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Abstract—Many processes are safety critical and therefore 
could benefit from proactive safety analysis techniques 
that attempt to identify weaknesses of such processes 
before they are put into use. In this paper, we propose an 
approach that automatically derives Failure Mode and 
Effect Analysis (FMEA) information from processes 
modeled in the Little-JIL process definition language. 
Typically FMEA information is created manually by skilled 
experts, an approach that is usually considered to be time-
consuming, error-prone, and tedious when applied to 
complex processes. Although great care must be taken in 
creating an accurate process definition, with our approach 
this definition can then be used to create FMEA 
representations for a wide range of potential failures. In 
addition, our approach provides a complementary Fault 
Tree Analysis (FTA), thereby supporting two of the most 
widely used safety analysis techniques. 

Keywords-FMEA; FTA; automatic; Little-JIL; safety analysis 
technique 

I. INTRODUCTION 
Failure Mode and Effect Analysis (FMEA) [1, 2] is a 

bottom-up approach to analyzing and evaluating safety 
problems in a system or process in an attempt to reduce the 
occurrence of severe hazards or their consequences. A failure 
mode is “the way or manner in which a product or process 
could fail to meet design intent or process requirements” [3]. 
The potential impacts of a failure are defined as the effects of 
the failure mode [3]. In addition to identifying failure modes 
and effects, identifying the causes of an identified failure mode 
is another benefit of FMEA analysis. When consistently 
applied to a whole process, FMEA essentially consists of 
identifying and listing all potential failure modes, assessing the 
effects on the overall system for each failure mode, and then 
identifying all potential causes which could lead to each failure 
mode. Table 1 presents a small example of traditional FMEA 
worksheet.  

FMEA can be automatically applied to a process if the 
process is modeled in sufficient detail and in a language with 
precise semantics. For this project, we used the Little-JIL 
process definition language, which has precise semantic 
definitions for all its language constructs.  

Typically, FMEA is done manually by skilled experts. If 
the process being evaluated is at all complex, then this 
approach is known to be time-consuming, error-prone, and 
tedious. Our approach automatically applies FMEA to 
processes defined in the Little-JIL language. We assume that a 
Little-JIL process definition has been developed and validated 
with great care. Such a process definition can be used to study 
and evaluate the process [4], as well as to drive simulations [5] 
or executions. Thus, we assume that the process definition 
already exists and can be further leveraged by automatically 
identifying potential failure modes, and then automatically 
generating the effects and causes for any selected single failure 
mode.  

Our approach overcomes the traditional shortcomings of 
FMEA when applied to complex processes. Also, our approach 
provides an integrated view of FMEA and Fault Tree Analysis 
(FTA), two of the most widely used safety analysis techniques. 
Experts can then focus their attention on the provided FMEA 
and FTA information for a process when trying to detect 
potential hazards and weaknesses.  

To evaluate our approach, we have applied it to several 
detailed process definitions, defined in Little-JIL. We have 
selected processes from the healthcare domain, since hazards in 
health care processes can jeopardize the safety of the 
individuals served by them and even cause death and suffering. 
Moreover, FMEA has been used extensively by health care 
organizations to analyze safety problems in their processes to 
improve their safety [6-8]. Blood transfusion processes have 
often been the subject of FMEA [9]. In this paper, we use a 
simple blood transfusion process as an example.  

The rest of this paper is organized as follows. Section II 
presents related work. Section III provides a brief introduction 
of the Little-JIL process definition language. Section IV gives a 
detail description of our automatic FMEA approach, followed 
by an concluding section. 

II. RELATED WORKS 
In [10], an approach is presented to provide automated 

support for FMEA using model checking with the behavior tree 
system modeling notation. This approach enables safety 
analysts to work with high-level models in a notation that is 
close to natural language, while automating the tedious aspects 
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of FMEA. Another model-based FMEA approach is proposed 
in [11, 12] by Papadopoulos et al., which realizes the semi-
automatic synthesis of FMEAs which builds upon automatic 
fault tree analysis for system-level hazards. Many approaches 
are proposed to automate the creation of FMEA information 
from software [13, 14]. Another approach proposed by Robin 
Lutz is used to combine FMEA and FTA to analyze the 
requirements of safety critical software (e.g. spacecraft 
software) [15]. There have been several published studies 
demonstrating the benefits of employing FMEA in various 
domains. For example, Snooke N. et al. describes how model-
based simulation can be employed to automatically generate 
the system-level effects of all possible failures on systems 
within the aircraft systems [16]. The application of functional 
modeling to the automatically produce FMEA information for 
mechanical systems is described in [17]. It is worth mentioning 
that the approach proposed in [11, 12] is not restricted to 
particular domains, i.e. applicable to a range of widely used 
engineering models.  

