Heuristic-Based Model Refinement for FLAVERS

Jianbin Tan, George S. Avrunin, and Lori A. Clarke
Laboratory of Advanced Software Engineering Research
Department of Computer Science
University of Massachusetts
Ambherst, Massachusetts 01003, USA
{tjb, avrunin, clarke} @cs.umass.edu

Abstract

FLAVERS is a finite-state verification approach that al-
lows an analyst to incrementally add constraints to improve
the precision of the model of the system being analyzed. Ex-
cept for trivial systems, however, it is impractical to com-
pute which constraints should be selected to produce pre-
cise results for the least cost. Thus, constraint selection has
been a manual task, guided by the intuition of the analyst.
In this paper, we investigate several heuristics for selecting
task automaton constraints, a kind of constraint that tends
to reduce infeasible task interactions. We describe an ex-
periment showing that one of these heuristics is extremely
effective at improving the precision of the analysis results
without significantly degrading performance.

1 Introduction

Finite-state verification approaches attempt to prove
properties about a model of a system. These approaches
are not as general as theorem-proving based verification, but
they are usually easier to use. They do suffer, however, from
the so-called state-explosion problem, where the size of the
model or the analysis costs may be exponentially large with
respect to the size of the system being analyzed.

There are a number of different techniques for dealing
with this state-explosion problem. Many of these expect the
analyst to have sufficient insight to be able to create an ab-
stract model of the system that can serve as the basis for
efficient verification. Usually the first few abstract models
that an analyst creates are too large, and the analyst must
think of additional abstractions that will eliminate some of
the information in the model while maintaining the sound-
ness of the proof process. After several attempts, analysts
can often create a model that is sufficiently small for either
proving the property or revealing a counterexample trace
that exposes how the system violates the property.

FLAVERS [6,10], FLow Analysis for VERifying of Sys-
tems, uses data-flow analysis techniques to reason about
properties described in terms of sequences of events. Us-
ing program analysis techniques, FLAVERS automatically
creates a compact, but imprecise, representation of the sys-
tem that can then be augmented with constraints that add
information to improve the precision of the analysis results.
Thus, instead of trying to develop abstractions to help re-
duce the size of the model, with FLAVERS analysts try to
define constraints that judiciously increase the size of the
model.

Constraints are a very general mechanism that may be
used to model the values of variables, restrict the flow of
control, or constrain the inputs from the execution environ-
ment. When FLAVERS returns a counterexample trace, this
trace shows where the model appears to violate the property.
Analysts can then usually determine if the trace represents
a true violation or, when the counterexample is spurious,
select some additional constraints to increase the precision
of the model and eliminate this spurious counterexample.
Experimental studies have shown that this approach is very
effective [11], and a comparison of FLAVERS with other
finite-state verification tools [1] shows that FLAVERS usu-
ally performs as well as, and often better than, such tools as
SPIN [17] and SMV [19].

In selecting constraints, the analyst is making a trade-off
between performance and precision. Additional constraints
usually improve the precision of the results, but increase the
analysis costs. We know of no way to determine which con-
straints should be selected to produce precise results at the
least cost without actually carrying out the analysis with all
possible sets of constraints. Constraint selection, therefore,
has largely been a manual process, guided by the intuition of
the analyst. In this paper, however, we present heuristics for
automatically selecting task automaton constraints, a kind
of constraint that removes some infeasible paths from the
model. We propose and evaluate four heuristics and demon-
strate that one of these is particularly effective at predicting

Proceedings of the 26th International Conference on Software Engineering (ICSE’04) nn

COMPUTER
0270-5257/04 $20.00 © 2004 IEEE SOCIETY

the task automaton constraints that should be included. The
evaluation is conducted using the FLAVERS/Ada toolset
applied to a set of Ada tasking programs.

In the next section of this paper, we provide an overview
of FLAVERS so that the reader can understand the intuition
behind the heuristics that we investigated. The third sec-
tion describes each of these heuristics and is followed by a
section describing our experimental methodology. Section
5 presents our experimental results, and Section 6 describes
related work. In the conclusion, we summarize our results
and describe directions for future work.

2 FLAVERS Overview

FLAVERS/Ada is a finite-state verification tool that uses
data-flow analysis techniques to verify that all possible ex-
ecutions of a system are consistent with a user-specified
property. The property represents desirable (or undesirable)
sequences of events that should occur on all (or none) of
the executions of the system. An event is typically some
syntactically recognizable executable action in the system,
such as a method call or task synchronization. The property
must be represented in a notation that can be translated into
a finite-state automaton (FSA) representation, where a tran-
sition represents the occurrence of an event. For example,
Figure 1(a) is a property specification, involving events el
and T2.synch, for the system of three communicating tasks
described in Figure 1(b). This property specifies that event
el always occurs, but only after task T2 has synchronized
with at least one of its client tasks, and task T2 synchronizes
with its clients twice.

The model of the system used in FLAVERS, called a
Trace Flow Graph (TFG), is automatically derived from the
system description (e.g., the source code). Since the prop-
erty is described in terms of sequences of events, the TFG
must appropriately represent the control flow among these
events in the system. For a sequential system, this model
would be an annotated control flow graph, where the nodes
in the graph correspond to the execution of the action asso-
ciated with an event. For simplicity, we create the model
so that at most one event is associated with a node. If a
node does not have any events associated with it and does
not affect the flow of control for any nodes that do, it may
be removed from the model. If the events of a property oc-
cur infrequently in the system, the resulting model is usu-
ally very small. Thus, it is generally practical to inline all
method calls!.

