
From Natural Language Requirements to Rigorous Property Specifications

Rachel L. Smith, George S. Avrunin, Lori A. Clarke
Department of Computer Science

 University of Massachusetts
Amherst, Massachusetts 01003, USA

{ rasmith, avrunin, clarke} @cs.umass.edu

Abstract −−−− Property specifications concisely descr ibe selected
aspects of what a software system is supposed to do. I t is
surpr isingly difficult to wr ite these proper ties correctly. Although
there are r igorous mathematical formalisms for representing
proper ties, these are often difficult to use. No matter what
notation is used, however, there are often subtle, but important,
details that need to be considered. The PROPEL tool aims to make
the job of wr iting and understanding proper ties easier by
providing templates that explicitly capture these details as options
for commonly-occurr ing proper ty patterns. These templates are
represented using “ disciplined” natural language, decision trees,
and finite-state automata, allowing the developer to easily move
between these representations.

I. INTRODUCTION

Finite-state verification approaches, such as model
checking, determine if the behavior of a hardware or software
system is consistent with a specified property. These properties
may be written in a number of different specification
formalisms, such as temporal logics, graphical finite-state
machines, or regular expression notations, depending on the
finite-state verification system that is being employed. A
serious problem that is frequently encountered in practice,
however, is expressing the intended behavior of the system
correctly. Even though properties usually focus on some
restricted aspect of a system’s behavior, it is still surprisingly
difficult to capture this behavior precisely. These properties are
often “almost” correct, but fail to capture some important, and
sometimes subtle, aspects of the system’s intended behavior.
Often these aspects are not revealed until testing or
verification. Thus, analysts frequently spend a considerable
amount of time trying to verify a property, only to later
determine that the property has been specified incorrectly.

Software developers tend to avoid the more mathematical
formalisms and instead write requirements in natural language,
UML state diagrams, and other less precise notations. These
representations seem to be more accessible to practitioners, but
they are often verbose or contain imprecise—and sometimes
ambiguous and inconsistent—descriptions of the system. Thus
they are of limited value when doing consistency checking,
design and implementation analysis, or testing and verification
of the system. In this situation, the requirements often do not
provide enough value to warrant the investment put into
creating and maintaining them.

What is needed is a property specification approach that
bridges the gap between informal intent and precise
specification. Our approach aims to do this by encouraging

developers to think about the issues involved in specifying
their properties precisely and by providing representations that
are easy to use and understand. Recent work on property
patterns [8-10] recognized that the properties used in formal
verification often map onto one of several basic property
patterns. These property patterns can be instantiated with
specific events or states and then mapped to several different
formalisms. Our approach focuses on property templates that
extend the basic property patterns with alternative options that
are explicitly shown to the developer. These options are
designed to assist the developer in understanding the questions
about their property that need to be considered.

We provide three different notations to represent properties
and the questions that can be asked about them: disciplined
natural language (DNL) templates, an extended finite-state
automaton (FSA) representation, and a decision tree (DT)
representation. The DNL and DT representations should appeal
to those developers who prefer a natural language descriptions.
The instantiated FSA representation is mathematically well-
defined and thus can be used as the basis for verification, as
well as for testing the acceptance of event sequences,
validating the consistency of a set of property automata, or
other types of analyses. We believe that providing developers
with the ability to view all these representations simultaneously
and select the available options from any representation will
help them to elucidate the desired property. We are currently
developing a system, called PROPEL, for “PROPerty
ELucidation,” that provides support for specifying properties
based on the property templates, using these complementary
representations.

This paper describes property templates and the capabilities
of the PROPEL tool. The next section of the paper briefly
explains the concerns that motivated the extension made to the
original property patterns to express them as templates. Section
3 describes the property templates in the FSA, DNL, and DT
representations. Section 4 presents a detailed example of using
the PROPEL tool to specify one of the patterns. Section 5
discusses related work and Section 6 concludes with a
discussion of limitations and future directions.