III. LITTLE-JIL PROCESS DEFINITION LANGUAGE 
Little-JIL is “an executable, high-level process 

programming language with a formal (yet graphical) syntax 
and rigorously defined operational semantics” [18]. It provides 
a process modeling method basing on activities, which are 
defined as steps in Little-JIL processes. Little-JIL processes 
coordinate the activities of autonomous human or computer 
agents and their use of resources during the performance of 
their activities. A Little-JIL process model for blood 
transfusion is shown in Fig. 1. Here, we only give a brief 
introduction to the semantics of Little-JIL. Details of the 
language can be found in [19]. 

A Little-JIL process definition is a hierarchy of steps, each 
of which represents a single unit of work. Every step specifies 
all artifacts and resources it uses in its interface. A step can 
optionally be proceeded by one or several pre-requisite step(s) 

or/and be followed by one or several post-requisite step(s). A 
step without any sub-steps is called a leaf step. Each non-leaf 
step has a sequencing badge which indicates the execution 
order of its sub-steps. Artifacts, which are objects such as a 
medical chart or prescription, are passed between different 
steps via parameter bindings. There are four parameter types, 
IN, OUT, IN/OUT and Locals. In Little-JIL, resources are 
“special kinds of artifacts for which there is contention for 
access” [19]. Resources are managed by an external resource 
manager and their acquisitions need to be explicitly specified in 
step interfaces. Steps may throw exceptions, which can be 
handled by exception handler steps. Each step in Little-JIL is 
assigned to an execution agent (human or automated), which is 
responsible for performing the work associated with a step. 

 In the Little-JIL process definition, shown in Fig. 1, the 
root of the process, “Perform in-patient blood transfusion”, is a 
sequential step, which means its sub-steps “Obtain patient’s 
blood type”, “Pick up blood from blood bank”, and 
“Administer blood transfusion”, should be executed from left 
to right one by one. “Patient Name” is passed to “Obtain 
patient’s blood type” as an artifact via a parameter binding. 
Since “Obtain patient’s blood type” is a try step, its sub-step 
“Contact for patient’s blood type” and “Test patient’s blood 
type” should be tried from left to right until one of them is 
executed successfully and returns an artifact “Blood Type” to 
“Contact for patient’s blood type”. Then this “Blood Type” 
should be passed to “Pick up blood from blood bank”. After 
“Pick up blood from blood bank” is completed, the root step 
“Perform in-patient blood transfusion” should receive “Blood 
Unit” and then pass it to “Administer blood transfusion”, along 
with “Patient Name”, another artifact. “Patient Name” is passed 
to “Find patient location in computer” to get “Patient Bed 
Location”. Then “Blood Unit” and “Patient Bed Location” are 
finally passed to “Blood transfusion”.  

Each of the leaf steps in Fig. 1 could be further decomposed 
into sub-steps, but that elaboration is not presented here.   

TABLE I.  TRADITIONAL FMEA WORKSHEET EXAMPLE 

Failure Mode and Effect Analysis Worksheet 
  

Process: Simple Blood Transfusion Process 
  

SEV = How severe is the effect on the customer? 

OCC = How frequently is the cause likely to occur? 

DET = How probable is the detection of the cause? 

RPN = Risk priority number in order to rank concerns; calculated as SEV x OCC x DET 

  
Process Step Failure Mode Effects SEV Causes OCC DET RPN Actions 

Obtain patient's 
blood type 

"Blood Type" is 
wrong 

"Blood Unit" is 
wrong Wrong "Patient Name" 2 6   

      
"Test patient's blood type" produces wrong 
"Blood Type" 5 4   

      

10 

"Contact lab for patient's blood type" 
produces wrong "Blood Type" 3 7 

210 

  
                                 



IV. AUTOMATIC FMEA FOR LITTLE-JIL PROCESSES 
Our approach to automatically derive the FMEA 

information from Little-JIL involves three steps: identify 
potential failure modes, identify effects for each failure mode, 
and identify causes for a given failure mode. We describe each 
step in turn. 