To model a concurrent Ada system, each task is rep-
resented by an annotated control flow graph, as described
above, and then some modifications are made to model
synchronization and the interleaving of events. Specifi-
cally, communication nodes are created that conceptually

'FLAVERS currently does not handle recursive calls.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)
0270-5257/04 $20.00 © 2004 IEEE

“merge” the nodes that represent the rendezvous between
two tasks and May Immediately Precede edges (MIP edges)
[20] are used to represent the potential interleavings of
events in different tasks.

Formally, a TFG is a labeled directed graph, G =
(N, E, Winitiai, Ninal, Ac, L), where N is a finite set of
nodes, B C N x N is a set of directed edges, Ninirial, Nfinar €
N are initial and final nodes of the TFG, A¢ is an alphabet
of event labels associated with the TFG, and L : N —
Ag U {0} is a function mapping nodes to their labels or to
the null event.

Figure 1(c) shows the control flow graphs for the sys-
tem in Figure 1(b), and Figure 1(d) gives the TFG for this
system. In Figure 1(d), the circular nodes represent local
nodes, the diamond-shaped nodes represent communication
nodes, which model the Ada rendezvous, and the triangular
nodes represent the initial and final nodes. Note that a local
node is associated with only one task, while a communica-
tion node represents the communication between two par-
ticipating tasks, and the initial and final nodes of the TFG
represent the initial and final nodes of each task. Thus, the
control flow graph for each task is a subgraph of the TFG.
We use NV;(t) to denote the set of all local nodes of task ¢,
and N.(t) to denote the set of all communication nodes of
task ¢. For instance, in figure 1(d), NV;(T1) = {1,6} and
N.(T1) = {4}. And we define N (t) = N;(t) U N,(¢).

The solid edges in Figure 1(d) represent control flow
within a task and are called local edges. The dashed edges
represent MIP edges. For concurrent systems, the number
of MIP edges may be very large. Partial order reduction [23]
and other optimization techniques are used to eliminate un-
necessary MIP edges. After such optimizations are applied
to the example, only two MIP edges remain, as shown in
Figure 1(d).

The model is conservative, meaning that each sequence
of events that could occur during the execution of the sys-
tem corresponds to a path in the TFG model that results in
traversing the same sequence of events. Therefore, when
FLAVERS does not find a path in the model that can violate
the property, the analyst can be sure that the property holds
on the original system.

Given the TFG and the property, FLAVERS uses a fixed-
point algorithm, called state propagation [10,24] to deter-
mine what states in the property should be associated with
each node in the TFG. Each path through the TFG deter-
mines a sequence of events. A state s is associated with a
node n if, for some path from n;;;,; to n, the corresponding
sequence of events drives the property to state s. The al-
gorithm is a typical forward-flow, any-path data-flow analy-
sis problem [18]. To determine whether the property holds,
FLAVERS checks the set of states associated with the final
node. For a desirable property, if there are only accepting
states in the set, FLAVERS returns conclusive, meaning that

nn

COMPUTER
SOCIETY

task body T1 is
begin

T2.synch;

rl; —event{[el]}
end T1;

task body T2 is
done : Boolean;
begin
loop
accept synch;
exit when done;
end loop;
end T2;

task body T3 is
begin
T2.synch;
3;
end T3;

(a) Property (b) Source Code

(c) Control Flow Graphs

(d) TFG

Figure 1. A simple example

the property holds. Otherwise, FLAVERS returns inconclu-
sive and provides a counterexample path through the model
to show how the property may be violated.

The model created by FLAVERS is compact and con-
servative, but is imprecise since it over-approximates the
event sequences allowed by the system. This means that
some event sequences that appear in the model do not arise
on any actual execution through the system. Thus, when
FLAVERS returns an inconclusive finding and a counterex-
ample path that violates the property, it may be an indication
of an error in the system (or in the property), or it may be
that the corresponding path in the system is infeasible. If
all the possible counterexample paths are infeasible, then
the inconclusive finding is a spurious false finding and the
property does hold.

In the example, the path njuisa, 2,4,7,2,5,7, Njpa in
Figure 1(d) leads the property in Figure 1(a) to non-
accepting state p4, and thus the path violates the property.
This path is not feasible since, for instance, the statement in
task T1 corresponding to node 6 must be executed before
task T1 terminates.

One of the strengths of FLAVERS is that an analyst can
incrementally improve precision by augmenting the model
with constraints that may eliminate at least some of the in-
feasible paths. These constraints are represented as FSAs.
The state propagation algorithm simultaneously incorpo-
rates the property and all of the constraints into the analysis
by associating sets of tuples with each node in the TFG,
where the nth element of the tuple corresponds to the state
of the nth FSA.

In FLAVERS, there are three kinds of commonly used
constraints: Context Automata (CAs) are used to model the
environment; Variable Automata (VAs) are used to model
the value of variables; and Task Automata (TAs) are used
to model execution traces for a task. CAs are usually

based upon external knowledge about the environment in
which the system will be executed, and thus it would be
difficult to automatically predict this information (although
there has been work on defining the weakest such environ-
ment [25,27]). In our experience, the analyst often has a
good sense of the VAs that are likely to impact the analy-
sis and therefore does a reasonable job manually selecting
VAs for inclusion. Unfortunately, this does not seem to be
the case for TAs. Thus, as our first step toward automati-
cally selecting constraints, we focus our work on selecting
TAs and assume that VAs and CAs will be selected by the
analyst.

Paths through the TFG cross between different tasks
through communication nodes, which represent points
where the tasks synchronize, and through MIP edges, which
represent the different interleavings of events from differ-
ent tasks. The idea behind the TA is that if a TFG path
is feasible, the projection of the path on every task should
also be a feasible path through the task’s control flow graph.
As an example, consider the infeasible path we mentioned
above. If we project this path on task T1, we get the se-
queNnce Nipirial, 4, Nfinai- The projection is obviously infeasi-
ble, since node 6 is skipped. A TA can be automatically
created for any task so that whenever its flow of control is
violated, the appropriate tuple can be discarded from further
consideration during state propagation since this represents
non-executable control flow.

