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ABSTRACT

Finite-state verification (FSV) techniques attempt to prove
properties about a model of a system by examining all pos-
sible behaviors associated with that model. This approach
suffers from the state-explosion problem, where the size of
the model or the analysis costs may be exponentially large
with respect to the size of the system. Using symbolic data
structures to represent subsets of the state space has been
shown to usually be an effective optimization approach for
hardware verification. The value for software verification,
however, is still unclear. In this paper, we investigate ap-
plying two symbolic data structures, Binary Decision Di-
agrams (BDDs) and Zero-suppressed Binary Decision Di-
agrams (ZDDs), in two FSV tools, LTSA and FLAVERS.
We describe an experiment showing that these two sym-
bolic approaches can improve the performance of both FSV
tools and are more efficient than two other algorithms that
store the state space explicitly. Moreover, the ZDD-based
approach often runs faster and can handle larger systems
than the BDD-based approach.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation—formal methods, model checking, validation
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1. INTRODUCTION

Finite-state verification (FSV) approaches attempt to prove
properties about a model of a system. These approaches
are not as general as theorem-proving, but they are usually
easier to use. They do suffer, however, from the so-called
state-explosion problem, where the size of the model or the
analysis costs may be exponentially large with respect to the
size of the system being analyzed.

There are a number of different techniques for dealing with
this state-explosion problem. Using symbolic data struc-
tures such as Binary Decision Diagrams (BDDs) to repre-
sent subsets of the state space [8,15] has been shown to
usually be an effective optimization approach for hardware
verification. The value for software verification, however, is
still unclear [2,11].

In this paper we report on our exploration of two symbolic
data structures, BDDs and Zero-suppressed Binary Deci-
sion Diagrams (ZDDs), applied to two different FSV tools,
LTSA [14] and FLAVERS [12]. We describe how the systems
to be verified are encoded as Boolean functions and how the
verification problem is solved via the Boolean operations.
Moreover, we present a BDD-based algorithm and a novel
ZDD-based algorithm for implementing a key Boolean op-
eration used in the verification. We demonstrate that these
two symbolic approaches can improve the performance of
both FSV tools and are more efficient than the tools’ native
algorithms that store the state space explicitly. In addition,
we find that on average, the ZDD-based approach uses only
60% as much time as the BDD-based approach in LTSA
and 71% in FLAVERS, and can often handle larger systems
than the BDD-based approach. Based on these experimen-
tal results, we believe that it would be worthwhile to explore
applying this ZDD approach to other FSV techniques.

In the next two sections of this paper, we provide an
overview of LTSA and FLAVERS so that the reader can
understand how the verification problem is encoded using
Boolean functions and solved by Boolean operations. Sec-
tions 4 and 5 describe how BDDs and ZDDs, respectively,

not made or distributed for profit or commercial advantage and that copies are applied in these two FSV tools. Section 6 discusses our
bear this notice and the full citation on the first page. To copy otherwise, to experimental methodology and Section 7 presents and ana-
republish, to post on servers or to redistribute to lists, requires prior specific lyzes the experimental results. Section 8 describes related

permission and/or a fee.
ICSE’'06,May 20-28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005$5..00.

work, and we conclude in Section 9 with a summary of the
results and a discussion of future work.



2. LTSA OVERVIEW

The Labeled Transition System Analyser (LTSA) [14] is
an FSV tool for modeling and analyzing the behavior of sys-
tems represented by labeled transition systems. In LTSA; a
system is modeled by a set of interacting processes, where
each process is described in the Finite Process Language.
This description is then translated to a Finite State Au-
tomaton (FSA) representation. Formally, an FSA is a five-
tuple, F' = (S5,%, 4, s0, s%), where S is a finite set of states,
Y., the alphabet, is a finite set of events, § : S X ¥ — S'is a
total transition function, sO is a unique start state, and s°
is a unique ERROR state such that any transition from this
state is a self-loop.

An FSA basically models sequences of events that are al-
lowed to happen in a process. These sequences of events
include only those that start at the start state and do not
reach the ERROR state of the FSA. Figure 1(a) and (b)
show an example system composed of two processes, a client
and a server, where the client process must get the lock be-
fore writing and must release the lock after writing. To
simplify the illustration, the ERROR state of each FSA and
all transitions ending with the ERROR state are not shown
explicitly in the figures.

acquireLock acquireLock acquireLock write

O™ -0~
releaseLock

releaseLock releaseLock

(b) The server FSA (c) The composite FSA

(a) The client FSA
Figure 1: A simple labeled transition system

The behavior of a concurrent system is represented by the
composition, or cross-product, of all process FSAs in the sys-
tem. Formally, the composition of n FSAs, Fiy, Fa, ..., Fy,
is also an FSA, FF = (S,%,A,5%,5°), where S = S; x
Sz X o X Spy B = Uycien, Ziy 8° = (501,502, ..., 50,), 5,
the ERROR state of the FSA, is formed by merging the
state set {(s1,s2,...,8,)|F(1 < ¢ < n) : s = s}, and
A: 8 x % — §is defined as follows: A((sy, s2, vy Sn),€) =
(61(s1,€),02(s2,€), ..., 0n(sn, €)) where e € . Note that for
FSA F; and event e, if e € & — 3;, then 8;(sq, €) = s;.

Each state in the composite FSA, called a composite state,
is a tuple of states, with one state from each process FSA.
The application of the transition function to event e and
a composite state is equivalent to the application of the
transition function to event e and the corresponding state
in each process FSA. Therefore, the communication among
processes can be viewed as synchronous since the transitions
in each process fire atomically. Figure 1(c) shows the com-
posite FSA of the two FSAs shown in (a) and (b).

