IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.2, FEBRUARY 2002 115

Improving the Precision of INCA by
Eliminating Solutions with Spurious Cycles

Stephen F. Siegel and George S. Avrunin, Member, IEEE Computer Society

Abstract—The Inequality Necessary Condition Analyzer (INCA) is a finite-state verification tool that has been able to check properties
of some very large concurrent systems. INCA checks a property of a concurrent system by generating a system of inequalities that
must have integer solutions if the property can be violated. There may, however, be integer solutions to the inequalities that do not
correspond to an execution violating the property. INCA thus accepts the possibility of an inconclusive result in exchange for greater
tractability. We describe here a method for eliminating one of the two main sources of these inconclusive results.

Index Terms—INCA, finite-state verification, cycles, integer programming.

1 INTRODUCTION

FINITE—STATE verification tools deduce properties of finite-
state models of computer systems. They can be used to
check such properties as freedom from deadlock, mutually
exclusive use of a resource, and eventual response to a
request. If the model represents all the executions of a
system (perhaps by making use of some abstraction), a
finite-state verification tool can take into account all the
executions of the system. Moreover, finite-state verification
tools can be applied at any stage of system development at
which an appropriate model can be constructed. Such tools
thus represent an important complement to testing,
especially for concurrent systems where nondeterministic
behavior can lead to very different executions arising from
the same input data.

The main obstacle to finite-state verification of concur-
rent systems is the state explosion problem: the number of
states a concurrent system can reach is, in general,
exponential in the number of concurrent processes in the
system. This problem confronts the analyst immediately—
even for small systems, the number of reachable states can
be large enough so that a straightforward approach that
examines each state is completely intractable—and com-
plexity results tell us that there is no way to avoid it
completely. Every method for finite-state verification of
concurrent systems must pay some price, in accuracy or
range of application, for practicality.

The Inequality Necessary Conditions Analyser (INCA) is
a finite-state verification tool that has been used to check
properties of some systems with very large state spaces. The
INCA approach is to formulate a set of necessary conditions
for the existence of an execution of the program that violates

e S.F. Siegel is with the Laboratory for Advanced Software Engineering
Research, Department of Computer Science, University of Massachusetts,
Ambherst, MA 01003. E-mail: siegel@cs.umass.edu.

o G.S. Avrunin is with the Department of Mathematics and Statistics,
University of Massachusetts, Amherst, MA 01003.

E-mail: avrunin@math.umass.edu.

Manuscript received Mar. 2001; revised June 2001; accepted July 2001.
Recommended for acceptance by M.]. Harrold and A. Bertolino.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 115151.

the property. If the conditions are inconsistent, no execution
can violate the property. If the conditions are consistent, the
analysis is inconclusive; since the conditions are necessary
but not sufficient, it may still be the case that no execution
of the program can violate the property. INCA thus accepts
the possibility of an inconclusive result in exchange for
greater tractability. There are two main sources of incon-
clusive results. In this paper, we show how one of these,
caused by cycles in finite state automata representing the
components of the concurrent system, can be eliminated at
what seems to be only moderate cost.

In the next section, we describe the INCA approach.
Section 3 explains our technique for improving INCA’s
precision and the fourth section presents some preliminary
data on its application. The fifth section discusses some
related work and the final section summarizes the paper
and discusses other issues related to the precision of INCA.

2 INCA

A complete discussion of the INCA approach, along with a
careful analysis of its expressive power, is contained in [1].
In this section, we will use a small (and quite contrived)
example to sketch the basic INCA approach and show how
certain cycles in the automata corresponding to the
components of a concurrent system can lead to imprecision
in the INCA analysis. We refer readers who want more
detail to [1].

2.1 Basic Approach

The basic INCA approach is to regard a concurrent system
as a collection of communicating finite state automata
(FSAs). Transitions between states in these FSAs correspond
to events in an execution of the system. INCA treats each
FSA as a network with flow and regards each occurrence of
a transition from state s to state ¢, corresponding to an event
e, as a unit of flow from node s to node ¢. The sequence of
transitions in a particular FSA corresponding to events in a
portion of an execution of the system thus represents a flow
from one state of the FSA to another.

0098-5589/02/$17.00 © 2002 IEEE

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:52:55 UTC from IEEE Xplore. Restrictions apply.