TAs are thus used to eliminate from consideration certain
paths through the TFG. These paths exist because of the rep-
resentation of communication and interleaving in the TFG,
but do not adhere to the flow of control in the individual
tasks. It can be extremely difficult for the analyst to antici-
pate exactly which such paths may need to be eliminated—
most of the errors in programming concurrent systems are
probably due to interleavings of execution that were not

Proceedings of the 26th International Conference on Software Engineering (ICSE’04) nn

COMPUTER
0270-5257/04 $20.00 © 2004 IEEE SOCIETY

foreseen by the developers—and this is what makes it diffi-
cult for the analyst to know which TAs to select. Although
TAs can be automatically generated for each task in a sys-
tem, the cost of the analysis usually increases with the num-
ber of constraints that are included. Thus, we need a strat-
egy for helping analysts select the TAs that should be in-
cluded.

If insufficient or inappropriate constraints are selected,
FLAVERS will return spurious false findings, whereas se-
lecting too many constraints will usually significantly in-
crease the time and space requirements. Table 1 illustrates
how the choice of TAs affects the analysis result and the
analysis performance for a small memory management sys-
tem. In Table 1 there are three selected TA sets. Set A uses
only two TAs, which are not sufficient to prove the property,
and thus FLAVERS returns an inconclusive result with this
set. Set B and set C have six and eight TAs respectively, and
with either set FLAVERS returns a conclusive result. With
set C, however, FLAVERS uses over seven times as much
time and space® as with set B. This example demonstrates
the importance of selecting a good set of TAs.

Selected TA set A B C
Size of the set 2 6 8
Result Inconclusive | Conclusive | Conclusive
Runtime 1.47s 9.71s 68.33s
Space 100,704 5,188,736 | 37,056,080

Table 1. An example showing how the selec-
tion of TAs affects the result and performance

Currently, FLAVERS does not automatically include any
TAs nor provide any guidance on which TAs might be can-
didates for consideration. Usually an analyst needs to study
several counterexample paths and experiment with adding
and removing TAs before finally arriving at a set that effi-
ciently leads to either a conclusive result or a helpful coun-
terexample path that exposes a fault in the system. It would
save the analyst considerable effort if this process could be
at least partially automated by employing heuristics.

3 Heuristics

It is natural to base heuristics for selecting TAs on infor-
mation from the system, the property, and the other selected
constraints. Intuitively, if an event that labels a node in a
TA (and hence also a node in the TFG, since the labels for
TA nodes are obtained by regarding the TAs as subgraphs
of the TFG) also appears in the property or in a VA or CA,
then that TA may affect the verification and thus should be

2Space is computed by summing the sizes of all tuple sets associated
with TFG nodes after the state propagation algorithm terminates. This is
an approximate evaluation of memory usage.

selected. It is this intuition that guides our exploration of
heuristics.

We refer to the input to a TA selection heuristic, includ-
ing the system, the property, and the initially chosen VAs
and CAs, as a subject. The output is a set of selected TAs,
denoted by Cpr. We use A to denote the set of all events
mentioned in the property, VAs, and CAs in a subject, and
refer to A as the subject alphabet. All our heuristics are
based on the intuition described above and thus rely on this
subject alphabet.

Heuristic H(A): This heuristic selects any TA with a
node labeled by an event in the subject alphabet. Formally,
for task ¢, if there is a node n € N (¢) such that L(n) € A,
then we put ¢t in Cpy. For example, when this heuris-
tic is applied to the subject described in Figure 1, we get
Cpr = {T1, T2, T3}. (Note that there is no VA or CA in
this subject).

The experimental results described later show that this
heuristic tends to select too many TAs. The main reason
is that communication nodes always belong to two tasks.
Once a communication node is labeled by an event in the
subject alphabet, both TAs will be selected. To overcome
this shortcoming, we introduce heuristics that treat local
nodes and communication nodes separately.

Heuristic H(A;): This heuristic chooses TAs based on
local nodes only. The idea is that if the task has any local
node labeled by an event in the subject alphabet, then that
TA should be selected. Formally, for task ¢, if there is a
node n € N;(t) such that L(n) € A, then we put ¢ in Cpy.
For example, when this heuristic is applied to the subject in
Figure 1, we get Cpr = {T1}.

Heuristic H(A;): Based on our observation that a com-
munication node is always included in two tasks but usually
selecting only one TA will be enough, we developed this
heuristic with two principles in mind. First, all communi-
cation nodes whose labeled events are in A, called commu-
nication alphabet nodes, must be covered by at least one
selected TA, where a communication node is covered by a
TA if the node belongs to that TA and the TA is selected.
Second, as few communication alphabet nodes as possible
should belong to more than one selected TA.

