
An Automatic Failure Mode and Effect Analysis
Technique for Processes Defined in the Little-JIL

Process Definition Language

Danhua Wang, Jingui Pan
State Key Laboratory for Novel Software Technology,

Nanjing University
Nanjing, China

George S. Avrunin, Lori A. Clarke, Bin Chen

Department of Computer Science, University of
Massachusetts, Amherst

Amherst, USA

Abstract—Many processes are safety critical and therefore
could benefit from proactive safety analysis techniques
that attempt to identify weaknesses of such processes
before they are put into use. In this paper, we propose an
approach that automatically derives Failure Mode and
Effect Analysis (FMEA) information from processes
modeled in the Little-JIL process definition language.
Typically FMEA information is created manually by skilled
experts, an approach that is usually considered to be time-
consuming, error-prone, and tedious when applied to
complex processes. Although great care must be taken in
creating an accurate process definition, with our approach
this definition can then be used to create FMEA
representations for a wide range of potential failures. In
addition, our approach provides a complementary Fault
Tree Analysis (FTA), thereby supporting two of the most
widely used safety analysis techniques.

Keywords-FMEA; FTA; automatic; Little-JIL; safety analysis
technique

I. INTRODUCTION
Failure Mode and Effect Analysis (FMEA) [1, 2] is a

bottom-up approach to analyzing and evaluating safety
problems in a system or process in an attempt to reduce the
occurrence of severe hazards or their consequences. A failure
mode is “the way or manner in which a product or process
could fail to meet design intent or process requirements” [3].
The potential impacts of a failure are defined as the effects of
the failure mode [3]. In addition to identifying failure modes
and effects, identifying the causes of an identified failure mode
is another benefit of FMEA analysis. When consistently
applied to a whole process, FMEA essentially consists of
identifying and listing all potential failure modes, assessing the
effects on the overall system for each failure mode, and then
identifying all potential causes which could lead to each failure
mode. Table 1 presents a small example of traditional FMEA
worksheet.

FMEA can be automatically applied to a process if the
process is modeled in sufficient detail and in a language with
precise semantics. For this project, we used the Little-JIL
process definition language, which has precise semantic
definitions for all its language constructs.

Typically, FMEA is done manually by skilled experts. If
the process being evaluated is at all complex, then this
approach is known to be time-consuming, error-prone, and
tedious. Our approach automatically applies FMEA to
processes defined in the Little-JIL language. We assume that a
Little-JIL process definition has been developed and validated
with great care. Such a process definition can be used to study
and evaluate the process [4], as well as to drive simulations [5]
or executions. Thus, we assume that the process definition
already exists and can be further leveraged by automatically
identifying potential failure modes, and then automatically
generating the effects and causes for any selected single failure
mode.

Our approach overcomes the traditional shortcomings of
FMEA when applied to complex processes. Also, our approach
provides an integrated view of FMEA and Fault Tree Analysis
(FTA), two of the most widely used safety analysis techniques.
Experts can then focus their attention on the provided FMEA
and FTA information for a process when trying to detect
potential hazards and weaknesses.

To evaluate our approach, we have applied it to several
detailed process definitions, defined in Little-JIL. We have
selected processes from the healthcare domain, since hazards in
health care processes can jeopardize the safety of the
individuals served by them and even cause death and suffering.
Moreover, FMEA has been used extensively by health care
organizations to analyze safety problems in their processes to
improve their safety [6-8]. Blood transfusion processes have
often been the subject of FMEA [9]. In this paper, we use a
simple blood transfusion process as an example.

The rest of this paper is organized as follows. Section II
presents related work. Section III provides a brief introduction
of the Little-JIL process definition language. Section IV gives a
detail description of our automatic FMEA approach, followed
by an concluding section.