116 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.2, FEBRUARY 2002

package simple is
task tl is task t2 is
entry a; end t2;
entry b;
entry c; task t3 is
end t1; end t3;
end simple;
package body simple is
task body t1 is task body t2 is
begin begin
accept ¢; tl.c;
loop loop
select tl.a;
accept a; end loop;
loop end t2;
select
accept a;
or
accept ¢;
exit; task body t3 is
end select; begin
end loop; tl.b;
or end t3;
accept b;
loop
accept a;
end loop;
end select;
end loop;
end tl;
end simple;

Fig. 1. A small example.

To check a property of a concurrent system using INCA,
an analyst specifies the ways that an execution might violate
the property in terms of a sequence of intervals, or
segments, of an execution. Consider a system in which
event a can occur repeatedly and event b can occur at most
once. Suppose that an analyst wants to show that an
occurrence of event b can never be preceded by an
occurrence of event a in any execution of the system. A
violation of this property is an execution in which a occurs
and then b occurs. In INCA, this could be specified as a
single interval running from the start of the execution until
the occurrence of b, with the requirement that an a occur
somewhere in the interval. (It could also be specified as a
sequence of two intervals, the first running from the start of
the execution until an occurrence of a and the second
starting immediately after the first and ending with b. The
first type of specification is generally more efficient, but the
second type may provide additional precision in some
cases. This issue is discussed in more detail below.) INCA
provides a query language allowing the analyst to specify
various aspects of the intervals of execution. Standard
INCA queries for a variety of common types of require-
ments are given at the Specification Patterns web site [2], [3].

By generating the equations describing flow within each
FSA (requiring that the flow into a node equal the flow out)
according to the specified sequence of intervals of a system
execution and adding equations and inequalities relating
certain transitions in different FSAs according to the
semantics of communication in the system, INCA produces
a system of equations and inequalities. Any execution that
satisfies the analyst’s specification (and, therefore, violates
the property being checked) corresponds to an integer
solution of this system of equations and inequalities. INCA
then uses standard integer linear programming (ILP)
methods to determine whether there is an integer solution.
If no integer solution exists, no execution can violate the
property and the property holds for all executions of the

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:52:55 UTC from IEEE Xplore. Restrictions apply.

=
o

a

Fig. 2. FSAs for example.

concurrent system. If there is an integer solution, however,
we do not know that the property can be violated. The
system of equations and inequalities represents only
necessary conditions for the existence of an execution
violating the property and it is possible for a solution to
exist that does not correspond to a real execution.

To see more concretely how this works, consider the
Ada program shown in Fig. 1. This program describes three
concurrent processes (tasks). Task tl starts with a
rendezvous with task t2 at the entry c. It then enters a
loop. At the select statement, t1 nondeterministically
chooses to rendezvous with t2 at entry a or with t3 at
entry b if both are ready to communicate at the appropriate
entries. If t1 accepts a communication from t2 at entry a, it
then enters a loop in which it accepts rendezvous at entry a
until it accepts one at entry c. If t1 instead accepts a
communication from t3 at entry b, it then tries forever to
repeatedly rendezvous with t2 at entry a. Task t2 begins
by calling entry ¢ and then enters a loop in which it calls
entry a. Task t3 simply calls entry b once and then exits.

Fig. 2 shows the FSAs constructed by INCA for this
program. The states and transitions are numbered for
reference. Each transition in this example represents the
occurrence of a rendezvous between two tasks; in the
figure, each transition is labeled with the entry at which the
corresponding rendezvous takes place. (For this example, it
is sufficient to label the transitions by the entry name. In
practice, INCA identifies transitions representing rendez-
vous with the names of the calling and accepting tasks, the
entry called, and the values of any parameters passed in the
rendezvous. Note that we do not need to distinguish here
between the “call” and the “accept”; we view the transition
as representing the actual rendezvous involving both tasks.
As will be seen below, INCA ensures the number of
occurrences of transitions representing a given rendezvous
is the same in the two tasks participating in that
rendezvous.)

Suppose that we wish to check that an occurrence of a
rendezvous at entry b cannot be preceded by a rendezvous
at entry a. As described earlier, we may specify the
violation as an interval of an execution running from the
start of execution until the occurrence of a rendezvous at b
and containing a rendezvous at a. The flow equations for

SIEGEL AND AVRUNIN: IMPROVING THE PRECISION OF INCA BY ELIMINATING SOLUTIONS WITH SPURIOUS CYCLES 117

each task will then describe the possible flows from the
initial state of the task to one of the states in which that task
could be at the end of the interval.