The algorithm repeatedly selects the TA with the most
uncovered communication alphabet nodes until all the com-
munication alphabet nodes are covered. At any point, of
course, there may be more than one task with the same max-
imal number of uncovered communication alphabet nodes,
and we need a procedure to break the tie. (To keep the num-
ber of selected TAs small, we do not want to routinely se-
lect all these TAs.) As noted earlier, many of the infeasible
paths through the TFG that need to be eliminated by TAs

Proceedings of the 26th International Conference on Software Engineering (ICSE’04) nn

COMPUTER
0270-5257/04 $20.00 © 2004 IEEE SOCIETY

Heuristic H(A:) {
Set Cpp = 0;
Loop forever {
//Find covered communication alphabet nodes
Neoy := UtECpT {n‘n € Nc(t) A L(n) S A},
For each task t ¢ Cprp
Nuncov(t) = {n c Nc(t) | L(n) cAAN ¢ Neov };
Let maxUncov = max;¢cp | Nuncov(t)]:
If maxUncov == 0, then return Cp;
else {
Add all tasks ¢ with Nyncov(t) == maxUncov to set S;
Let maxMipDen = maxyc s mipDensity(t);
Add all tasks ¢ € S with mipDensity(t) == maxMipDen to Cpr;

}
}

/I Compute normalized number of MIP edges of task ¢
Function mipDensity(t) {
//Determine the MIP edge set of task ¢
Let M(t) = {e = (m,n)|m € N(t) Vn € N(t)};
Let ny4 () be the number of nodes in the TA of task ¢;
return | M (t)| + nga(t);

Figure 2. The algorithm for heuristic H(A,)

arise from the MIP edges representing the interleaving of
the execution of different tasks. Large TAs (regarded as
subgraphs of the TFG) are likely to have more MIP edges,
but also to make the analysis more expensive. We therefore
use the number of MIP edges entering or leaving the task,
normalized by the number of nodes in the TA, to select the
TA. If there is still a tie, we take all the TAs with the highest
normalized number of MIP edges.®> Figure 2 shows the al-
gorithm used. When this heuristic is applied to the subject
in Figure 1, we get Cpr = {T2}.

Heuristic H(A;) + H(A;): By combining H(A;) and
H(A.) we can take into account all the events in the sub-
ject alphabet without necessarily selecting all the TAs cho-
sen by H(.A). We note that the output of heuristic H(A,)
can be affected by the initial value of C'pr. This means
that there are two different ways to combine H(.4;) and
H(A_.). We could simply apply the two heuristics indepen-
dently and take the the union of the results returned. Or we
could apply H (A;) first and use the TAs selected by it as the
initial value of Cpr when applying H (A.). For example,
when applying the two heuristics independently to the sub-
ject of Figure 1 and taking the union of the results, we get
Cpr = {T1, T2}. Applying H(A;) first and then applying
H(A.), however, gives Cpr = {T1, T3}. In our exper-
iments, these two ways of combining H(A;) and H (A;)
performed very similarly, but there was a slight advantage
to applying H(A;) first. For simplicity, in this paper we

3We investigated a number of variants of this algorithm and found that
the algorithm presented here works slightly better.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)
0270-5257/04 $20.00 © 2004 IEEE

only report the results for the latter combination, which we
refer to as H (A;) + H(A.).

4 Methodology

In this section, we describe the methodology used in
evaluating the four heuristics.

Example Systems: We used a set of 20 different exam-
ples from the concurrency literature. These included several
versions of the dining philosophers, a memory management
system, the gas station, some communication protocols, and
the Chiron user interface system. These examples have been
widely studied and are frequently used to compare the per-
formance of finite-state verification tools. Most of them are
scalable, allowing an evaluation of performance as the size
of the system being verified increases. These Ada programs
had between 3 and 22 tasks and ranged in size from 44 to
2,734 lines of code.

For each system, we selected from 1 to 10 properties, all
of which hold for that system. There are several reasons
why we only considered properties that hold. If a property
is not satisfied by the system, FLAVERS will always report
an inconclusive result, no matter which TAs are selected.
Under these circimstances it would be difficult to evaluate
the impact of TA selection on the analysis. Although the
set of TAs used in the analysis may affect the quality of
the counterexamples produced (in terms of their feasibility,
understandability, etc.), evaluating this quality is complex.
Moreover, as shown in [5], it may be advantageous to mod-
ify the FLAVERS algorithm in cases where inconclusive re-
sults are expected, and then additional heuristics to guide
the search for counterexamples are likely to be helpful [12].
In future work, we intend to examine the use of heuristics
when properties are violated.

Combining the different sizes of the scalable systems
and the multiple properties, we had a total of 249 system-
property pairs. For each of these, we chose a set of VAs and
CAs that, together with some or all of the TAs, is sufficient
for FLAVERS to show conclusively that the property holds.
The VAs and CAs that we used were ones that were previ-
ously selected by analysts for these properties. All of the
subjects and the results of our experiments are available at
http://laser.cs.umass.edu/taselection.

Measures: If we were only interested in conclusive re-
sults, we could simply select all the TAs. But we are trying
to find ways to select TAs that will lead to conclusive results
and provide good performance. We therefore need to find
appropriate measures of the performance of our heuristics.
We selected three basic measures and evaluated each
subject, with each heuristic, for each of these measures. To

nn

COMPUTER
SOCIETY

measure precision, we counted the number of subjects for
which analysis with the TAs selected by that heuristic gave a
conclusive result. To measure performance, we considered
both time and space. Time was determined by a straightfor-
ward reading of the computation time. Space was measured
by the number of node-tuple pairs generated in the analysis.

Using these measures, we can compare the heuristics
against each other. But we are really interested in compar-
ing the heuristics against the best possible set of TAs. To
do so, we would need to find the set of TAs that leads to the
fastest analysis or the smallest number of node-tuple pairs
while still producing a conclusive result. Unfortunately,
finding such a set is impractical for all but the smallest ex-
amples. Adding TAs usually increases the time and memory
required, but it does not always do so. Therefore, finding the
optimal set of TAs would require running FLAVERS with
each subset of the set of TAs for that system. For a subject
with 20 tasks, this would require 22° analysis runs.