II. RELATED WORKS
In [10], an approach is presented to provide automated

support for FMEA using model checking with the behavior tree
system modeling notation. This approach enables safety
analysts to work with high-level models in a notation that is
close to natural language, while automating the tedious aspects

Sponsor: ①State Key Laboratory for Novel Software Technology at Nanjing
University. Project Number: KFKT2009A13.
②Department of Computer Science at University of Massachusetts, Amherst.

of FMEA. Another model-based FMEA approach is proposed
in [11, 12] by Papadopoulos et al., which realizes the semi-
automatic synthesis of FMEAs which builds upon automatic
fault tree analysis for system-level hazards. Many approaches
are proposed to automate the creation of FMEA information
from software [13, 14]. Another approach proposed by Robin
Lutz is used to combine FMEA and FTA to analyze the
requirements of safety critical software (e.g. spacecraft
software) [15]. There have been several published studies
demonstrating the benefits of employing FMEA in various
domains. For example, Snooke N. et al. describes how model-
based simulation can be employed to automatically generate
the system-level effects of all possible failures on systems
within the aircraft systems [16]. The application of functional
modeling to the automatically produce FMEA information for
mechanical systems is described in [17]. It is worth mentioning
that the approach proposed in [11, 12] is not restricted to
particular domains, i.e. applicable to a range of widely used
engineering models.

III. LITTLE-JIL PROCESS DEFINITION LANGUAGE
Little-JIL is “an executable, high-level process

programming language with a formal (yet graphical) syntax
and rigorously defined operational semantics” [18]. It provides
a process modeling method basing on activities, which are
defined as steps in Little-JIL processes. Little-JIL processes
coordinate the activities of autonomous human or computer
agents and their use of resources during the performance of
their activities. A Little-JIL process model for blood
transfusion is shown in Fig. 1. Here, we only give a brief
introduction to the semantics of Little-JIL. Details of the
language can be found in [19].

A Little-JIL process definition is a hierarchy of steps, each
of which represents a single unit of work. Every step specifies
all artifacts and resources it uses in its interface. A step can
optionally be proceeded by one or several pre-requisite step(s)

or/and be followed by one or several post-requisite step(s). A
step without any sub-steps is called a leaf step. Each non-leaf
step has a sequencing badge which indicates the execution
order of its sub-steps. Artifacts, which are objects such as a
medical chart or prescription, are passed between different
steps via parameter bindings. There are four parameter types,
IN, OUT, IN/OUT and Locals. In Little-JIL, resources are
“special kinds of artifacts for which there is contention for
access” [19]. Resources are managed by an external resource
manager and their acquisitions need to be explicitly specified in
step interfaces. Steps may throw exceptions, which can be
handled by exception handler steps. Each step in Little-JIL is
assigned to an execution agent (human or automated), which is
responsible for performing the work associated with a step.

 In the Little-JIL process definition, shown in Fig. 1, the
root of the process, “Perform in-patient blood transfusion”, is a
sequential step, which means its sub-steps “Obtain patient’s
blood type”, “Pick up blood from blood bank”, and
“Administer blood transfusion”, should be executed from left
to right one by one. “Patient Name” is passed to “Obtain
patient’s blood type” as an artifact via a parameter binding.
Since “Obtain patient’s blood type” is a try step, its sub-step
“Contact for patient’s blood type” and “Test patient’s blood
type” should be tried from left to right until one of them is
executed successfully and returns an artifact “Blood Type” to
“Contact for patient’s blood type”. Then this “Blood Type”
should be passed to “Pick up blood from blood bank”. After
“Pick up blood from blood bank” is completed, the root step
“Perform in-patient blood transfusion” should receive “Blood
Unit” and then pass it to “Administer blood transfusion”, along
with “Patient Name”, another artifact. “Patient Name” is passed
to “Find patient location in computer” to get “Patient Bed
Location”. Then “Blood Unit” and “Patient Bed Location” are
finally passed to “Blood transfusion”.

Each of the leaf steps in Fig. 1 could be further decomposed
into sub-steps, but that elaboration is not presented here.

TABLE I. TRADITIONAL FMEA WORKSHEET EXAMPLE

Failure Mode and Effect Analysis Worksheet

Process: Simple Blood Transfusion Process

SEV = How severe is the effect on the customer?

OCC = How frequently is the cause likely to occur?

DET = How probable is the detection of the cause?

RPN = Risk priority number in order to rank concerns; calculated as SEV x OCC x DET

Process Step Failure Mode Effects SEV Causes OCC DET RPN Actions

Obtain patient's
blood type

"Blood Type" is
wrong

"Blood Unit" is
wrong Wrong "Patient Name" 2 6

"Test patient's blood type" produces wrong
"Blood Type" 5 4

10

"Contact lab for patient's blood type"
produces wrong "Blood Type" 3 7

210

IV. AUTOMATIC FMEA FOR LITTLE-JIL PROCESSES
Our approach to automatically derive the FMEA

information from Little-JIL involves three steps: identify
potential failure modes, identify effects for each failure mode,
and identify causes for a given failure mode. We describe each
step in turn.