A. Identify Failure Modes 
To automatically generate failure modes from Little-JIL 

process definitions, one needs to first identify appropriate 
failure modes for each language construct. In our work, we 
limit our attention to the failure modes related to artifacts and 
define two types of artifact-related failure modes: 

Type 1: Artifact p to Step S is wrong. 

Type 2: Artifact p from Step S is wrong.  

Although not all failures can be associated with these 
failure modes, a large number of interesting failure modes are 
artifact-related failure modes or can easily be turned into 
artifact-related failure modes. For example, if a step is done 
incorrectly, we would expect that failure to be evident in one or 
more of the out artifacts associated with that step. When there 
are no such out artifacts, a hypothetical output could be created 
to represent the erroneous behavior of the step.  

Each step, the basic elements of a Little-JIL process 
definition, has an interface that specifies the artifacts it uses as 
parameters along with each ones type. The failure modes 
related to artifacts for each step are created using the following 
rules:  

• For an IN parameter p declared in the interface of Step 
S, the failure mode “Artifact p to Step S is wrong” 
(Type 1) is generated.  

• For an OUT parameter p declared in the interface of 
Step S, the failure mode “Artifact p from Step S is 
wrong” (Type 2) is generated.  

• For an IN/OUT parameter p declared in the interface of 
Step S, both the failure mode “Artifact p to Step S is 
wrong” (Type 1) and the failure mode “Artifact p from 
Step S is wrong” (Type 2) are generated.  

• A local parameter is a special IN or OUT or IN/OUT 
parameter with a limited scope such that that associated 
artifact can only be passed between a step and its sub-
steps. Thus, for this case, failure mode(s) can be 
generated the same as no-local IN, OUT, or IN/OUT 
parameters.  

By generating potential failure mode(s) for each step in a 
process, all potential failure modes related to artifacts in the 
process definition are identified. For each of these failure 
modes, the potential effects need to be identified.  

B.  Identify Potential Effects for Each Failure Mode 
The effects derivation algorithm consists of two phases: 

1)  Phase1. Construct the Artifact Flow Graph (AFG) from 
the unrolled Little-JIL process. The AFG can be easily 
constructed by traversing the process tree with an algorithm 
(not shown) that can be done in polynomial time.  

The AFG is used to determine whether an artifact is data 
dependent on another artifact. An AFG is a direct graph Ga = 
<Pa, Ea>, where Pa is the set of artifacts in the process and Ea is 
the set of edges, which represent the data dependent 
relationships between artifacts. Suppose both p1 and p2 are 
artifacts, there is an edge from p1 to p2 if and only if p2 is data 
dependent on p1. If there is a parameter binding indicating that 
p1 is passed to p2 or if p1 is an input parameter and p2 is an 
output parameter of the same step, we create an edge from p1 to 
p2 indicating that p2 is data dependent on p1. 

Fig. 2 gives the corresponding AFG of the simple blood 
transfusion process modeled in Fig. 1. Every Node in Fig. 2 
indicates an artifact in the process, which is represented as 
“artifact name (step name)” in the graph. The AFG can be 
generated directly from a Little-JIL process by traversing the 
process tree. 

2)  Phase2. Derive FMEA information using the AFG: 

After generating the AFG for a Little-JIL process 
definition, the effects for each failure mode can be identified. If 
there is a path from artifact p1 to artifact p2 in the AFG, then a 
fault in p1 may be propagated to p2. Thus, given a Type 1 
failure mode (“Artifact p to Step S is wrong”) or a Type 2 

 
Figure 1.  Simple Blood Transfusion Process 



failure mode (“Artifact p from Step S is wrong”), it is 
straightforward to determine incrementally the artifacts at 
which steps that could be contaminated by such a faulty p by 
traversing the AFG. In other words, a fault in p could be 
propagated to these artifacts causing them to be faulty. 
Therefore the fault of these artifacts is defined as the effects of 
the given failure mode.  