We can, however, use the rule of thumb that small sets
of TAs that lead to conclusive results give the best perfor-
mance, although it can sometimes happen that adding TAs
to a set that already gives a conclusive result will improve
performance. In previous work, we had identified a mini-
mal TA set giving a conclusive result for each subject. By
minimal, we mean here that no proper subset of that set of
TAs would lead to a conclusive result. Such a set need not
be a minimum, in the sense that no other set with fewer TAs
would produce a conclusive result.* We therefore use our
known minimal set as a rough indicator of optimal perfor-
mance. We can then evaluate the heuristics by comparing
the time and space used with the TAs selected by the heuris-
tics with the corresponding figures using this minimal TA
set.

Because it is usually true that including more TAs than
necessary to achieve a conclusive result leads to worse per-
formance, we also compare the set of TAs selected by our
heuristics with the minimal set. In particular, we report on
how often the selected set is a proper superset or subset of
the minimal set and how often the selected set is equal to the
minimal set. Much more sophisticated measures of the dif-
ference between the selected TA set and the minimal set are
certainly possible. Given that our minimal sets are not nec-
essarily the sets producing the best possible performance,
however, we do not think that such sophisticated measures
are warranted.

Procedure: We ran the experiments on a PC with a2 GHz
Pentium 4 processor and 1 GB of memory running Linux.
We collected the runtime information by using Linux com-

4Finding a minimum set of TAs is an N P-complete problem [26]. In
a few small cases, we do know that the minimal set we use is the unique
minimal set, so that it is a minimum and a conclusive result will only be
obtained if the selected TAs include all the elements of the minimal set.

mand “time.” We ran each analysis problem three times and
computed the average runtime. All the programs are writ-
ten in Java and were run on Sun Java SDK Standard Edition
(build 1.4.1.01).

Threats to Validity: There are several threats to the va-
lidity of our results. First, the selection of examples may
bias the results. Most of our examples are relatively small,
even with scaling, and represent somewhat unrealistic pro-
grams that have been constructed to illustrate issues in the
design of concurrent systems. For each system, we veri-
fied a small number of properties. These examples may
not adequately represent the range of systems and proper-
ties to which FLAVERS (or other finite-state verification
tools) might be applied in practice, and our results may be
misleading for that reason.

A second threat arises from our selection of a fixed set
of VAs and CAs for each example. The performance of
FLAVERS is certainly affected by the choice of VAs and
CAs. While we have discussed our reasons for focusing
here on the selection of TAs and noted that the choice of
VAs and CAs is usually much more obvious, we have not
carefully investigated the interaction between our heuristics
and the particular selection of VAs and CAs we used.

Finally, we note again that the properties we chose are all
satisfied by the systems we studied. The problem of select-
ing TAs, and guiding the search for counterexamples, when
the property is not expected to hold is somewhat different,
and it may be that our results do not hold in such cases.

5 Experimental Results

In this section we present the results from our experiment
in terms of precision, time, and space.

For each heuristic, Table 2 shows the number of subjects
for which the verification returned conclusive, inconclusive,
or out-of-memory results. It also shows the conclusive per-
centage; that is, the number of subjects for which conclusive
results were returned divided by the total number of sub-
jects in the experiment. From this table we see that heuris-
tics H(A) and H(A;) + H(A.) are effective, in the sense
that more than 80% of the subjects get conclusive results.
Heuristics H (A;) and H(.A.), however, are only effective
for about 50% of the subjects. Thus it appears that both lo-
cal and communication nodes should be considered when
selecting TAs.

Table 2 also shows that four subjects get out-of-memory
results with heuristic H (A). Looking at these subjects, we
found that the selected TA sets are much larger than the
corresponding minimal TA sets. There is also one subject
that gets an out-of-memory result with the TAs selected by
H(A,). For this subject, this heuristic does not select any
TAs whereas the corresponding minimal TA set has four

Proceedings of the 26th International Conference on Software Engineering (ICSE’04) nn

COMPUTER
0270-5257/04 $20.00 © 2004 IEEE SOCIETY

TAs. This illustrates the atypical, but possible, situation
noted above where adding TAs improves performance.

| [H(A) | H(A) [H(A) | H(A) + H(A) |

Conclusive 214 132 114 204
Inconclusive 31 117 134 45
Out-of-Memory 4 0 1 0
Total 249 249 249 249
Conclusive Percentage || 85.9% | 53.0% | 45.8% 81.9%

Table 2. Result comparisons

Conclusive and inconclusive results are a crude mea-
sure of effectiveness, since we know that adding constraints
tends to improve precision. Thus, we need to compare how
close the selected sets are to the minimal TA sets we had
identified in prior work. Table 3 shows the number of sub-
jects for which the TA set selected by each heuristic is in
the listed relationship with the minimal TA set. We see that
H(A;)+ H(A.) selected exactly the TAs in the minimal set
for 156 subjects and had only 48 superset and 31 subset re-
sults. Although heuristic H (A), has the highest conclusive
percentage, it gets 151 superset results and 67 equal results,
indicating that it tends to overpredict the needed TAs. The
other two heuristics, H(A;) and H (A,), primarily select
TA sets that are a subset of the minimal set and, thus, tend
to underpredict the needed TAs.

H(A) [HA) [H(A) [H(A) + H(A) |
Superset 151 25 24 48
Equal 67 107 90 156
Subset 28 117 114 31
Other 3 0 21 14
Total 249 249 249 249

Table 3. TA set comparisons

In evaluating performance, it is misleading to compare
spurious inconclusive cases with conclusive cases, since
the inconclusive cases terminate the state-space search pre-
maturely. Since H(A;) and H(A.) tended to be under-
predicting heuristics that returned spurious inconclusive re-
sults almost 50% of the time, we do not consider them in
the performance comparison. Thus, for performance, we
restrict the evaluation to H(A) and H(A;) + H(A), the
two heuristics that had the highest conclusive percentages.
Moreover, we also exclude any subject where one of these
two heuristics selects a TA set that leads to inconclusive re-
sults. Basically, we do not want to compare performance
between two analyses where one of them terminates with-
out examining the whole state space while the other does
not. As a result, there are 204 subjects in the performance
comparison.