II. PROPERTY PATTERNS

Dwyer, Avrunin, and Corbett [8-10] developed a system of
property patterns to assist users of finite-state verification
tools, such as SPIN [18], SMV [21], INCA [3], and FLAVERS
[7]. They proposed the pattern system, modeled on Design
Patterns [14], as a way to leverage the experience of system
developers by capturing a description of good solutions to

recurring design problems. Dwyer, et al. observed that nearly
all the properties found in the finite-state verification literature
could be classified into a small number of basic types and
suggested that a collection of parameterizable patterns, which
they described as “high-level, formalism-independent,
specification abstractions,” could assist finite-state verification
practitioners in formulating most of the properties they wanted
to check.

Each of the patterns describes a behavior (the structure of
the specified constraint), a scope (the extent of program
execution over which the behavior must hold), mappings into
the input formalisms for some finite-state verification tools,
examples of known uses, and relationships to other patterns.
For instance, the behavior of the Response pattern is a cause-
and-effect relationship between a pair of events or states, in
which the occurrence of the “cause” or “action” leads to an
occurrence of the “effect” or “ response.” A particular
Response relation might be intended to hold only while the
system is executing in a certain mode, or scope, while instances
of the action might require an entirely different response in
other scopes. The scopes are: Global (the whole execution),
Before (the execution up to a given state/event), After (the
execution after a given state/event), Between (any part of the
execution from one given state/event to another given
state/event), and After-Until (like the Between scope but the
designated part of the execution continues even if the second
state/event does not occur). The scope is determined by
specifying a starting and an ending state/event for the pattern.

The pattern system gives mappings from behavior-scope
combinations to several formal notations (e.g., regular
expressions, various temporal logics, etc.) The mappings
involve a number of choices and the property pattern web site
[10] includes notes on how to modify the mappings to obtain
useful variations. These notes also discuss such issues as
combinations of the patterns and which instantiations of
parameters in the patterns are safe in which formalisms. The
property patterns themselves do not highlight the choices made
and the notes do not attempt to point out all plausible
modifications. It is assumed that a developer who wishes to
modify a pattern has significant expertise with the particular
specification formalisms utilized by the finite-state verification
tool being applied.

As an example of the subtle, but important, possible
variations on a basic property pattern, consider the following
property, as expressed in natural language:

After the elevator button is pushed, the elevator closes
its doors.

This property looks reasonably straightforward, but a closer
examination will reveal that there are many questions
concerning the precise meaning that need to be answered. For
example, should the doors close repeatedly if the button is
pushed repeatedly? What, if anything, is allowed to occur after
the button is pushed, but before the doors are closed? Can the

doors close without the button being pushed? Does the button
have to be pushed at all?

In this work, we are concerned with eliciting precise and
rigorous requirements from people who are unlikely to be
fluent in temporal logics or other specification formalisms. We
are thus especially interested in identifying the possible
variations and enabling the developer to determine which of
these are intended. Our focus is on helping the developer
elucidate the property by making informed choices between
these interpretations.

III. PROPERTY TEMPLATES

In our previous work with finite-state verification systems,
we have found that finite-state automata, with their
corresponding graphical depictions, are somewhat more
accessible than other mathematical notations for representing
properties. We have also observed that many of the “shall”
phrases found in requirements and specification documents
seem to almost take on a template form. Thus, we wanted to
see if we could marry these two notations via the property
patterns. While the property pattern work included both state-
and event-based formalisms, here we assume an event-based
formalism and extend each of the basic property patterns.

A. Finite State Automata Templates
The FSA template notation extends the traditional FSA

property notation with the following additions:

• optional transitions,
• optionally-accepting states,
• multi-labels,
• “¬” , the set complement operator, and
• “ .” , the wildcard character, representing the property’s

entire alphabet.

We will illustrate these notational additions in the example
described in Section 4.

A property template is fully instantiated when all the
optional choices have been resolved and partially instantiated
if some unresolved options remain. The property templates rely
on pattern parameters; during the process of instantiating an
FSA template, the developer must define the alphabet and
associate the appropriate events with their related pattern
parameters. The FSA template structure is designed to assist
the developer in asking and answering the appropriate
questions and in understanding the meaning of the decisions
that are made. After fully instantiating an FSA template by
resolving all of the options, the developer is left with an FSA
representation of their property.

B. Disciplined Natural Language Templates
The DNL is a restricted subset of natural language. This

representation is not intended to stand by itself; it is meant to
be used in conjunction with the FSA template representation. It
is hoped that a DNL property instantiated from a DNL
template will improve accessibility, while the corresponding
FSA property provides a precise semantic interpretation.