LTSA can check a system description for violation of safety
properties and for deadlock. A safety property in LTSA is
specified as an FSA in the same way as a process except
for the ERROR state. In a process FSA, any sequence of
events reaching the ERROR state does not belong to the
behavior of the process. In a safety property FSA, however,
a sequence of events that reaches the ERROR state repre-
sents a violation of the property. When checking whether
a system is consistent with a safety property, the sequences
of events that reach an ERROR state of any process FSA
will be excluded from consideration. For all other sequences
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of events, if any of them reaches the ERROR state of the
property FSA, then a violation is reported. For the sake of
clarity, the ERROR state in a property FSA is called the VI-
OLATION state. To check a safety property, the property
FSA is incorporated into the composite FSA in the same
way as process FSAs.

A deadlock happens in a system when there is a non-
ERROR composite state from which all transitions go to
the ERROR composite state. This check can be done by
simply examining each non-ERROR composite state.

Checking for violations of safety properties or for deadlock
can be done on-the-fly while computing the composite FSA
of all process FSAs and the property FSA. A commonly used
method for this check is to use a search algorithm. In such
an algorithm, the states that have already been encountered
are stored to avoid duplicate examinations. The problem
here is that the number of composite states explored can
be exponentially large with respect to size of the system.
Hash tables have often been used for storing these states,
but performance degrades when handling a large number of
states.

3. FLAVERS OVERVIEW

FLAVERS/Ada' [12] is an FSV tool that uses data-flow
analysis techniques to verify that all possible executions of a
system are consistent with a property. The property, which
represents desirable sequences of events that should occur
on all of the executions of the system, is represented by an
FSA.

The model of the system used in FLAVERS, called a Trace
Flow Graph (TFG), is automatically derived from the sys-
tem description (e.g., the source code). The TFG basically
represents the control flow among events in the system. For
a sequential system, this model would be an annotated con-
trol flow graph, where each node in the graph is labeled
by at most one event. To model a concurrent system, each
task is represented by an annotated control flow graph and
then some modifications are made to model synchronization
and the interleaving of events. In addition, a TFG has two
special nodes, the initial node and the final node, which rep-
resent the entry of the program and the termination of the
program, respectively.

The TFG model is imprecise since it over-approximates
the event sequences allowed by the system. To improve pre-
cision, an analyst can add constraints to eliminate spurious
event sequences. A constraint is also represented by an FSA
and may be used, for example, to track the value of a vari-
able or to model the program counter for a task.

Given the TFG, the property and the constraints, FLA-
VERS uses a fixed-point algorithm, called state propagation
to determine what tuples should be associated with each
node in the TFG, where a tuple is a vector of states with
one state from each FSA. Each path through the TFG de-
termines a sequence of events. A tuple ¢ is associated with a
node n if, for some path from the initial node to n, the cor-
responding sequence of events drives the property FSA and
the constraint FSAs to the corresponding states that com-
pose t. The algorithm is a typical forward-flow, any-path
data-flow analysis problem. To determine whether the prop-
erty holds, FLAVERS checks the set of tuples associated

LA version of FLAVERS that handles Java programs is un-
der development.



with the final node. Tuples in this set that contain any non-
accepting state of any constraint FSA are excluded from this
check. After excluding these, if there is a tuple including a
non-accepting property FSA state, then FLAVERS returns
inconclusive, meaning that the property may be violated.
(Since the model may overapproximate the behavior of the
actual system, the property might be violated in the model,
but not in the actual system.) Otherwise, FLAVERS re-
turns conclusive. The current implementation of FLAVERS
does not check for deadlock.

The state propagation algorithm constructs and stores all
the tuples associated with each node of the TFG. As with
LTSA, these tuples are stored in a hash table, but as men-
tioned above, this is not suitable for very large systems.
Considerable research has been devoted to finding alterna-
tive data structures. One promising direction, as described
in the following sections, is to use a symbolic data structure
to replace the hash table.

The state propagation algorithm can be thought of as ex-
ploring the cross-product of the TFG, the property FSA, and
all constraint FSAs, where each state in the cross-product
FSA is a node-tuple pair. jFrom this point of view, the basic
approach of FLAVERS is similar to that of LTSA, although
the detailed implementation is quite different. We there-
fore focus on LTSA as we explain how the symbolic data
structures are applied in the following sections.

4. APPLYING BDDS

In this section, we give a brief introduction to BDDs and
then describe their application in FSV using LTSA.

4.1 Background on BDDs

A BDD [7] is a directed acyclic graph that can represent a
Boolean function. BDD is derived from the Binary Decision
Tree (BDT), which can also represent Boolean functions.
Figure 2(a) shows an example of a BDT representation.

1

(©)

Figure 2:
representation for the Boolean function f(z,y,z)
(mzA-zZ)V(TAYyAz)

A BDT (a), BDD (b), and ZDD (c)

A BDT representing a Boolean function comprises two
kinds of vertexes, nonterminal vertexes and terminal ver-
texes, as denoted in Figure 2 (a) by the circular and rect-
angular nodes, respectively. Each nonterminal vertex p has
a labeled Boolean variable, var(p), and two children, low(p)
and high(p). Child low(p) is connected by the low-edge of
p, shown as a dashed line in Figure 2 (a), and child high(p)
is connected by the high-edge of p, shown as a solid line in
Figure 2 (a). Each terminal vertex is labeled by either 0
or 1. Depending on its label, a terminal vertex is called a
0-terminal or 1-terminal vertex.
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A Boolean function composed of n Boolean variables has
2" assignments. We call the assignments under which the
function value is one 1-assignments, while assignments mak-
ing the function zero are 0-assignments. A BDT represen-
tation for the function has 2" paths, where each path cor-
responds to an assignment of the function. In each of these
paths, there are n nonterminal vertexes, each of which is
labeled by a different Boolean variable. In the correspond-
ing assignment of the path, the value of variable v is de-
termined by which edge of the nonterminal vertex labeling
v is in the path: the low-edge means that v = 0 whereas
the high-edge means v = 1. The label of the terminal ver-
tex in a path indicates the value of the function under the
corresponding assignment. In Figure 2 (a), for example,
the path “1 — 2 — 5 — 11” represents the assignment
fle=0,y=1,2=1)=0.