Thus in considering performance, we compare H (A),
which returned the highest percentage of conclusive results,
with H(A;) + H(A.), which returned the highest percent-
age of TA sets that matched the minimal set. If the addi-

tional TAs selected by H(.A) do not significantly degrade
performance, then this heuristic would be preferable. If they
do significantly degrade performance then the analyst might
prefer to use H (A;)+ H (A) and resort to other approaches
for improving precision if necessary.

Figure 3 and Figure 4 show the runtime ratios and the
space ratios, respectively, for the 204 subjects for both
heuristics. In these figures the subjects have been ordered
according to their performance on heuristic H(.A), since
this heuristic had the greatest performance variability. Note
that the vertical scale is logarithmic in each of these figures.

Figure 3 shows that nearly all the runtime ratios of H (.A)
are larger than or equal to the corresponding runtime ratios
of H(A;) + H(A.). The worst runtime ratio of H (A) is
larger than 2,000 and thus is not completely shown in Fig-
ure 3. Such a large runtime increase would be problematic,
especially for problems that are larger than our examples.
Heuristic H (A;) + H (A.) had runtime ratios around 1, with
the largest ratio being less than 2. Thus, for this heuristic,
the cost of automatic TA selection might be worth the ex-
pected additional runtime cost.

In Figure 4, we have a similar observation. The space
ratios for H (.A) are always equal to or larger than those for
H(A;) + H(A.). For H(A), the worst space ratio, which
again is not completely shown in the figure, is more than
26,000. (Recall that there are also four subjects that get
out-of-memory results with this heuristic.) Almost all space
ratios of H(A;) + H(.A.), on the other hand, are close to 1.

Thus, although H(.A) has the highest conclusive per-
centage, the performance cost is probably too high for this
heuristic to be routinely applied. The heuristic H (4;) +
H(A.), however, produced surprisingly good results in
terms of precision, with a relatively small decrease in per-
formance.

The experiment described above assumed that the ana-
lyst had first selected a set of VAs and CAs. This seems like
a reasonable assumption since, in our experience, analysts
often can anticipate which VAs and CAs to include. We
wondered how this assumption affected our result, however.
In particular, if we did not include information about the
VAs and CAs, would the H(A;) + H(A;) heuristic return
drastically different TA sets? Thus, we did not include any
VA or CA constraints and recomputed the TAs that would
be selected by all four of the heuristics. Table 4 shows the
TA set comparisons that result when VAs and CAs are not
included. Comparing Table 4 with Table 3 shows that all the
heuristics are affected by this change except H (A.); this is
because the events in VAs and CAs are usually attached to
local nodes, which are not considered by this heuristic. The
affected heuristics select fewer TAs, since the event alpha-
bet is smaller, and thus the number of superset and equal
sets decreased whereas are the number of subset and other
sets increased. Since most of the subjects do require VA

Proceedings of the 26th International Conference on Software Engineering (ICSE’04) nn

COMPUTER
0270-5257/04 $20.00 © 2004 IEEE SOCIETY

10

,,,,,,,,,

RunTime Ratio

L
100

Subjects

Figure 3. Runtime ratios

,,,,,,,,,

10 |

Space Ratio

oo
coaco0000s
soosesst 2%
0o -~
o aae'”
o

L
100

Subjects

Figure 4. Space ratios

or CA constraints for conclusive analysis, we do not com-
pare performance here. Note however that H (A;) + H (A.)
still returns 122 equal sets for the 249 subjects. Thus, even
when VAs and CAs are not considered, this heuristic would
be useful in selecting TAs to be included in the verification.

\ [H(A) [H(A) [H(A) | H(A) + H(A) |

Superset 138 21 24 45
Equal 53 60 90 122
Subset 46 168 114 61
Other 12 0 21 21
Total 249 249 249 249

Table 4. Set comparisons without VAs or CAs

6 Related Work

Our approach is concerned with finding good heuris-
tics to help refine the system model used during analysis.
Thus, we consider related work in finite-state verification
on model refinement and on the use of heuristics.

Model abstraction is a key technique that can be used to
combat the state-explosion problem. Data abstraction and
predicate abstraction, for example [2,4, 8,9, 13, 15], try to
collapse the states in a model by finding equivalent classes

of data values based on language homomorphisms or predi-
cates. Slicing-based abstraction, such as [9, 15], applies de-
pendence analysis to eliminate data and control flow infor-
mation that is irrelevant to the property being checked. All
these approaches are designed to remove information from
the model. In contrast, our approach starts with a small,
but coarse, model, and then adds information to refine the
model.

Counterexample-guided abstraction refinement ap-
proaches, such as [2, 3, 16], are similar to our approach in
that information is added to an imprecise model to improve
precision. With these approaches, the information to be
added is extracted from a spurious counterexample path.
Our work also eliminates infeasible paths from the model,
but our approach can be applied before any verification
has been attempted and thus before a counterexample path
has been found. Our work can be thought of as an ea-
ger refinement approach, whereas counterexample-guided
refinement is a demand-driven approach.

Heuristics have been used in finite-state verification to
help find counterexample paths. The goals have been to
find shorter paths or to improve performance, or both [5,12,
14,28]. The heuristics have been based on the property or
on the model, as with our heuristics, as well as on violation-
state information. Instead of guiding the counterexample

nn

COMPUTER
SOCIETY

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)
0270-5257/04 $20.00 © 2004 IEEE

search, the heuristics we have developed are used to help
refine the model, which should eliminate some infeasible
paths but may not improve performance or lead to shorter
counterexample paths.