A. Identify Failure Modes
To automatically generate failure modes from Little-JIL

process definitions, one needs to first identify appropriate
failure modes for each language construct. In our work, we
limit our attention to the failure modes related to artifacts and
define two types of artifact-related failure modes:

Type 1: Artifact p to Step S is wrong.

Type 2: Artifact p from Step S is wrong.

Although not all failures can be associated with these
failure modes, a large number of interesting failure modes are
artifact-related failure modes or can easily be turned into
artifact-related failure modes. For example, if a step is done
incorrectly, we would expect that failure to be evident in one or
more of the out artifacts associated with that step. When there
are no such out artifacts, a hypothetical output could be created
to represent the erroneous behavior of the step.

Each step, the basic elements of a Little-JIL process
definition, has an interface that specifies the artifacts it uses as
parameters along with each ones type. The failure modes
related to artifacts for each step are created using the following
rules:

• For an IN parameter p declared in the interface of Step
S, the failure mode “Artifact p to Step S is wrong”
(Type 1) is generated.

• For an OUT parameter p declared in the interface of
Step S, the failure mode “Artifact p from Step S is
wrong” (Type 2) is generated.

• For an IN/OUT parameter p declared in the interface of
Step S, both the failure mode “Artifact p to Step S is
wrong” (Type 1) and the failure mode “Artifact p from
Step S is wrong” (Type 2) are generated.

• A local parameter is a special IN or OUT or IN/OUT
parameter with a limited scope such that that associated
artifact can only be passed between a step and its sub-
steps. Thus, for this case, failure mode(s) can be
generated the same as no-local IN, OUT, or IN/OUT
parameters.

By generating potential failure mode(s) for each step in a
process, all potential failure modes related to artifacts in the
process definition are identified. For each of these failure
modes, the potential effects need to be identified.

B. Identify Potential Effects for Each Failure Mode
The effects derivation algorithm consists of two phases:

1) Phase1. Construct the Artifact Flow Graph (AFG) from
the unrolled Little-JIL process. The AFG can be easily
constructed by traversing the process tree with an algorithm
(not shown) that can be done in polynomial time.

The AFG is used to determine whether an artifact is data
dependent on another artifact. An AFG is a direct graph Ga =
<Pa, Ea>, where Pa is the set of artifacts in the process and Ea is
the set of edges, which represent the data dependent
relationships between artifacts. Suppose both p1 and p2 are
artifacts, there is an edge from p1 to p2 if and only if p2 is data
dependent on p1. If there is a parameter binding indicating that
p1 is passed to p2 or if p1 is an input parameter and p2 is an
output parameter of the same step, we create an edge from p1 to
p2 indicating that p2 is data dependent on p1.

Fig. 2 gives the corresponding AFG of the simple blood
transfusion process modeled in Fig. 1. Every Node in Fig. 2
indicates an artifact in the process, which is represented as
“artifact name (step name)” in the graph. The AFG can be
generated directly from a Little-JIL process by traversing the
process tree.

2) Phase2. Derive FMEA information using the AFG:

After generating the AFG for a Little-JIL process
definition, the effects for each failure mode can be identified. If
there is a path from artifact p1 to artifact p2 in the AFG, then a
fault in p1 may be propagated to p2. Thus, given a Type 1
failure mode (“Artifact p to Step S is wrong”) or a Type 2

Figure 1. Simple Blood Transfusion Process

failure mode (“Artifact p from Step S is wrong”), it is
straightforward to determine incrementally the artifacts at
which steps that could be contaminated by such a faulty p by
traversing the AFG. In other words, a fault in p could be
propagated to these artifacts causing them to be faulty.
Therefore the fault of these artifacts is defined as the effects of
the given failure mode.

A high-level description of the algorithm for deriving the
FMEA information is given here:

Formats of FMEA information may vary based on the
needs of the organization and the requirements of the customer

[1]. Familiar formats are FMEA tables or FMEA worksheets.
In our approach, we proposed a new representation, call an
Effect Tree, which provides a way to organize the failure
modes and the effects of a process into a tree view. The top
level of an Effect Tree lists the step name of each process
definition step. The second level lists the failure modes of each
step. The third level lists the effects of each failure mode. The
next and all subsequent levels list the effects resulting from the
failure of their parent. This expansion continues until there is
no subsequent effect that can be propagated, according to the
AFG.