Usually, a total ordering < is put over all Boolean vari-
ables in a BDT. This means that for any nonterminal vertex
p and q, if q is a child of p, then var(p) < var(q) must hold.
In Figure 2 (a), for example, the variables are ordered as
r<y<z.

A BDD is derived from a BDT by applying the following
three reduction rules: Rule 1 merges all O-terminal vertexes
and merges all 1-terminal vertexes. Rule 2 shares common
sub-graphs. Specifically, when two nonterminal vertexes are
the same in that they have the same labeled variable and
the same children, then one of them can be eliminated and
all its incoming edges redirected to the other one. Rule 3
removes “don’t care” nonterminal vertexes. A “don’t care”
nonterminal vertex is one whose two children are the same.
When such a vertex is eliminated, its incoming edges are
redirected to its child. The basic idea of Rule 3 is that
variables that do not affect the functional assignments do
not need to be stored in the BDD representation. Given
a BDT, these three rules are applied recursively from the
bottom-up. The final resulting BDD is called an ordered
reduced BDD. From now on, all BDDs we discuss will be
ordered reduced BDDs. Figure 2 (b) shows an example of
the BDD representation derived from the BDT shown in
Figure 2 (a).

The variable ordering selected for a BDD representation
is very important to the efficiency of the representation [7].
To find the optimal ordering for a BDD representation, how-
ever, is an NP-complete problem [6]. We discuss the heuris-
tic used in our work to find a good ordering in Section 6.

4.2 Using BDDs with LTSA

A BDD is just a data structure for representing Boolean
functions. Thus, to use BDDs in FSV, the verification prob-
lem must be encoded using Boolean functions. More specif-
ically, the following problems need to be addressed: how
to encode FSA states and transitions; how to compute the
transition functions; and how to check for safety property
violation and deadlock, by using Boolean functions. We now
describe the approaches we used for each of these.

e Encoding the FSA States. Given an FSA with n
states (not counting the ERROR state in a process FSA but
counting the VIOLATION state in the property FSA), we
use [log, ] Boolean variables to encode these states. Each
state is represented by a Boolean function that has only one
l-assignment. For example, for the client FSA shown in
Figure 1 (a), 2 Boolean variables, z; and z2, are enough to
encode the 3 states in the FSA. State 1 in this FSA can be



represented by the Boolean function f.1 = —x1 A—z2, which
can be 1 only when z; =0 and z2 = 0.

After the states in each FSA are encoded, the composite
state s = (s1, 82, ..., Sn) is encoded by fs = /\195” fF; s
where fr, s, is the Boolean function for state s; in F;. For
a set of FSA states, the Boolean function is simply the dis-
junction of Boolean functions for each state in the set.

e Encoding the Transitions. A transition has three
components: a source state, a destination state, and an
event. To encode a transition, two sets of Boolean variables
are used in order to distinguish the source state and the
destination state. The event is not encoded explicitly using
Boolean variables. Instead, transitions triggered by different
events are represented by different Boolean functions.

The two sets of variables used in encoding transitions are
X, the source variable set used for encoding source states,
and X', the destination variable set used for encoding des-
tination states. Each variable x € A has one and only one
paired variable ' € X’ and vice versa.

The Boolean function for a transition from s to s’ is sim-
ply fs A f.,, where fs is the Boolean function for state
s using the source variables and f!, the Boolean function
for state s’ using the destination variables. For transition
A((s1,82,...,80),€) = (s1,85,...,5,) in a composite FSA
where s = ;(si, e), its Boolean function is Fis, s,,...s,).e =
Pizin Frod NAszizn Fhot) = Niciznlris A T,
where fF, s, is the Boolean function encoding state s; using
source variables and f;%s; is the Boolean function encoding

state s} using destination variables.

The Boolean function for all transitions in a composite
FSA composed of n FSAs is built in three steps. First, a
Boolean function for all transitions triggered by event e in
each FSA F; is constructed. This function is denoted by
Fi(e). Second, the Boolean function F(e) = A; ., Fi(e)
is built to encode all transitions in the composite FSA that
are triggered by event e. Third, the Boolean function for all
transitions in the composite FSA is 7 = \/ .5 F(e). Note
that which transitions are fired by which event cannot be
distinguished using the function F, but that information is
not needed for checking for violations of safety properties
and for deadlock, as shown below.

e Computing the Transition Functions. A key step
in exploring reachable composite states is to compute all
states reachable by transitions starting from a given source
state. With states and transitions encoded in Boolean func-
tions, this computation should be accomplished by operat-
ing on these functions. Indeed, three operations are used for
this computation [15].

First, given a Boolean function fs encoding a composite
state s and the Boolean function F encoding all transitions,
the and operation is used to compute fsm = fs NF. Second,
the source variables need to be removed from the function
fs[l]. The operation to achieve this is the existential quantifi-
cation operation, 3, which is defined as 3, f = flz 0V flz1,
where f|z—o is the Boolean function derived from f by let-
ting = 0 and f|z—1 is defined similarly. Applying this
operation, we get the Boolean function fsm = a\mexfi”.
The function fsm actually represents all destination states
of s but uses destination variables. Finally, the replace op-
eration is used to replace every destination variable in fsm
with its corresponding source variable, yielding the function

fiB = replace(fs[2], X — X).