7 Conclusion

One special feature of FLAVERS is that it allows an ana-
lyst to refine the model incrementally by adding constraints.
The choice of constraints involves a delicate trade-off be-
tween precision and cost: if the right constraints are not
selected, the analysis will be inconclusive, but selecting too
many constraints tends to increase the cost of analysis sig-
nificantly. While some useful constraints are relatively easy
for the analyst to identify, the TA constraints that eliminate
spurious interleavings of events from different tasks are not.
Selection of a suitable set of TAs has thus typically been
an iterative process, in which the analyst repeatedly runs
the analysis, finds spurious counterexample paths, and adds
TAs to eliminate those paths. Automated support for se-
lecting a good set of TAs, one that provides the necessary
precision without incurring too high a cost, would be of sub-
stantial value

In this paper, we have presented four heuristics for
TA prediction in FLAVERS for Ada programs. All these
heuristics are based on the subject alphabet. One of these
heuristics, H (A;) + H(A.), seems to provide a very good
balance of precision and cost. The TAs selected with this
heuristic are sufficient for conclusive analysis in more than
80% of the cases we studied, and the added cost in time and
space, when compared to a manually identified minimal set
of TAs, is usually quite small. Moreover, it gives fairly good
results even without information about the VAs and CAs
that the analyst would select. This heuristic therefore seems
to offer an excellent starting point for TA selection, in most
cases eliminating the need for manual selection altogether.
The heuristics described here are tightly coupled with the
FLAVERS/Ada model of concurrency. As a consequence,
they might not be applicable to other finite-state verification
tools.

There are a number of additional directions that we in-
tend to explore in the future. There were still a little over
18% of the cases where the TAs selected by H (A;)+H (A.)
were not sufficient to obtain a conclusive result. We are in-
terested in ways to refine the heuristic or to add additional
heuristics that might improve this. We will also investigate
additional and larger examples to see if the performance of
the heuristic holds up when it is applied to other classes
of systems and properties. Analysis of large systems is a
major undertaking, and we would have no way of knowing
whether we had ever obtained a truly representative sample
of systems and properties, so of course we do not expect
to obtain completely definitive results. We would be espe-

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)
0270-5257/04 $20.00 © 2004 IEEE

cially interested in identifying classes of systems for which
particular approaches to TA selection are well suited.

We are also interested in the problem of automatically
selecting VAs. An analyst with a good understanding of a
system and the property to be verified can often select ap-
propriate VAs fairly easily. With very large systems, how-
ever, or ones for which the analyst does not fully understand
the details of the interaction between components, heuris-
tics for VA selection would also be of significant value.

As discussed earlier, all of the properties checked in this
study held for their respective systems. The comparison of
performance is significantly trickier in the case where the
properties do not hold, and previous research [5] has shown
that different algorithms may be appropriate if FLAVERS
is applied early in development when many bugs remain
and the properties being checked are not likely to hold in
most cases. We intend to investigate the performance of
these heuristics in such cases and to look for other heuristics
that may give better performance. We are also particularly
interested in applying heuristics to the algorithms used by
FLAVERS to search for counterexamples, as for instance in
[12], in the hope of obtaining more useful counterexamples
or finding a counterexample more quickly.

Finally, FLAVERS/Ada is an application of the
FLAVERS approach to Ada programs. We have previously
described how the approach can be extended to Java pro-
grams [21, 22] and are currently building tools, based on
the Bandera toolset [7], for extracting FLAVERS models
from Java source code. As soon as those tools are complete,
we will investigate the applicability of similar heuristics for
constraint selection for analyzing Java programs.

Acknowledgments

We are very grateful to Heather Conboy and Jamieson
Cobleigh for their assistance in collecting the experimental
subjects and answering questions about the FLAVERS im-
plementation, and to Shangzhu Wang and Nathan Jokel for
reviewing earlier drafts of this paper.

This research was partially supported by the U.S. Army
Research Laboratory and the U.S. Army Research Office
under Agreement DAAD190110564, by the U.S. Depart-
ment of Defense/Army Research Office under Grant No.
DAAD19-03-1-0133, and by the National Science Founda-
tion under Grant No. CCR-0205575.

References

[1] G.S. Avrunin, J. C. Corbett, M. B. Dwyer, C. S. Paséreanu,
and S. F. Siegel. Comparing finite-state verification tech-
niques for concurrent software. TR UM-CS-1999-069,
Department of Computer Science, U. of Massachusetts
Ambherst, Nov. 1999.

nn

COMPUTER
SOCIETY

(2]

T. Ball and S. K. Rajamani. Automatically validating tem-
poral safety properties of interfaces. In Proc. of the Sth

Trans. on Software Engineering, 24(11):927-948, Nov.
1998.

