve for the (weakest) constraints on M that are 
required for the composition of ViolMaxResponse and 
M s  to reach an accepting location of ViolMaxResponse. 
HyTech reports that this constraint is M 5 3,075, thus an 
upper bound on the time between these events is 3,075 psec. 
HyTech also produces a time-stamped sequence of transi- 
tions illustrating this bound, which we diagram in Figure 9. 
Note that the implementation of the rendezvous mechanism 
and the priority scheduling of the tasks on a single CPU pro- 
duces a fairly complex behavior. 

In the analyses described above, we used the model building 
tool for Ada described in [8] to construct the hybrid automa- 
ton representing the program from an Ada-like specification' 
of the code in Figure 2. The time bounds of the code regions 
are specified using special computation events embedded in 
this specification; in a real timing analysis tool, these dura- 
tions would be derived from the sequential code comprising 
these regions using techniques like [16]. The automata for 
the GIL formulas are constructed by hand using an extension 
of the algorithm in [ 1 11. These automata are fed to HyTech, 
which takes their product and computes the set of reachable 
states. The performance of HyTech (version 1.02b) on the 
analyses described above is given in Table 2. Times are in 
seconds on a Sun SPARCstation 10 with 96 MB of memory 
and include both user and system time. 

DETAILS 
The approach presented here combines two separate bodies 
of work: Corbett's method for constructing timed models of 

20ur  specification language contains (a subset 00 Ada's constructs, 
For example, we write but in a Lisp-like syntax to facilitate parsing. 

( ca l l  T E )  ratherthanT.E. 
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Ada tasking programs [8] and Dillon et al.’s method for us- 
ing Graphical Interval Logic to construct test oracles [ 10,111. 
Although space limitations preclude presentation of the com- 
plete details of our approach, in this section we sketch the 
modifications and extensions that were necessary to com- 
bine the two methods. A full presentation of our approach 
is in preparation and will be published separately. 

Ada to Hybrid Automata 
In order to construct models of partially implemented pro- 
grams, we modified the translation of Ada to hybrid au- 
tomata described in [8] to allow stub tasks. A stub task 
is given by the communication statements it contains. The 
control flow of the stub task is constructed to nondeterminis- 
tically select a sequence of interactions; the stub on the left 
below would be translated into the task body on the right: 

task stub T is 
begin 

interaction 

end interaction; 
interaction --> 

end interaction; 

A; 

B; 

end T; 

task body T is 
begin 

loop 
if . . .  then 
A; 

elsif . . .  then 
B; 

end if; 
end loop; 

end T; 

The . . . is an additional language primitive recognized by 
the tool that generates the hybrid automata and represents a 
nondeterministic choice. We suppress generation of timing 
constraints for stub tasks. Instead, we specify a set of vari- 
ables for each stub task that are to be advanced when the stub 
task is running; these variables can be used by the automata 
generated from GIL formulas to specify the local timing con- 
straints of the stub task. 

GIL to Hybrid Automata 
The standard interpretation for GIL formulas is state-based: 
a GIL formula is evaluated at a state within a linear se- 
quence of states, where a state maps primitive propositions to 
boolean values and has an associated duration (the amount of 
time spent in the state). To model timed event sequences by 
timed state sequences, we introduce a primitive proposition 
for each event, which is true in “states” immediately follow- 
ing the event. The durations associated with states indicate 
the amount of time that elapses between event occurrences. 

Hybrid automata are produced from GIL formulas by a 
tableau procedure like that described in [ 111, but extended 
to handle duration predicates and bi-directional searches. 
A tableau procedure for a propositional temporal logic de- 
pends on semantic rules that reduce a formula to be verified 
into one or more alternatives, where each alternative pairs a 
propositional formula with a formula that must hold at the 
next state in the state sequence [15,21]. To handle duration 
predicates, semantic rules must also describe clock activi- 
ties. The semantic rules for full GIL therefore produce alter- 
natives that contain various non-logical terms, which signify 
that a transition activates a new timer, checks an active timer, 

andlor deactivates a timer. 

Bi-directional searches are not expressible in standard GIL, 
which was designed to be insensitive to finite repetition of 
states in order to facilitate refinement of specifications. How- 
ever, when specifying properties of event sequences, we of- 
ten want to express properties relating to the frequency of 
event occurrences, e.g., IntFreq. To express such prop- 
erties, a logic must be able to detect repeated events. Bi- 
directional searches are defined in terms of the standard GIL 
operators and the next state operator of propositional tempo- 
ral logic. When describing event sequences, we also allow 
very general duration predicates, which are not permitted 
when using a state-based interpretation for GIL. We allow 
any bound to be strict or non-strict, whereas lower bounds 
rnust be strict and upper bounds non-strict when interpret- 
ing GIL over more general timed state sequences. The se- 
rnantic rules for GIL are easily extended to accommodate bi- 
directional searches and to check both strict and non-strict 
duration predicates. 

CONCLUDING REMARKS 
Existing static analysis methods for real-time systems as- 
sume that all the components of the system can be expressed 
iin the same notation, typically a specification or program- 
ming language. For many reasons, however, analysts would 
benefit from static analysis techniques that can be applied 
to partially-implemented systems. These reasons include the 
different rates of development of different components, evo- 
lutionary modification or maintenance in which new or mod- 
ified components are added to an existing system, the use of 
compositional analysis methods, and the need to model the 
environment of the system. 

In this paper, we have presented a method for analyzing 
partially-implemented systems for which some components 
are written in Ada and others are specified using the real- 
time temporal logic GIL. Our method combines Corbett’s 
method for constructing timed models of Ada tasking pro- 
grams and Dillon and Yu’s method for producing test oracles 
fiom specifications in GIL. We believe that the basic idea of 
our method is quite general and that it could be extended to 
apply to systems in which the fully implemented components 
were written in a programming language other than Ada and 
the high-Sevel specifications were given in a specification for- 
malism other than GIL. To carry out such an extension, it 
would be necessary to develop a method for building hybrid 
automata reflecting the concurrency and timing constructs of 
the programming language and to produce an algorithm for 
producing hybrid automata from the specifications. Such a 
project would certainly involve some significant challenges 
(though the work o f  Dillon and Ramakrishna [ 101 might sim- 
plify the generation of automata from temporal logic specifi- 
cations), but there is nothing in our basic approach that limits 
its applicability to Ada and GIL. 

We have illustrated our method by analyzing a small, but 
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nontrivial, example. Our method for analyzing partially- 
implemented systems is itself only partially-implemented at 
this time: we are still in the process of automating our al- 
gorithm for generating hybrid automata from GIL specifica- 
tions. When that is completed, we will be able to apply the 
method to a variety of larger examples and get a better idea of 
its practical performance. A paper describing the full details 
of our approach and its application to some of these larger 
examples is in preparation. 
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