155

When BDDs are used as the data structure for represent-
ing Boolean functions, these three operations can be imple-
mented efficiently [7]. Furthermore, as mentioned in [15],
the and operation and the existential quantification opera-
tion can be combined together into the andFEzists operation,
which can often improve the performance substantially be-
cause it avoids creating the BDD representing fs[l]. In addi-
tion, we notice that the replace operation can also be com-
bined into the andFEzists operations, further eliminating the
temporary BDD for fs[z]. We give this BDD algorithm in
Figure 3.

The algorithm in Figure 3 is a recursive procedure. Lines
1 to 3 compute the base cases. Lines 7 to 19 carry out the
and operation. At line 20, when v is a destination variable,
the replace operation is computed. In lines 24 and 25, when
v is a source variable, the existential quantification operation
is computed. Note that this algorithm computes destination
states for a set of source states at the same time.

To ensure that the resulting BDD is still ordered, a vari-
able ordering restriction is imposed. This requires that each
destination variable immediately follows its paired source
variable. Without this restriction, the steps at lines 21 to
23 may break the variable ordering. This restriction is often
used in other BDD-based FSV tools.

e Checking for Violations of Safety Properties and
for Deadlock. To check for violations of safety properties,
a Boolean function, denoted by V), is created to represent
all VIOLATION states from each property FSA. Note that
variables used for encoding process FSAs are not included
in V.

To check whether a composite state s violates a property,
one can compute fs AV and then check whether the result is
equal to L, the function with no 1-assignments. If fs AV =
1, it means that the state s contains no VIOLATION states
and thus no violation will be reported. Otherwise a violation
is found.

For the deadlock check, another Boolean function, de-
noted by D, is created to represent all composite states at
which no deadlock happens. This function is built in a way
similar to the function that encodes all transitions. For a
system with n FSAs, one first identifies all states in each
FSA F; such that these states can go to a non-ERROR
states by a transition triggered by event e. Let fi(e) de-
note the function representing these states in F;. Then, the
Boolean function f(e) = A, .,.,, fi(e) is built to encode all
composite states that can go to a non-ERROR composite
state by a transition fired by e. At last, D = \/ . f(e),
which represents all composite states at which no deadlock
happens, since they all can go to at least one non-ERROR
composite state by some transition.

To check whether deadlock occurs at a composite state s,
one can simply compute fs AD. If the result is equal to fs, it
means that state s is one of the states represented by D and
thus no deadlock happens at state s. Otherwise a deadlock
is reported.

There are two differences between FLAVERS and LTSA
at this point. First, as mentioned above, FLAVERS does
not check for deadlock. Second, when checking a property
violation, FLAVERS considers every element included in a
node-tuple. Indeed, the function V in FLAVERS represents
all node-tuples such that the node is the final node of the
TFG, the property state in the tuple is non-accepting and
all constraint states in the tuple are accepting.



//Given a BDD p encoding a set of source states and
//BDD ¢t encoding all transitions of the system,
//return another BDD r encoding all destination states
//of source states represented by p

//A computed table is used to store results of
//previous computations

APPLYTRAN(p,t) {
1 if p is the O-terminal vertex, return 0O-terminal vertex
2 if t is the O-terminal vertex, return O-terminal vertex
3 if t is the 1-terminal vertex, return l-terminal vertex
4 if the computed table contains the entry {p,t},
5 return the stored result
6 end if
//The following steps carry out the and operation
7 if p is the 1-terminal vertex or var(p) > var(t)
let 0 =APPLYTRAN(p, low(t))
9 let r1 =APPLYTRAN(p, high(t))

10 let v = var(t)

11 else if var(p) < var(t)

12 let 0 =APPLYTRAN(low(p),t)

13 let r1 =APPLYTRAN(high(p), t)

14 let v = var(p)

15 else//var(p) = var(t)

16 let 0 =APPLYTRAN(low(p), low(t))
17 let r1 =APPLYTRAN(high(p), high(t))
18 let v = var(p)

19 end if

20 ifved’

//If v is a destination variable,
//do the replace operation

21 let v2 € X be the paired variable of v

22 find or make a BDD node r such that:
23 var(r) = v2 and low(r) = r0 and high(r) = rl
24 else

//Else v is a source variable,
//do the existential quantification operation

25 let » = or(r0,rl)
26 end if
27 put ({p,t},r) into the computed table

28
}

return r

Figure 3: An algorithm that computes transition
functions using BDDs

The algorithm that checks for safety property violation
and for deadlock in LTSA using BDDs is given in Figure 4.
This algorithm keeps computing reachable composite states
until no new states are encountered. The check for violation
of safety properties or deadlock is executed whenever a new
set of composite states is computed. A difference between
this algorithm and the standard search algorithm is that
this algorithm performs computations on a set of composite
states, not just one state, at a time.

The performance of this algorithm, with BDDs as the
underlying data structure, is highly dependent on the effi-
ciency of the BDD representations. There are some variants
of BDD that are more efficient than BDDs in certain situa-
tions. In the hope of finding a more compact data structure,
we explored using ZDDs to replace BDDs in the algorithm
in Figure 4.
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Build the following BDDs:
fs0: represents the composite start state
F: represents all transitions in the system
V: represents all VIOLATION states in property FSAs

D: represents all composite states with no deadlock
Let fuisitea be the BDD representing all states
that have been encountered
fmsited = f§0
while true
f1 = APPLYTRAN (fvisited, F)
if f1AV # L1, return Property Violated
if f1AD # f1, return Deadlock
if f1 == fuisitea, return No Violation and no Deadlock

fmsited = fl \% fﬂisited
end while

Figure 4: An algorithm that checks safety properties
and deadlock using BDDs

5. APPLYING ZDDS

We now discuss how a ZDD [16] is used to represent a
Boolean function, focusing on the differences between a ZDD
and BDD representation. We also describe the application
of ZDDs in the context of LTSA.