Int. SPIN Workshop on Model Checking of Software, vol- [16] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
ume 2057 of LNCS, pages 103—122. Springer-Verlag, May abstraction. In Proc. of the 29th ACM SIGPLAN-SIGACT
2001. Symp. on Principles of Programming Languages, pages 58—
[3] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. 70. ACM Press, Jan. 2002.
Counterexample-guided abstraction refinement for symbolic [17] G.J. Holzmann. The SPIN Model Checker: Primer and Ref-
model checking. Journal of the ACM, 50(5):752-794, Sep. erence Manual. Addison Wesley Professional, MA, 2003.
2003. [18] T. J. Marlowe and B. G. Ryder. Properties of data flow
[4] E. M. Clarke, O. Grumberg, and D. E. Long. Model check- frameworks: a unified model. Acta Informatica, 28(2):121—
ing and abstraction. ACM Trans. on Programming Lan- 163, Dec. 1990.
guages and Systems, 16(5):1512-1542, Sep. 1994. [19] K. L MCM_illan. Symbolic Model Checking. Kluwer Aca-
[5] J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil. The right demic Publishers, MA, 1993. .
algorithm at the right time: Comparing data flow analysis al- [20] G. Ngumovwh and G S. Avrgmn. A conservative data flow
gorithms for finite state verification. In Proc. of the 23rd Int. algogthm for detecting all pairs of statements that may hap-
Conf. on Software Engineering, pages 37-46. IEEE Com- pen in paralleL. In Proc. of the 6th I.ACM. SIGSOFT Symp.
puter Society, May 2001. on the Foundations of Software Engineering, pages 24-34,
[6] J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil. Nov. 1998. ,
FLAVERS: A finite state verification technique for software (211 G. Naumochh, G. S..Avrumn, ?nd L. A. Clarke. Data
systems. IBM Systems Journal on Software Testing and Ver- flow analysis for checking properties of concurrent Javz} pro-
ification, 41(1):140-165, 2002. grams. In I;gogc_.:{othlevlﬂstlggé Conf. on Software Engineer-
[7] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. g, pages > » Vay 1775
e . . [22] G. Naumovich, G. S. Avrunin, and L. A. Clarke. An effi-
Pasdareanu, Robby, and H. Zheng. Bandera: Extracting
. cient algorithm for computing MHP information for concur-
finite-state models from Java source code. In Proc. of the
22nd Int. Conf. on Software Engineering, pages 439-448 rent Java programs. In Proc. of the 7th European Software
Tune 200'0 ’ ’ ’ Engineering Conf. held jointly with the 7th ACM SIGSOFT
[8] S. Das, D. L. Dill, and S. Park. Experience with predicate Int. Symp. on Foundations of Software Engineering, pages

. . . 338-354. Springer-Verlag, Sep. 1999.

abstraction. In 1Ith Int. Conf. on Computer-Aided Verifi- . .
. . [23] G. Naumovich, L. A. Clarke, and J. M. Cobleigh. Us-
cation, volume 1633 of LNCS, pages 160-171. Springer-
ing partial order techniques to improve performance of data
Verlag, July 1999. . . .
91 M. D I Hatcliff. R. Joch S Laubach flow analysis based verification. In Proc. of the ACM SIG-
(91 M. . \jvyer, - Batclitt, e JOSRAnes, 5. Latbac, PLAN/SIGSOFT Workshop on Program Analysis for Soft-
C. Pasdreanu, Robby, W. Visser, and H. Zheng. Tool- . .

d b ion for fini fieati ware Tools and Engineering, pages 57-65, Sep. 1999.
supported program abstraction for mte—statevverl 'catlon. In [24] K. Olender and L. Osterweil. Cesar: a static sequencing
Proc. of the 23rd Int. Conf. on Software engineering, pages constraint analyzer. In Proc. of the ACM SIGSOFT ’89 third
177-187. IEEE Computer Society, May 2001. . Symposium on Software Testing, Analysis, and Verification,

[10] MB Dwyer .and L. A. Clarke. Data flow analysis for ver- pages 66-74. ACM Press, 1989.
ifying properties of concurrent programs. In Proc. of the [25] A.Rountev, B. G. Ryder, and W. Landi. Data-flow analysis
énd ACM SIGSOF Tf)iy ’;g’ : 1’)’" Zhlegg Z”"da”” ns of Software of program fragments. In Proc. of the 7th European Software
ngumeering, pages b/, Lec. 175 Engineering Conf. held joinily with the 7th ACM SIGSOFT
[11] M. B. Dwyer, L. A. Clarke, J. M. Cobleigh, and G. Nau- Int. Symp. on Foundations of Software Engineering, pages
movich. Flow analysis for verifying properties of concurrent 235-252. Springer-Verlag, Sep. 1999.
systems. TR UM-CS-2003-030, Department of Computer [26] J. Tan, G. S. Avrunin, and L. A. Clarke. Heuristic-based
Science, U. of Massachusetts Amherst, Sep. 2003. model refinement for FLAVERS. TR UM-CS-2003-029,
[12] S. Edelkamp, A. L. Lafuente, and S. Leue. Directed ex- Department of Computer Science, U. of Massachusetts
plicit model checking with HSF-SPIN. In Proc. of the 8th Amberst, Sep. 2003.
Int. SPIN Workshop on Model Checking of Software, volume [27] O.Tkachuk and M. B. Dwyer. Adapting side effects analysis
2057 of LNCS, pages 57-79. Springer-Verlag, May 2001. for modular program model checking. In Proc. of the 9th
[13] S. Graf and H. Saidi. Construction of abstract state graphs European Software Engineering Conf. held jointly with the
with PVS. In 9th Int. Conf. on Computer Aided Verification, 10th ACM SIGSOFT Int. Symp. on Foundations of Software
volume 1254 of LNCS, pages 72—83. Springer-Verlag, June Engineering, pages 188—197. ACM Press, Sep. 2003.
1997. [28] C. H. Yang and D. L. Dill. Validation with guided search
[14] A. Groce and W. Visser. Model checking Java programs us- of the state space. In Proc. of the 35th Design Automation
ing structural heuristics. In Proc. of the Int. Symp. on Soft- Conf., pages 599-604, June 1998.
ware Testing and Analysis, pages 12-21. ACM Press, July
2002.
[15] C. Heitmeyer, J. Kirby, Jr., B. Labaw, M. Archer, and

R. Bharadwaj. Using abstraction and model checking to de-
tect safety violations in requirements specifications. [EEE

un@

COMPUTER
SOCIETY

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)
0270-5257/04 $20.00 © 2004 IEEE