Fig. 3 shows one failure mode of step “Obtain patient’s
blood type” and its effects. It indicates that wrong “Blood
Type” produced by “Obtain patient’s blood type” could lead to
the wrong “Blood Type” being sent to “Pick up blood from
blood bank”, and subsequently results in the wrong “Blood
Unit” being returned and then passed to “Perform in-patient
blood transfusion”. Finally this could result in wrong “Blood
unit” being provided to “Blood transfusion”. The artifact flow
paths in the AFG that represent the fault propagation paths can
be tracked by expanding the tree nodes in the Effect Tree.

Inspecting all effects of each failure mode should help
identify effects that could result in significant damage. For the
blood transfusion example, there are two effects that deserve
more attention: “Blood Unit” to “Blood Transfusion” is wrong,
“Patient Bed Location” to “Blood Transfusion” is wrong. The
first one indicates that the wrong blood unit is transfused to the
patient, and the second indicates that the blood unit is
transfused to the wrong patient. Both of these could have

Annotations: Artifacts: PN-Patient Name, BT-Blood Type, BU-Blood Unit, PBL-Patient Bed Location; Steps: Root-Perform in-patient blood transfusion, S1-
Obtain patient’s blood type, S11- Contact for patient’s blood type, S12-Test patient’s blood type, S2-Pick up blood from blood bank, S3-Administer blood
transfusion, S31-Find patient location in computer, S32-Blood Transfusion.

Figure 2. AFG of the Simple Blood Transfusion Process

Figure 3. Part of FMEA Tree View Result for the step "Obtain patient's blood type"

//Initialization:
Initialize the visited AFG nodes vn set to empty;
Initialize AFG nodes nd set to all AFG nodes;
Initialize worklist wl set to empty;
//Main Cycle:
While nd is not empty do
 Remove an AFG node n from nd;
 Add n to wl;
 If vn contains n then continue;
 Maps n to the set of AFG nodes vnto set that directly
flow to n;
 Replace n with set vnto;
 For each node n’ in set vnto
 Add n’ to wl;
 End for
 Add n to vnto;
End while

serious consequences.

C. Identify Causes for a Given Failure Mode
In Fault Tree Analysis (FTA), severe consequences, such as

the two listed above, are considered hazards. These identified
hazards can then be treated as the TOP-events of a fault tree.
Using the fault tree, FTA tries to determine which
combinations of events must transpire for the hazard to actually
occur. In our approach, we proactively identify possible
hazards of a process using FMEA, and then use FTA to
determine what events must occur for each hazard to arise.

The fault tree is a graphic model of the various parallel and
sequential combinations of faults (events) that will result in the
occurrence of the predefined undesired event (top event) [20].
Logical gates (e.g. AND, OR) are used to represent the
interrelationships between events and the top event. The FTA
approach involves two steps, deriving a fault tree and analyzing
the fault tree. Deriving a fault tree starts with the top event,
which is then further developed. All intermediate and necessary
events that may lead to the top event are connected to the top
event using appropriate gates. These new events will then be
developed if they are not primary events. This procedure
continues until all new events are primary events. Once a fault
tree has been derived, both qualitative and quantitative analysis
can be applied to analysis it. Through analyzing a fault tree, all
minimal cut sets (MCSs), that is minimum combinations of
events that would cause the top event to occur, can be found
and their probability calculated. MCSs of a fault tree indicate
whether the process is exposed to single points of failure or
combinations of high-probability events. Subsequent changes
may need to be made to the process to remove these
weaknesses. Fig. 4 presents the generated fault tree for one of
the hazards identified in the simple blood transfusion process
using FMEA.

By generating the fault tree for the effects which may lead
to a hazard, and doing FTA, process modifications may be
recommended to try to prevent the hazard from occurring.
Previous work has addressed how to automatically derive a
Fault Tree from a Little-JIL process definition automatically

and thus, we only give a brief introduction of the approach
here. For a detailed description of it, see [21].