5.1 Background on ZDDs

A 7ZDD, like a BDD, can represent a Boolean function
and is also derived from a BDT. The fundamental difference
between a ZDD representation and a BDD representation
lies in the difference in the third reduction rule. Rule 3’ for
deriving ZDD representations removes a nonterminal vertex
p when high(p) is a O-terminal vertex. After this vertex
is removed, all its incoming edges are redirected to low(p).
Figure 2 (c) shows a ZDD representation derived from the
BDT in Figure 2 (a) by applying Rule 1, 2 and 3’.

The rationale behind Rule 3’ is that a Boolean function
can be represented by storing its 1-assignments only. More-
over, for each assignment, only variables that are assigned
to 1 need to be stored. Basically, each path in a ZDD repre-
sents a functional assignment in the same way as the paths in
a BDT or BDD do. Not every functional assignment, how-
ever, has a corresponding path in its ZDD representation.
Assignments with no corresponding paths in the ZDD must
be 0O-assignments. Moreover, not every variable is included
in a path of a ZDD. Missing variables in a BDD represen-
tation, called “don’t care” variables, may have value 0 or 1
in the corresponding assignments. In contrast, missing vari-
ables in a ZDD representation must be assigned to 0 in the
corresponding assignment under the ZDD semantics. In the
example shown in Figure 2 (c), there is no path correspond-
ing to the O-assignment f(z = 1,y = 0,z = 1) = 0. For
the path “1 — 3 — 9” in this figure, variable z is missing
in the path, so the path actually represents the assignment
flz=1,y=0,2=0) =0.

To see why a ZDD represents the Boolean function rep-
resented by the BDT from which the ZDD is derived, we
need only look at Rule 3’, since Rule 1 and Rule 2 do not
change any path in the graph and thus do not change the
functional assignments. Consider all paths in the graph that
pass through nonterminal vertex p where high(p) is the 0-
terminal vertex. These paths include either the high-edge of
p or the low-edge of p. In the former case, these paths must
reach the O-terminal vertex, which means that they repre-
sent O-assignments. Therefore, the high-edge of p can be



removed according to the rationale described above. In the
latter case, no matter which terminal vertex these paths end
with, the variable var(p) must be assigned to 0 in the cor-
responding assignments. Therefore, the low-edge of node p
can also be removed. As a result, vertex p can be eliminated
from the graph, as defined in Rule 3’.

Like BDDs, the ZDDs we consider are also ordered and
reduced. Again, the variable ordering still plays a critical
role in affecting the efficiency of the ZDD representation.

5.2 Using ZDDs with LTSA

To use ZDDs to check for safety property violations and
for deadlock, one needs to solve the same problems as for
BDDs. Some of the solutions to these problems for ZDDs,
including how to encode states and transitions and how to
check for deadlock, are the same as those for BDDs and
are not repeated here. We describe below the methods for
ZDDs that are different from those for BDDs, namely, how
to compute transition functions and how to check for safety
property violations.

e Computing the Transition Functions. The algo-
rithm described in Figure 3 that uses Boolean functions and
BDDs to compute transition functions is certainly applicable
for ZDDs, although the underlying data structure is changed
from BDDs to ZDDs. To use that algorithm with ZDDs,
however, one must take into account the different semantics
of the BDD and ZDD representations. Specifically, as shown
in Figure 3, when computing the and operation between p
and t using ZDD representations, note that p contains vari-
ables from X only, whereas t contains variables from both
X and X’. Under the semantics of ZDDs, missing variables
in a ZDD mean that those variables are considered to have
value 0 in their functional assignments. As a result, simply
computing p At using their ZDDs does not get the right an-
swer. A naive approach for solving this problem is to add
variables from X’ to the ZDD p. This approach is plausible
but not efficient, because it increases the size of the ZDDs
and thus degrades performance. A better solution is to de-
sign a new operation that treats the ZDD p differently. The
idea is that the set of variables defining a Boolean function
forms the domain set of the function. In a ZDD represen-
tation for a Boolean function, those missing variables are
considered to have value 0 only when they belong to the do-
main of the Boolean function. Variables not in this domain
set, although they are definitely missing in the ZDD, should
be considered as “don’t care” variables. In our case, the set
X is the domain of p and variables from X' are treated as
“don’t care” variables.

Accordingly, we can now change the algorithm shown in
Figure 3 so that it can be used with ZDDs. Figure 5 gives
the adapted algorithm. Lines 1 to 5 of this figure compute
the base cases of the recursive procedure. In lines 9 to 21,
the procedure handles the case where ¢ is the 1-terminal
vertex or var(t) € X, whereas the case where var(t) € X' is
handled by lines 22 to 29.

For the case where ¢ is the 1-terminal vertex or var(t) € X,
the procedure computes the and operation between p and ¢,
and then computes the ezistential quantification operation.
There are three sub-cases. First, when ¢ is the 1-terminal
vertex or when var(p) < var(t) (lines 10 to 12), only the
low-edge of p needs to be considered. This is because for
all paths including the high-edge of p, their corresponding
assignments must assign var(p) to 1. On the other hand,
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var(p) does not appear in ¢, which means that var(p) is
always 0 in all assignments represented by t. Therefore,
the intersection between assignments represented by ¢ and
those represented by p including the high-edge of p is simply
empty. Also because of this, the ezistential quantification
operation ignores the high-edge of p. The second sub-case
(lines 13 to 15) is symmetric to the first one. In the third
sub-case (lines 16 to 21), both children of p should be con-
sidered.

When wvar(t) € X', the procedure first computes the and
operation (lines 24 and 25) and then the replace operation
(lines 26 and 27). Note that var(t) in this case is a variable
from X’ and is a “don’t care” variable in p. Therefore, both
the high-edge and the low-edge of t need to be considered.