A high-level description of the algorithm for deriving the 
FMEA information is given here:    

Formats of FMEA information may vary based on the 
needs of the organization and the requirements of the customer 

[1]. Familiar formats are FMEA tables or FMEA worksheets. 
In our approach, we proposed a new representation, call an 
Effect Tree, which provides a way to organize the failure 
modes and the effects of a process into a tree view. The top 
level of an Effect Tree lists the step name of each process 
definition step. The second level lists the failure modes of each 
step. The third level lists the effects of each failure mode. The 
next and all subsequent levels list the effects resulting from the 
failure of their parent. This expansion continues until there is 
no subsequent effect that can be propagated, according to the 
AFG.  

Fig. 3 shows one failure mode of step “Obtain patient’s 
blood type” and its effects. It indicates that wrong “Blood 
Type” produced by “Obtain patient’s blood type” could lead to 
the wrong “Blood Type” being sent to “Pick up blood from 
blood bank”, and subsequently results in the wrong “Blood 
Unit” being returned and then passed to “Perform in-patient 
blood transfusion”. Finally this could result in wrong “Blood 
unit” being provided to “Blood transfusion”. The artifact flow 
paths in the AFG that represent the fault propagation paths can 
be tracked by expanding the tree nodes in the Effect Tree. 

Inspecting all effects of each failure mode should help 
identify effects that could result in significant damage. For the 
blood transfusion example, there are two effects that deserve 
more attention: “Blood Unit” to “Blood Transfusion” is wrong, 
“Patient Bed Location” to “Blood Transfusion” is wrong. The 
first one indicates that the wrong blood unit is transfused to the 
patient, and the second indicates that the blood unit is 
transfused to the wrong patient. Both of these could have 

 
Annotations: Artifacts: PN-Patient Name, BT-Blood Type, BU-Blood Unit, PBL-Patient Bed Location; Steps: Root-Perform in-patient blood transfusion, S1-
Obtain patient’s blood type, S11- Contact for patient’s blood type, S12-Test patient’s blood type, S2-Pick up blood from blood bank, S3-Administer blood 
transfusion, S31-Find patient location in computer, S32-Blood Transfusion. 

Figure 2.  AFG of the Simple Blood Transfusion Process 

 
Figure 3.  Part of FMEA Tree View Result for the step "Obtain patient's blood type" 

 

//Initialization: 
Initialize the visited AFG nodes vn set to empty; 
Initialize AFG nodes nd set to all AFG nodes; 
Initialize worklist wl set to empty; 
//Main Cycle: 
While nd is not empty do 
       Remove an AFG node n from nd; 
       Add n to wl; 
       If vn contains n then continue; 
       Maps n to the set of AFG nodes vnto set that directly 
flow to n; 
       Replace n with set vnto; 
       For each node n’ in set vnto 
              Add n’ to wl; 
       End for 
       Add n to vnto; 
End while 



serious consequences. 

C.  Identify Causes for a Given Failure Mode 
In Fault Tree Analysis (FTA), severe consequences, such as 

the two listed above, are considered hazards. These identified 
hazards can then be treated as the TOP-events of a fault tree. 
Using the fault tree, FTA tries to determine which 
combinations of events must transpire for the hazard to actually 
occur. In our approach, we proactively identify possible 
hazards of a process using FMEA, and then use FTA to 
determine what events must occur for each hazard to arise. 

The fault tree is a graphic model of the various parallel and 
sequential combinations of faults (events) that will result in the 
occurrence of the predefined undesired event (top event) [20]. 
Logical gates (e.g. AND, OR) are used to represent the 
interrelationships between events and the top event. The FTA 
approach involves two steps, deriving a fault tree and analyzing 
the fault tree. Deriving a fault tree starts with the top event, 
which is then further developed. All intermediate and necessary 
events that may lead to the top event are connected to the top 
event using appropriate gates. These new events will then be 
developed if they are not primary events. This procedure 
continues until all new events are primary events. Once a fault 
tree has been derived, both qualitative and quantitative analysis 
can be applied to analysis it. Through analyzing a fault tree, all 
minimal cut sets (MCSs), that is minimum combinations of 
events that would cause the top event to occur, can be found 
and their probability calculated. MCSs of a fault tree indicate 
whether the process is exposed to single points of failure or 
combinations of high-probability events. Subsequent changes 
may need to be made to the process to remove these 
weaknesses. Fig. 4 presents the generated fault tree for one of 
the hazards identified in the simple blood transfusion process 
using FMEA.  