 The fault tree derivation starts with the given TOP-event,
which is an intermediate event representing the given hazard
(in our work, it is a given failure mode or effect). Then the
intermediate event will be developed – all immediate and
necessary events that could lead to this event are identified and
connected to this event using appropriate gates. Those new
events themselves may be intermediate events and need to be
developed further. This process continues until all leaf nodes in
the fault tree are primary events that do not need to be
developed further as determined by the analyst. To
automatically derive a fault tree from a Little-JIL process
definition, there are two issues that have to be addressed: how
to automatically extract fault tree events that could lead to a
given event and how to connect them to this event using the
appropriate gates. For the first issue, a few types of events are
predefined which can be easily identified from the process
definition. To address the second issue, a collection of
templates are defined based on the Little-JIL process definition
language. Different templates are used to develop different
types of events.

V. CONCLUSIONS AND FUTURE WORK
FMEA is an inductive technique for analyzing and

evaluating potential reliability problems in a process or system.
It is well accepted and applied in various kinds of industries
especially safety critical processes, such as medical safety
processes [22, 23, 24]. In this paper, we present an approach
that can be used to automatically generate FMEA information
from a Little-JIL process. Since Little-JIL steps have simple
uniform interfaces, failure modes related to artifacts can be
automatically generated. Effects of single failure mode can be
identified by traversing the AFG of the process. The automatic
FTA approach proposed in [21] is employed to generate fault
trees for hazards identified by carefully checking FMEA
information.

Performing fault tree analysis for all potential failure modes
and effects in a process might be a huge undertaking and
sometimes a waste of time and energy. The effects which may
cause hazards should be identified and then further evaluated.
We suggest that after generating all potential failure modes and
their potential effects for a process, the effects of each failure
mode should be examined carefully. If the effect is critical, a
fault tree needs to be generated to find out the possible causes.
By evaluating the possible causes of such effects, actions can
be recommended to avoid the hazard. With our approach, such
recommended changes would be made to the process definition
which would then be reevaluated to assure that the problem had
been effectively addressed.

Our proposed approach focuses on the problems that can
arise though artifacts. Erroneous artifacts are probably the most
common way in which problems will propagate though a
process. There are other ways that this could happen however,
such as though the use of erroneous resources or the faulty
execution of a step that nonetheless does not contaminate the
output parameters of that step.

Figure 4. An example of generated fault tree

After being acquired, Little-JIL resources can be passed as
parameters like other artifacts [19]. Similarly, the artifacts
produced by one step might be subsequently used as resources
in another step. Therefore, faulty resources and resource
passing between different steps might lead to fault propagation
in the process. Also, as described in Section III, agents are
treated as a special kind of resource in Little-JIL, and therefore
errors introduced by agents should also be taken into account.
Without considering resource faults leads to incomplete FMEA
result. In other words, we need to determine the dependences
between parameters and resources. Thus, one part of our future
work should be finding out how resource fault affects the fault
propagation in Little-JIL process definitions.

Another limitation is that subsequent steps could be
dependent on a previous step being done correctly, where the
failure to do is not reflected in an artifact. If we create a
hypothetical output artifact to represent the erroneous step
behavior, this artifact would not propagate erroneous
information beyond this step. Therefore, we may want to find a
way to add fault propagations introduced by erroneous step
behavior to generate the FMEA information. This information
would be overwhelming, however, unless it is guided by the
analyst or some other external information.

In summary, automatically generating FMEA information
from Little-JIL processes addresses the major weaknesses of
traditional FMEA approaches. This information can be
examined to determine which are the events of major concern,
and these events can then be used to drive FTA. Thus, our
approach aims to coordinate FTA and FMEA, two
complimentary approaches, to help improve processes.

REFERENCES
[1] Department of Defense, Procedures for Performing a Failure Mode,

Effects and Criticality Analysis, MIL-STD-1629, Washington D.C.,
1980.

[2] N.G. Leveson, Safeware: System Safety and Computers, vol. 20,
Pubished by Addison-Wesley, 1995.

[3] Potential Failure Mode and Effects Analysis (FMEA), Automotive
Industry Action Group (AIAG), 4th ed., 2008.

[4] B. Chen, G.S. Avrunin, and E.A. Henneman, et al., “Analyzing medical
processes,” International Conference on Software Engineering(ICSE),
Germany, 2008, pp. 623-632.