Like FSA templates, DNL templates are designed to
elucidate the decisions associated with a property pattern.
Therefore, the same options that must be decided in the FSA
template are options in the DNL template representation. The
DNL template for a particular property pattern consists of a
Core phrase and perhaps one or more subsidiary phrases. The
Core phrase is used to express the basic meaning of the
property pattern and may be parameterized to express one or
more of the options. For customization, we introduce
synonymous choices for most of the phrases so that developers
can select the synonym that seems most natural to the
particular property that they are trying to represent.

It is therefore possible to translate between the two
representations and to develop them in parallel using PROPEL,
as described in Section 4.

C. Decision Tree Templates
The FSA and DNL templates, as described above, assume

that the developer has chosen a particular property pattern,
after which the selected property representation can help guide
the decision-making process from that point. The DT
representation is somewhat more flexible and can be used to
assist the developer in deciding which property pattern is
desired.

In PROPEL, there are four basic event-based behaviors,
which are partially represented in the initial DT template given
below:

How many events are in your behavior?
• One Event:
o The event must happen.
o The event must NOT happen.

• Two Events:
o The first event causes the second event to happen.
o The first event enables the second event to happen.

Using the DT template given above, the developer chooses
only one of the four behaviors, and subsequently must answer
questions to determine more precisely the property that is
desired. As an example of a subsequent DT template, the
developer may choose the third behavioral pattern (Response)
and substitute the pattern parameters action and response for
the first event and the second event, respectively. The resulting
Response DT template is given below. Similar DT templates
have been developed for the other behavioral patterns and the
scopes.

Action causes response to happen.
• Requiring action to occur:

o Action must occur at least once
o Action might never occur

• Allowing response to occur before action:
o Response may occur before action
o Response must not occur before action

• Allowing intervening events:
o No other events may occur between action and response
o Other events may occur between action and response

• How many times may action occur before response does?
o Action may only occur once before response does

o Action may occur one or more times before response does
• How many times may response occur after action does?

o Response may only occur once after action does
o Response may occur one or more times after action does

• Repeating the behavior:
o The behavior described above may repeat.
o The behavior described above may not repeat.

IV. SPECIFYING PROPERTIES

Suppose that the developer has in mind the statement first
shown in Section 2:

After the elevator button is pushed, the elevator closes
its doors.

The developer creates a new property in the tool by
choosing one of the four basic event-based behaviors that were
presented in the initial DT template. The first question that the
developer must answer in that DT template is whether the
property is concerned with one or two events. After the
developer has made that choice, further sub-questions in the
form of sentences appear. Figure 1 shows a screen capture of
the tool’s GUI for this part of the process. In the figure, the
developer decides that the elevator property has two events and
that the first event causes the second event to occur.

Figure 1: Choosing the Response Proper ty Template

After the developer has selected which of the property
templates best describes the type of behavior the new property
should express, in this case the Response property template,
the tool presents both the FSA template and DNL template for
further editing. The developer can then determine what events
the Response property template’s action and response
parameters map to in the alphabet of this property. For
simplicity, let us assume that pushing a button and closing the
doors are the only events of interest and that they correspond to
the events button-push and door-close, which are substituted
for the parameters action and response, respectively.
 Figure 2 shows a screen capture of the PROPEL tool with two
main windows open: the Property Views and the Alphabet
Views. The Property Views window displays the initial
Response FSA template (shown in the figure as the “Graphical
View”) and the initial Response DNL template (shown in the
figure as the “Disciplined English View”), with the pattern
parameters replaced by their respective specified events. The
Alphabet Views window provides a place for the developer to
edit the pattern parameters using the Formal Parameter View
and the property’s alphabet using the Alphabet Manager.

At this point, the developer is shown both the FSA template
and the DNL template for the selected pattern. When

instantiating the options, the developer can use either template,
or change back and forth between the two representations. The
PROPEL tool keeps track of how the options in the two
representations relate to each other; once an option in one
representation is resolved the corresponding options in the
alternative representation are also resolved. The developer can
choose to resolve the options in any order.