By generating the fault tree for the effects which may lead 
to a hazard, and doing FTA, process modifications may be 
recommended to try to prevent the hazard from occurring. 
Previous work has addressed how to automatically derive a 
Fault Tree from a Little-JIL process definition automatically 

and thus, we only give a brief introduction of the approach 
here. For a detailed description of it, see [21]. 

 The fault tree derivation starts with the given TOP-event, 
which is an intermediate event representing the given hazard 
(in our work, it is a given failure mode or effect). Then the 
intermediate event will be developed – all immediate and 
necessary events that could lead to this event are identified and 
connected to this event using appropriate gates. Those new 
events themselves may be intermediate events and need to be 
developed further. This process continues until all leaf nodes in 
the fault tree are primary events that do not need to be 
developed further as determined by the analyst. To 
automatically derive a fault tree from a Little-JIL process 
definition, there are two issues that have to be addressed: how 
to automatically extract fault tree events that could lead to a 
given event and how to connect them to this event using the 
appropriate gates. For the first issue, a few types of events are 
predefined which can be easily identified from the process 
definition. To address the second issue, a collection of 
templates are defined based on the Little-JIL process definition 
language. Different templates are used to develop different 
types of events.  

V. CONCLUSIONS AND FUTURE WORK 
FMEA is an inductive technique for analyzing and 

evaluating potential reliability problems in a process or system. 
It is well accepted and applied in various kinds of industries 
especially safety critical processes, such as medical safety 
processes [22, 23, 24]. In this paper, we present an approach 
that can be used to automatically generate FMEA information 
from a Little-JIL process. Since Little-JIL steps have simple 
uniform interfaces, failure modes related to artifacts can be 
automatically generated. Effects of single failure mode can be 
identified by traversing the AFG of the process. The automatic 
FTA approach proposed in [21] is employed to generate fault 
trees for hazards identified by carefully checking FMEA 
information.  

Performing fault tree analysis for all potential failure modes 
and effects in a process might be a huge undertaking and 
sometimes a waste of time and energy. The effects which may 
cause hazards should be identified and then further evaluated. 
We suggest that after generating all potential failure modes and 
their potential effects for a process, the effects of each failure 
mode should be examined carefully. If the effect is critical, a 
fault tree needs to be generated to find out the possible causes. 
By evaluating the possible causes of such effects, actions can 
be recommended to avoid the hazard. With our approach, such 
recommended changes would be made to the process definition 
which would then be reevaluated to assure that the problem had 
been effectively addressed. 

Our proposed approach focuses on the problems that can 
arise though artifacts. Erroneous artifacts are probably the most 
common way in which problems will propagate though a 
process. There are other ways that this could happen however, 
such as though the use of erroneous resources or the faulty 
execution of a step that nonetheless does not contaminate the 
output parameters of that step.  

Figure 4.  An example of generated fault tree 



After being acquired, Little-JIL resources can be passed as 
parameters like other artifacts [19]. Similarly, the artifacts 
produced by one step might be subsequently used as resources 
in another step. Therefore, faulty resources and resource 
passing between different steps might lead to fault propagation 
in the process. Also, as described in Section III, agents are 
treated as a special kind of resource in Little-JIL, and therefore 
errors introduced by agents should also be taken into account. 
Without considering resource faults leads to incomplete FMEA 
result. In other words, we need to determine the dependences 
between parameters and resources. Thus, one part of our future 
work should be finding out how resource fault affects the fault 
propagation in Little-JIL process definitions. 

Another limitation is that subsequent steps could be 
dependent on a previous step being done correctly, where the 
failure to do is not reflected in an artifact. If we create a 
hypothetical output artifact to represent the erroneous step 
behavior, this artifact would not propagate erroneous 
information beyond this step. Therefore, we may want to find a 
way to add fault propagations introduced by erroneous step 
behavior to generate the FMEA information. This information 
would be overwhelming, however, unless it is guided by the 
analyst or some other external information. 

In summary, automatically generating FMEA information 
from Little-JIL processes addresses the major weaknesses of 
traditional FMEA approaches. This information can be 
examined to determine which are the events of major concern, 
and these events can then be used to drive FTA. Thus, our 
approach aims to coordinate FTA and FMEA, two 
complimentary approaches, to help improve processes. 
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