Since the interval ends with a rendezvous at entry b,
represented by the transition numbered 2 in the FSA
corresponding to task t1 and the transition numbered 9 in
the FSA corresponding to task t3, we know that the FSA t1
must be in state 3 and the FSA t3 must be in state 8 at the
end of the interval. Our flow equations for t1 therefore
describe flow starting in state 1 and ending in state 3, while
the flow equations for t3 describe flow starting in state 7
and ending in state 8. For t2, the fact that a rendezvous at a
occurs in the interval implies that that FSA must be in state 6
at the end of the interval, so the flow equations for t2
describe flow from state 5 to state 6.

To produce these flow equations, let z; be a variable
measuring the flow along the transition numbered i. At
each state, we generate an equation setting the flow in equal
to the flow out. We must, however, take into account the
implicit flow of 1 into the initial state of each FSA and the
implicit flow of 1 out of the end state of the flow. Thus, for
example, the equation for state 1 is

1= X1 (1)

since the flow in is 1 because state 1 is the initial state and
the only flow out is on transition 1. Similarly, the equation
for state 8 is

since the only flow in is on transition 9 and there is implicit
flow out of 1 since the flow in this FSA ends in state 8.

To complete the system of equations and inequalities, we
must add equations to reflect the fact that the two tasks
participating in a rendezvous must agree on the number of
times it occurs. For instance, we need the equation

T3+ T4 + x5 = X3 (3)

saying that the number of occurrences of the rendezvous at
entry a in the FSA for t1 is the same as in the FSA for t2.
We also need an inequality to express the requirement that
there is at least one occurrence of a rendezvous at a. We use

to state this. The full system of equations and inequalities
used to check the property that a rendezvous at entry b
cannot be preceded by a rendezvous at entry a is shown in
Fig. 3. (The description here is actually somewhat over-
simplified; INCA performs several optimizations to reduce
the size of the system of inequalities and the real system of
inequalities produced by INCA would be smaller. For
example, INCA would observe that there cannot be flow
along transition 3 in a violating execution (because the
interval of execution must end with transition 2) and would
eliminate the variable x3 from the system. It would also do a
form of constant propagation to eliminate other variables
and equations.)

Essentially all research on finite-state verification tools
can be viewed as aimed at ameliorating the state explosion
problem for some interesting systems and properties. The
approach taken by INCA avoids enumerating the reachable

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:52:55 UTC from IEEE Xplore. Restrictions apply.

Flow Equations:

State Equation
1 1= X1
2 X1+ X = X2+ X4
3 X)+X3=x3+ 1
4 X4+ X5 = X5+ Xg
5 1= X7
6 X7+ X8 = Xxg + 1
7 1= Xg
8 Xg = 1
Communication Equations:
Entry Equation
a X3+ X4+ X5 = Xg
b X2 = Xg
C X+ X6 = X7
Requirement Inequality:
a occurs xg > 1

Fig. 3. System of equations and inequalities for example.

states of the system. The size of the system of equations and
inequalities is essentially linear in the number of processes
in the system (assuming the size of each process is
bounded). Furthermore, the use of properly chosen cost
functions in solving the problems can guide the search for a
solution. ILP is itself an NP-hard problem in general and the
standard techniques for solving ILP problems (branch-and-
bound methods) are potentially exponential. In practice,
however, the ILP problems generated from concurrent
systems have large totally unimodular subproblems and
seem particularly easy to solve. Experience suggests that the
time to solve these problems grows approximately quad-
ratically with the size of the system of inequalities (and thus
with the number of processes in the system).

Comparisons of this approach [4], [5], [6], [7] with other
finite-state verification methods show that the performance
of each method varies considerably with the system and
property being verified, but that INCA frequently performs
as well as, or better than, such tools as SPIN [8] and SMV [9].
The INCA approach has also been extended to check timing
properties of real-time systems [10], [11] and to prove trace
equivalence of certain classes of systems [12].

2.2 Sources of Imprecision

The systems of equations and inequalities generated by
INCA represent necessary conditions for there to be a
violation of the property being verified. As noted earlier,
however, these conditions are not, in general, sufficient to
guarantee that the property can actually be violated. A
solution of the system of equations and inequalities may not
correspond to a real execution.