Let us assume that the developer decides to use the DNL
template to begin editing the property. The drop-down menus
in Figure 3 indicate the options in the Response property
template that need to be decided to fully instantiate a Response
property. The Pre-arity option is concerned with the question
of how many occurrences of button-push are allowed to occur
before the first occurrence of door-close. As is shown in Figure
3, the developer can answer this question by opening the drop-
down menu labeled “Pre-arity” and selecting the desired
choice. It should be noted that the separator in the drop-down
menu in Figure 3 distinguishes between answers with different
meanings; answers that are not separated by a line are
synonyms.

The next question in the sentence, called the Immediacy
option, is concerned with whether or not other events may
intervene between occurrences of button-push and occurrences
of door-close. As with the Pre-arity option, the developer can
answer this question by opening the drop-down menu labeled
“ Immediacy” and selecting the appropriate choice. The third
drop-down menu in the sentenced, labeled “ lead to,” is simply

a list of synonymous ways to express the causal relationship
between button-push and door-close. Changing the wording by
selecting a synonym does not change the meaning of the
property. The final question in the sentence, called “Post-
arity,” is concerned with how many occurrences of door-close
are allowed to occur after the first occurrence of button-push.
The developer can answer this question by opening the drop-
down menu labeled “Post-arity” and selecting the desired
choice.

Figure 3: Answer ing Pre-ar ity in the DNL Template

Up to this point, the discussion has only been concerned
with using the DNL template to edit the property, but the
PROPEL tool reflects the changes in the FSA representation as
well. As is shown in Figure 4, the FSA representation of the
property is a state machine that has several optional
components. Here, the leftmost state is an optionally-accepting
start state, denoted as a state with a dashed inner concentric

Figure 2: The Initial Response FSA and DNL Templates with Specified Events

circle. The developer can make this state accepting or non-
accepting. If the developer decides that the start state should be
accepting, it means that button-push is not required to occur;
the property would be satisfied if that event never occurred. If
the developer decides that the start state should be non-
accepting, it means that button-push is required to occur at
least once in the program execution. Figure 4 shows how the
developer can answer this Nullity question by means of a three-
choice (“accepting,” “not accepting,” or “undecided”),
contextual menu for the start state: the developer can select the
choice that is desired.

Figure 5: Answer ing Nullity in the FSA Template

In this figure, the transition going from the rightmost state to
the middle state is an optional transition, indicated by a dashed
line instead of a solid line. The developer could keep the
optional transition there or remove it. If the developer decides
that this transition should exist, it would mean that the behavior
is repeatable; that is, further occurrences of button-push cause
further occurrences of door-close to happen. If the developer
decides that this transition should be removed, it would mean
that further occurrences of button-push do not require
subsequent occurrences of door-close to happen. Similar to the
optionally-accepting start state, in Propel the developer can
answer this Repeatability question by means of a three-choice
(“exists,” “does not exist,” or “undecided”), contextual menu
for the optional transition.

The final option in the Response property template, called
“Precedency,” is concerned with whether or not door-close is
allowed to occur before the first occurrence of button-push.
The developer can decide this question by selecting only one of
the items in the multi-label on the start state’s self-loop to be
the label on that transition. A multi-label is denoted by a list of
alternative sets of labels, called “multi-label items,” each set
separated by the word “or” . If the developer decides that the
label on the start state’s self-loop should be ¬(button-
push,door-close), it means that door-close is not allowed to
occur until button-push has occurred at least once, since the
“¬” operator provides a shorthand notation to indicate the
complement of the given set of events with respect to the
property alphabet. If the developer decides that the label on
that transition should be ¬button-push, it means that door-
close is allowed to occur before the first occurrence of button-
push.

Throughout the editing of the templates, the PROPEL tool

reflects the changes in both the DNL and FSA representations.
Figure 5 shows the finished version of the property in both
representations. After fully-instantiating the template, the FSA
template is resolved to an FSA property and the DNL template
is resolved to a completed natural language paragraph. Any
option in a property can be unset and reselected if the option
needs to be changed, and the DNL can be customized by
choosing a different synonym at any time. Thus, the process is
designed to help developers ask questions about the
requirements and to elucidate the meaning of a property. The
developer could go through this process in a different order
than has been described above and could make different
decisions about when to use the FSA and DNL representations.