[5] M.S. Raunak, L.J. Osterweil, A. Wise, L.A. Clarke, and P. Henneman,
“Simulating patient flow through an emergency department using
process-driven discrete event simulation,” Software Engineering in
Health Care(SEHC), Canada, 2009, pp. 73-83.

[6] E. Stalhandske, J. DeRosier, R. Wilson, and J. Murphy, “Healthcare
FMEA in the veterans health administration,”
http://www.va.gov/ncps/SafetyTopics/HFMEA/PSQHarticle.pdf,
unpublished.

[7] Failure Mode and Effects Analysis (FMEA): A framework for
proactively identifying risk in healthcare, 1st ed., vol.6. Toronto ON:
ISMP Canada, 2006.

[8] Example of a Health Care Failure Mode and Effects Analysis for IV
Patient Controlled Analgesia (PCA),”
http://www.ismp.org/Tools/FMEAofPCA.pdf, unpublished.

[9] J. Burgmeier, “Failure mode and effect analysis: an application in
reducing risk in blood transfusion,” Jt Comm J Qual Improv, 2002.

[10] G. Lars, L. Peter, and Y. Nisansala, and M.H. Lee, “An automated
failure mode and effect analysis based on high-level design specification
with behavior trees,” International Conference on Integrated Formal
Methods (IFM), 2005.

[11] Y. Papadopoulos, D. Parker, and C. Grante, “Automating the failure
modes and effects analysis of safety critical systems,” In: Int.
Symposium on High-Assurance Systems Engineering (HASE), IEEE
Computer Society, 2004, pp. 310‒311.

[12] Y. Papadopoulos, and M. Maruhn, “Model-based automated synthesis of
fault trees from Matlab-Simulink models,” Int’l Conf. on Dependable
Systems and Networks(DSN’01), 2001, pp. 77-82.

[13] C. Price, and N. Snooke, “An automated software FMEA,” Proceedings
of the International System Safety Regional Conference(ISSRC),
Singapore, 2008.

[14] H. Hecht, and R. Menes, “Software FMEA Automated and as a Design
Tool,”http://www.sohar.com/proj_pub/download/Software_FMEA_Aut
o_As_Design_Tool.pdf, unpublished.

[15] R.R. Lutz, and R.M. Woodhouse, “Requirements analysis using forward
and backward search,” Annals of Software Engineering, Special Volume
on Requirements Engineering, vol.3, 1999, pp. 459-475.

[16] N. Snooke, C. Price, and C. Downes, and A. Carol, “Automated failure
effect analysis for PHM of UAV,” Proceedings of the International
System Safety and Reliability Conference (ISSRC), April 2008.

[17] N. Hughes, E.X Chou, C.J. Price, and L. Mark, “Automating mechanical
FMEA using functional models,” Proc 12th Int. Florida AI Research
Soc. Conf(FLAIRS-99), 1999, pp. 394-398.

[18] A. Wise, A.G. Cass, B.S. Lerner, E.K. McCall, L.J. Osterweil, and S.M.
J Sutton, “Using Little-JIL to coordinate agents in software
engineering,” Automated Software Engineering Conference(ASE),
Grenoble, France, 2000, pp. 155-163.

[19] Little-JIL 1.5 Language Report, Department of Computer Science,
University of Massachusetts, Amherst, 2006, unpublished.

[20] W. E. Vesely, Fault Tree Handbook, U.S. Nuclear, Regulatory
Commission, 1981, pp. 34-44.

[21] B. Chen B, G.S. Avrunin, L.A. Clarke, and L.J. Osterweil, “Automatic
fault tree derivation from Little-JIL process definitions,” Proc. of the
Int’l Software Process Workshop and Int’l Workshop on Software
Process Simulation and Modeling (SPW/ProSim), 2006, pp. 150−158.

[22] B. Duwe, B.D. Fuchs, and J.H. Flaschen, “Failure mode and effects
analysis application to critical care medicine,” Critical Care Clinics,
vol(21), pp. 21-30.

[23] M. Apkon, J. Leonard, L. Probst, L. Delizio, and R. Vitale, “Design of a
safer approach to intravenous drug infusions: failure mode effects
analysis,” Qual Saf Health Care, vol(13), 2004, pp. 265–271.

[24] W. Adachi, A.E. Lodolce, “Use of failure mode and effects analysis in
improving the safety of i.v. drug administration, Am J Health-Syst
Pharm, vol(62), 2005, pp917–920.