As in the BDD algorithm in Figure 3, this ZDD algorithm
also requires each destination variable to be ordered imme-
diately after its paired source variable.

e Checking for Safety Property Violations. The
approach to checking for a safety property violation with
ZDDs is essentially similar to the one used with BDDs. The
difference here again involves the missing variables. Like
the method used with BDD, the function V is first built to
encode all VIOLATION states. This ZDD representation
for this function contains only variables used for encoding
property FSAs. Then, fs AV is computed with ZDDs. Here,
variables used for encoding process FSAs should be treated
as “don’t care” variables with respect to the ZDD represent-
ing V, just like how destination variables are handled when
computing the transition functions.

Note that this problem does not exist in FLAVERS. As
explained before, the function ¥V in FLAVERS includes infor-
mation for every element of a node-tuple. Thus, the domain
set of function V includes all source variables.

To check for violation of safety properties or for deadlock
with ZDDs, we can simply reuse the algorithm shown in Fig-
ure 4. The performance difference between the BDD-based
algorithm and the ZDD-based one comes mainly from the
compactness difference between these two representations.

6. EXPERIMENTAL METHODOLOGY

We evaluated six different algorithms in our experiment.
For LTSA, we compared the native search algorithm of the
tool and the BDD-based and ZDD-based algorithms. For
FLAVERS, we compared the native state propagation al-
gorithm and the BDD-based and ZDD-based algorithms.
We implemented the BDD-based and ZDD-based algorithms
using the JavaBDD [13] package. We built a lightweight
BDD/ZDD package from the JavaBDD package, dropping
some features such as variable reordering. In addition, we
implemented this package in a consistent way for BDDs
and ZDDs in that both diagrams use the same hash func-
tion, the same cache mechanism, the same memory manage-
ment strategy and the same data structure for representing
BDD/ZDD nodes.

As mentioned before, the variable ordering is critical to
the efficiency of both representations. Roughly speaking,
there are two approaches to finding a good ordering. A static
approach uses heuristics to choose an ordering that is main-
tained throughout the analysis. Dynamic approaches, on
the other hand, modify the ordering as the various BDDs or
7ZDDs are constructed. We use a static approach, based on
the heuristic called FORCE [1]. The idea of this heuristic is



/Given a ZDD p encoding a set of source states

/and ZDD t encoding all transitions of the system,
/return another ZDD r encoding all destination states
/of source states represented by p

/A computed table is used to store results of
/previous computations

S~ T

APPLYTRAN(p,t) {
1 if p is the O-terminal vertex, return 0O-terminal vertex
2 if t is the O-terminal vertex, return O-terminal vertex
3 if both p and t are the 1-terminal vertex
4 return 1-terminal vertex
5 end if
6  if the computed table contains the entry {p,t}
7 return the stored result
8 end if
9 if ¢ is the 1-terminal vertex or var(t) € X
//If t is the 1-terminal vertex
//or var(t) is a source variable,
//do the and operation and
//then the existential quantification operation
10 if ¢ is the 1-terminal vertex or var(p) < var(t)
11 return APPLYTRAN(low(p),t)
12 end if
13 if p is the 1-terminal vertex or var(p) > var(t)
14 return APPLYTRAN(p, low(t))
15 end if
16 if var(p) = var(t)
17 let 70 =APPLYTRAN(low(p), low(t))
18 let 71 =APPLYTRAN(high(p), high(t))
19 let r = or(r0,71)
20 put ({p,t},r) into the computed table
21 end i
22 else // var(t) € X'
//Else var(t) is a destination variable,
//do the and operation and
//then the replace operation
23 let v € X be the paired variable of var(t)
//Now wvar(t) is treated as a “don’t care” variable
24 let 70 = APPLYTRAN (p, low(t))
25 let 11l = APPLYTRAN (p, high(t))
26 find or make a ZDD node r such that:
27 var(r) = v and low(r) = r0 and high(r) =rl
28 put ({p,t},r) into the computed table
29 end if
30 returnr

}

Figure 5: An algorithm that computes transition
functions using ZDDs

to try to put variables that are related to each other as close
together as possible. This heuristic is domain-independent,
meaning that one must give a measure for evaluating how
closely two variables are related to each other. In our case,
before we use this heuristic, we first put two restrictions on
the ordering. First, as mentioned before, we order every
destination variable right after its paired source variable.
Second, we group together all variables encoding one pro-
cess or property FSA. As explained in [3], this restriction
is suggested by the fact that any state in an individual FSA
depends more on states from the same FSA than states from
other FSAs. With these two restrictions, we now only need
to find a good ordering for all FSAs in a given system. Vari-
able ordering within each FSA group is not considered here,
because we think that that ordering is not so important
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given that variables in a single FSA depend heavily on each
other. To apply FORCE in this situation, we define a metric
to evaluate how closely one FSA is related to another. This
metric considers the number of events shared by two FSAs.
The more shared events between two FSAs, the more closely
related these two FSAs are considered. The FORCE heuris-
tic is applied in the BDD-based and ZDD-based algorithms
in the same way.

We use 9 systems for LTSA and 9 systems for FLAVERS.
Table 1 gives the complete list of these systems. All sys-
tems are scalable, allowing an evaluation of performance as
the size of the system increases. In addition, the systems
we examined are free of deadlock and all the properties we
checked hold. We chose to examine only properties that
hold because the checking algorithms stop exploration once
a deadlock or violation is found. Therefore, the number of
states explored in such systems depends on the algorithm
used. When the property holds, however, all the algorithms
need to consider all reachable states of the system and, thus,
the number of such states does not depend on the algorithm.
This makes our comparison among algorithms easier.