A similar process for editing the property’s scope is
supported as well. The process of deciding which scope is
appropriate can also be represented as a decision tree. In
addition to this representation, the PROPEL tool provides a
scope DNL paragraph and an associated graphical timeline
representation as part of its description of the property. As with
the behaviors, any change to one of these scope representations
is reflected in all of these representations.

V. RELATED WORK

The PROPEL approach described in this paper builds directly
on the property patterns [9]. That work identified commonly-
occurring types of specifications and attempted to provide
users of finite-state verification tools with high-level,
formalism-independent abstractions for dealing with those
types. These patterns form the basis of the extensible
specification language in the Bandera system [4, 5], and Paun
and Chechik [23] have extended the patterns to deal with
events in a state-based formalism.

A number of other researchers have used templates or
patterns in the construction of both requirements and properties
for finite-state verification. For instance, van Lamsweerde and
his co-authors [6, 20] have suggested using a library of
refinements to construct detailed requirements from goals. The
correctness of these refinements is verified in a formal logic.

Figure 4: An Instantiated Response Proper ty

The Attempto Controlled English project [12, 13] offers
annotated templates to guide non-expert users, and the
Cico/Circe [1] tool includes suggested phrases for expressing
relationships between artifacts. The FormalCheck [11] finite-
state verification tool uses templates to formulate the properties
to be checked. The PROPEL approach is unique in that it
incorporates templates in both natural language and a formal
notation to specify properties.

Other techniques, such as various tabular notations, have
been aimed at providing requirements that are both accessible
and suitable for formal analysis. The work of Heninger and her
co-authors on the A-7E project [17] focused on expressing
properties with condition- and event-tables. Heitmeyer and her
co-authors (e.g., [16]), have built a variety of tools for
checking consistency, completeness, and safety properties of
requirements expressed in the tabular SCR notation. The
Requirements State Machine Language [19], which provides a
tabular notation for the guarding conditions of transitions,
supports similar analyses [15]. These approaches are general
formalisms for expressing primarily state-based requirements,
while the PROPEL approach focuses more on helping to
elucidate the options associated with event-based requirements.

Some research, such as the Attempto Controlled English
project, Cico/Circe, NLIPT [22], and the work of Bryant [2],
attempts to construct formal specifications from natural
language requirements. The use of natural language in the work
described here is much less ambitious. PROPEL provides both
disciplined natural language and FSA representations, and
allows the developer to move back and forth between them in
order to help make the formal specifications more
understandable and accessible, but does not attempt to
understand natural language, even in restricted domains.

VI. CONCLUSIONS

With PROPEL, users are provided with templates for the
most common property patterns described in Dwyer et al.
These templates are presented in an extended finite-state
automaton notation, as natural language phrases, and as a series
of questions structured as a decision tree. We hypothesize that
this approach will help developers elucidate the precise
meaning of the properties that they are expressing. We believe
that this approach is an effective way to achieve both
accessibility and rigor in property specifications.

There are a number of interesting directions that we intend
to explore in future work. We want to study compositions of
specification patterns and explore the solution space more fully
by re-examining the interaction between scopes and behaviors,
such as considering options for scopes and using the decision
tree structure independent of the pattern system. We also plan
to develop translations into other precise formalisms for the
purpose of integration with testing and verification tools, and
we plan to improve the NL representation to increase
developers’ ease with the approach. Most importantly, we want
to evaluate the PROPEL approach and discover ways to improve
it. Although we have applied this approach to several

properties and have been pleased with the results, we need to
undertake a careful and extensive evaluation.

VII. ACKNOWLEDGEMENTS

This research was partially supported by the U.S.
Department of Defense/Army Research Laboratory and the
U.S. Army Research Office under Agreement
DAAD190110564 and grant No. DAAD19-03-1-0133 and by
the National Science Foundation under Grant CCR-0205575.
The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright annotation thereon.

The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the U. S. Army, the U.S. Dept. of
Defense, the U.S. Government, or the National Science
Foundation.

VIII. REFERENCES

[1] V. Ambriola and V. Gervasi, "Processing Natural
Language Requirements," presented at 12th
International Conference on Automated Software
Engineering, Lake Tahoe, NV, 1997, pp. 36-45.

[2] B. Bryant, "Object-Oriented Natural Language
Requirements Specification," presented at 23rd
Australasian Computer Science Conference,
Canberra, Australia, 2000.

[3] J. C. Corbett and G. S. Avrunin, "Using Integer
Programming to Verify General Safety and Liveness
Properties," Formal Methods in System Design, vol.
6, 1995, pp. 97-123.

[4] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C.
S. Pasareanu, R. Zheng, and H. Zheng, "Bandera:
Extracting Finite-state Models from Java Source
Code," presented at 22nd International Conference on
Software Engineering, Limerick, Ireland, 2000, pp.
439-448.

[5] J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby,
"A Language Framework for Expressing Checkable
Properties of Dynamic Software," presented at SPIN
Software Model Checking Workshop, Stanford, CA,
2000, pp. 205-223.

[6] R. Darimont and A. van Lamsweerde, "Formal
Refinement Patterns for Goal-Driven Requirements
Elaboration," presented at Fourth ACM SIGSOFT
Symposium on the Foundations of Software
Engineering, San Francisco, CA, 1996, pp. 179-190.

[7] M. B. Dwyer and L. A. Clarke, "Data Flow Analysis
for Verifying Properties of Concurrent Programs,"
presented at Second ACM SIGSOFT Symposium on
the Foundations of Software Engineering, New
Orleans, LA, 1994, pp. 62-75.

[8] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett,
"Property Specification Patterns for Finite-state
Verification," presented at Second Workshop on

Formal Methods in Software Practice, Clearwater
Beach, FL, 1998, pp. 7-15.

[9] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett,
"Patterns in Property Specifications for Finite-State
Verification," presented at 21st International
Conference on Software Engineering, Los Angeles,
CA, 1999, pp. 411-420.

[10] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett,
"Specification Patterns Web Site,"
http://www.cis.ksu.edu/santos/spec-patterns/.

[11] FormalCheck, "FormalCheck Web Site,"
http://www.cadence.com/datasheets/formalcheck.html

[12] N. E. Fuchs and R. Schwitter, "Attempto Controlled
English (ACE)," presented at First International
Workshop on Controlled Language Applications,
1996.

[13] N. E. Fuchs, U. Schwertel, and R. Schwitter,
"Attempto Controlled English -- Not Just Another
Logic Specification Language," presented at Eighth
International Workshop on Logic-Based Program
Synthesis and Transformation, 1998, pp. 1-20.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-
Oriented Software. Reading, MA: Addison-Wesley,
1995.

[15] M. P. E. Heimdahl and N. G. Leveson, "Completeness
and Consistency in Hierarchical State-Based
Requirements," IEEE Transactions on Software
Engineering, vol. 22, 1996, pp. 363-377.

[16] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw,
"Automated Consistency Checking of Requirements
Specifications," ACM Transactions on Software

Engineering and Methodology, vol. 5, 1996, pp. 231-
261.

[17] K. Heninger, D. L. Parnas, J. Shore, and J. Kallander,
"Software Requirements for the A-7E Aircraft," Naval
Research Laboratory, Washington, D.C., Technical
Report NRL 3876, 1978.

[18] G. J. Holzmann, "The Model Checker SPIN," IEEE
Transactions on Software Engineering, vol. 23, 1997,
pp. 279-294.

[19] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J.
D. Reese, "Requirements Specification for Process-
Control Systems," IEEE Transactions on Software
Engineering, vol. 20, 1994, pp. 684-707.

[20] P. Massonet and A. van Lamsweerde, "Analogical
Reuse of Requirements Frameworks," presented at
Third International Conference on Requirements
Engineering, 1997.

[21] K. L. McMillan, Symbolic Model Checking: An
Approach to the State Explosion Problem. Boston,
MA: Kluwer Academic Publishers, 1993.

[22] J. B. Michael, V. L. Ong, and N. C. Rowe, "Natural-
Language Processing Support for Developing Policy-
Governed Software Systems," presented at 39th
International Conference on Technology for Object-
Oriented Languages and Systems, Santa Barbara, CA,
2001.

[23] D. O. Paun and M. Chechik, "Events in Linear-Time
Properties," presented at Fourth International
Conference on Requirements Engineering, Limerick,
Ireland, 1999.