To evaluate these algorithms on each system, we first set
the memory used to be 512MB, and then ran each algo-
rithm on the given system, repeatedly increasing the size
of the system. When the algorithm ran out of memory at
a specific size of the system, or when the algorithm had
run for 24 hours, we stopped running the algorithm on this
system. As a result, we use two metrics to evaluate these
algorithms. The first one is the runtime, which measures
the performance of these algorithms straightforwardly. The
second one is the size of the largest system that an algorithm
can handle with a memory limit (512MB) and a time limit
(1 day). This metric can be used to evaluate the memory
used by an algorithm.

There are several threats to the validity of our results.
First, the selection of example systems may bias the re-
sults. Most of our systems represent somewhat unrealistic
programs that have been constructed to illustrate issues in
the design of concurrent systems. These examples may not
adequately represent the range of systems to which the FSV
tools might be applied. A second threat arises from our re-
striction to systems for which the properties hold. As a con-
sequence, the results reported in the paper may not reflect
the performance of these algorithms in cases where the prop-
erties are violated. Finally, we only considered one approach
to variable ordering for the BDDs and ZDDs. Therefore, it
is possible that results inconsistent with ours may be found
for some systems with other variable orderings.

7. EXPERIMENTAL RESULTS

All the inputs and results from our experiment are avail-
able at http://laser.cs.umass.edu/symbolic.

Table 1 shows the largest size each algorithm can handle
for each system under the specified time and memory limits.
Also shown in this table is the number of reachable states
for the largest size of each system. ;From this table, we
can see that symbolic algorithms can handle much larger
systems than non-symbolic algorithms in all except one case.
This shows that both symbolic data structures are more
efficient than the hash table in both LTSA and FLAVERS.
In addition, it can be seen that the ZDD-based algorithm is
better than the BDD-based algorithm in terms of the largest
size an algorithm can handle. In 8 out of 9 systems in LTSA
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Figure 7: Experimental results using LTSA on

two systems. “ZDD” and “BDD” represent the
ZDD-based and BDD-based algorithm, respectively,
“Search” represents the search algorithm used in
LTSA.

and 5 out of 9 systems in FLAVERS, as shown in Table 1,
the ZDD-based algorithm can handle larger sizes than the
BDD-based algorithm under the given resource limits.

The graphs in Figure 6 show the ratio of runtime for the
ZDD-based algorithm to the runtime of the BDD-based al-
gorithm for those cases where both algorithms can finish
within our time and memory limits. Each point in the
graphs gives the ratio for a single subject, a pair consisting of
a system at a particular size and a property. The graph on
the left shows the ratios for LTSA and the one on the right
shows the ratios for FLAVERS. We see that the ZDD-based
algorithm almost always runs faster than the BDD-based
algorithm. On average, the ZDD-based algorithm uses only
60% as much time as the BDD-based algorithm in LTSA
and 71% in FLAVERS.

Figure 7 shows the runtimes for each algorithm used with
LTSA for two examples. In Figure 7, the left vertical axis
in each graph indicates the runtime information while the
right vertical axis indicates the number of states explored.
The horizontal axis indicates the size of the given system.
The crosses show the number of reachable states at each
size of the system, which is independent of the algorithm.
Each curve in a graph shows the runtime of an algorithm as
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the size of the system increases. These curves stop at the
largest size the algorithm can handle with the given time
and memory limits. The first graph in the figure shows the
results for the Santa Claus system [5], which are typical of
what we saw with both LTSA and FLAVERS. The native
search algorithm is superior for small sizes, but as the size in-
creases, both symbolic algorithms surpass the native search
algorithm. The ZDD-based algorithm runs somewhat faster
than the BDD-based algorithm and can scale to larger sizes
within the time and memory limits we imposed.

The second graph in Figure 7 show the results for version
one of the decomposed Chiron system with LTSA, one case
in our experiment in which an algorithm that stores indi-
vidual states was superior to the symbolic algorithm. (This
did not occur with FLAVERS.) Examination of this system
reveals that it has a relatively small number of reachable
states because the processes in the system are highly syn-
chronized.

To see why the ZDD-based algorithm outperformed the
BDD-based algorithm, we examined the sizes of the repre-
sentations in these algorithms. Not surprisingly, the ZDD
representations are almost always more compact than the
BDD representations. As shown in [16], a ZDD representa-
tion tends to be more efficient than a BDD representation for
a sparse combination set, where a combination for a given
set S is simply a subset of S. By letting S be the domain set
of a Boolean function, a functional assignment can be repre-
sented by a combination of S that includes Boolean variables
whose values are 1 under that assignment. Thus, a Boolean
function can be represented by a combination set that rep-
resents all 1-assignments of the function. Based on this, we
may expect ZDDs to be more efficient than BDDs when rep-
resenting Boolean functions with sparse l-assignments. In
our experiments, the Boolean functions representing reach-
able composite states usually have a small number of 1-
assignments, compared with the number of all possible as-
signments those functions can have. Whether the distribu-
tion of these l-assignments is actually sparse, however, is
not clear. More work regarding the distribution of the 1-
assignments of a Boolean function needs to be done.

Our results suggest that the ZDD-based algorithm is the
best overall among the algorithms we evaluated in terms of
both time and space and it should be the first algorithm to
consider when conclusive results are expected.

8. RELATED WORK

There are many BDD-based FSV tools, such as [4, 10].
The main difference between our work and these FSV tools
is the use of ZDDs.

ZDDs have been used in many domains, such as SAT
solvers [9], and arithmetic polynomial manipulation [16].
ZDDs have also been used in verification [17]. In that work,
both BDD and ZDD representations are used and compared
in model checking CTL properties of Petri nets. Several
symbolic approaches using BDDs and ZDDs to manipulate
Petri nets are proposed in that paper, and the experimental
results suggest that ZDDs are more suitable.

A number of other investigators have compared the perfor-
mance of different FSV tools, including those that use sym-
bolic algorithms and non-symbolic algorithms [2,11]. Since
different tools use different modeling languages to describe
the system, there is no guarantee that the models used with
different tools are really equivalent. This factor may sig-



Algorithms LTSA Search BDD ZDD
LTSA Systems LS | Reachable States | LS | Reachable States | LS | Reachable States
Token ring 11 | 6.78 x 106 33 | 4.58 x 107" 34 | 2.18 x 1072
Gas station 11 | 7.15 x 106 24 | 5.45 x 108 29 | 1.49 x 109
Thinkteam 7 | 3.65 x 106 12 | 9.68 x 109 13 | 4.48 x 10™
Santa Claus 16 | 9.12 x 106 86 | 2.90 x 107%® 104 | 8.65 x 10%3
Dining philosophers 14 | 4.78 x 106 266 | 8.21 x 10™%° 272 | 5.98 x 10™°
Cyclic scheduler 18 | 7.08 x 106 100 | 1.90 x 10%2 106 | 1.29 x 10%*
Chiron (original version) 42 1 6.78 x 106 69 | 4.64 x 107 73 | 5.77 x 107
Chiron (decomposed version 1) | 32 [ 5.30 x 106 21 | 1.20 x 106 23 [ 1.66 x 106
Chiron (decomposed version 2) | 5 | 3.39 x 106 19 | 2.31 x 107 19 | 2.31 x 10%°
Algorithms State Prop. BDD ZDD
FLAVERS Systems LS | Reachable States | LS | Reachable States | LS | Reachable States
Token Ring 6 | 3.04 x 106 12 | 3.05 x 10™ 13 | 1.95 x 1012
Gas Station 5 | 1.26 x 107 8 | 4.04 x 10™ 8 | 4.04 x 10T
Smoker 5 | 3.08 x 106 7 [ 1.23 x 109 8] 3.02 x 10
Pipeline computation 7| 2.46 x 106 21 | 3.42 x 10™° 22 | 2.88 x 10%°
Relay 4] 3.08 x 105 10 | 1.97 x 10™ 11 | 3.19 x 10™2
Cyclic scheduler 7 | 3.38 x 106 21 | 1.98 x 10™7 23 | 5.95 x 10™®
Memory management 6 | 3.01 x 106 11 | 5.97 x 10™° 11 | 5.97 x 10™°
Chiron (original version) 9] 4.35 x 106 21 [ 5.35 x 107 21 | 5.35 x 107
Chiron (decomposed version 1) 8 1 4.79 x 106 16 | 3.79 x 107 16 | 3.79 x 107

Table 1: The largest size (denoted as “LS”) each algorithm can handle and the number of reachable states

at the largest size.
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Figure 6: Runtime ratios between ZDD- and BDD-based algorithms.

nificantly affect the comparison of different algorithms. In
our work, since the algorithms compared are implemented
in the same FSV tool, the systems used for comparison are
modeled in exactly the same way.

9. CONCLUSION

FSV techniques can check whether a property holds for a
given system. Once the system model and the property are
specified, this check is done automatically by exhaustively
exploring all possible states of the system. FSV techniques
are especially useful for concurrent systems, where nondeter-
ministic behavior usually makes testing problematic. FSV
methods, however, are limited by the state-explosion prob-
lem. Much research has been done to ameliorate this prob-
lem but few comparative studies have been done using the
same approach with different symbolic algorithms.

In this paper, we investigate the use of two symbolic data
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structures, BDDs and ZDDs, in two FSV tools, LTSA and
FLAVERS. To do this, we developed an efficient algorithm
to compute transition functions with ZDDs. This algorithm
treats missing Boolean variables in a ZDD representation
in different ways depending on whether the variable is from
the domain set of the Boolean function being represented
or not. In our experiments, both symbolic algorithms per-
form much better than the native, non-symbolic algorithms
used by LTSA and FLAVERS, in terms of both runtime
and the size of the system that the algorithm can handle
under the given resource limits. Moreover, the ZDD-based
algorithm is almost always better than the BDD-based one.
Our results suggest that the ZDD-based approaches should
be more widely investigated.

We intend to explore several additional directions. There
are several additional variations of the BDD and ZDD based
algorithms that appear promising. One variation, for exam-



ple, is to change the algorithm so that each composite state
visited during the check is used in the computation for the
transition functions only once. To implement this, besides
the function fuisited, another function fe.,, which represents
the composite states at the current exploration frontier only,
is needed. Then only states represented by fnew would be
used in the computation for the next frontier. A preliminary
experiment with this variation found that it sometimes im-
proves performance but sometimes degrades it.

Another variation we want to pursue is to change the en-
coding scheme for the ZDD representations. The encoding
strategy described in this paper uses [log, n] Boolean vari-
ables to encode n FSA states. We call this encoding a bi-
nary encoding. An alternative, unary encoding would use
one variable for each FSA state. A benefit of the unary
encoding is that it enables us to use an algorithm for com-
puting transition functions without encoding all transitions
in Boolean functions. We also did a preliminary experiment
with this approach and found that it also sometimes helps
improve performance but sometimes degrades performance.
We intend to do more experiments to explore the system
features that make one approach more effective than the
other.

Besides these variations, we also want to investigate how
the BDD and ZDD based algorithms work when the prop-
erty does not hold (at least for the system model). In that
situation, FSV tools can generate a counterexample, a trace
through the model showing how the property is violated,
that can help the analyst find out what went wrong. For
the LTSA search algorithm, it is easy to generate counterex-
amples once a violation or deadlock is found. For the state
propagation algorithm and the symbolic algorithms, how-
ever, more work needs to be done on efficiently generating
counterexamples.

Finally, as discussed above, we intend to explore the distri-
bution of 1-assignments for a Boolean function. We believe
that this will not only help understand why the ZDD repre-
sentations of the functions we encounter are more compact
than the BDD representations, but also may suggest further
optimizations.
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