There are two main reasons for this. The first has to do
with the order in which events occur. Strictly speaking, the
equations and inequalities generated by INCA refer only to
the total number of occurrences of the various events in
each interval of the execution and do not directly impose
restrictions on the order in which those events occur within
the interval. In fact, the flow equations for a single FSA
typically imply fairly strong conditions on order, but the
communication equations relating the occurrence of events
in different FSAs do not impose strong restrictions on the
order of occurrence of events from different processes. To

118 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.2, FEBRUARY 2002

=S
o

a

Fig. 4. Solution with disconnected cycle.

see why, consider a system comprising two processes. The
first process begins by trying to communicate with the
second process on channel A and then, after completing
that communication, tries to communicate with the second
process on channel B. The second process tries to complete
the communications in the reverse order. This system will
obviously deadlock, but the equations generated by INCA
would say only that the number of communications on
each channel in the first process is equal to the number in
the second process, allowing a solution in which each
communication occurs. (This is again a slight over-
simplification. INCA would actually detect the deadlock
in this case, but not in more complicated examples with
several processes.) The only mechanism INCA provides for
directly constraining the order of events in different
processes is the use of additional intervals of the execution.
While this is often enough to eliminate solutions that do
not correspond to real executions of the system, it is
expensive and restricts the range of application of INCA.
We will return to this point later.

The second source of imprecision is the existence of
cycles in the FSAs. Consider the flow equation for state 3
that is shown in Fig. 3. Transition 3 is a self-loop at state 3,
and flow along that transition counts both as flow into
state 3 and out of state 3. The equation x5 + x3 = x3 + 1 does
not constrain the variable z3 at all; we can simply cancel the
x3 terms. Similarly, the variables z; and x3 are not
constrained by the flow equations in which they appear.
These variables are constrained only by the communication
equation that says zy + x3 + x5 = xg. Since three of these
variables are otherwise unconstrained, this equation does
not restrict the solution set.

In fact, although the system of Fig. 1 has no execution in
which a prefix ending with a rendezvous at entry b contains
a rendezvous at entry a, there is a solution to the system of
equations and inequalities shown in Fig. 3 with x;, 22, s,
x7, 23, and xg all equal to 1, and x3, x4, and z¢ all equal to 0.
In this solution, the requirement that the number of
rendezvous at a be at least 1 is met by setting the
unconstrained variables x5 and s to 1. Fig. 4 shows the
FSAs with the transitions having flow indicated by bold
arcs. The flow in the FSA for t1l has two connected
components, one from the initial state to state 3, as

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:52:55 UTC from IEEE Xplore. Restrictions apply.

expected, and one made up of flow in the cycle at state 4,
not connected to the flow from state 1 to state 3. It is obvious
that the flow in each FSA corresponding to an actual
execution must be connected, so this is a spurious solution,
one that does not correspond to a real execution.

This example illustrates the problem but is not of much
independent interest. The same problem, however, occurs
with some frequency in the analysis of more interesting
systems. For instance, in our recent analysis [4] of the
Chiron user interface development system, we encountered
solutions with disconnected cycles in trying to verify two of
the 10 properties we checked. In those cases, we were able
to verify the high-level requirements by reformulating the
properties being checked. We subdivided some intervals to
force events in different parts of the spurious cycles to occur
in different intervals, verified other properties that allowed
us to eliminate some solutions, or chose other events to
represent the high-level requirement. These modifications,
however, represent a considerable expense in increased
analyst effort and verification time, and made the properties
being checked harder to understand and validate in terms
of the high-level requirements. In the next section, we
describe a technique for eliminating these solutions with
more than one component of flow in an FSA.

3 ELIMINATING SPURIOUS CYCLES

3.1 A Straightforward Approach

A related problem is well-known in the optimization
literature. When formulating the Traveling Salesman
Problem as an integer programming problem, it is essential
to ensure that the solution represents a single tour visiting
all the cities, rather than a collection of disconnected
subtours each visiting a proper subset of the cities. A
standard approach for eliminating solutions with discon-
nected subtours is to add inequalities that prevent the
solution from visiting cities in a subset U unless the solution
includes an arc from a city not in U to one in U. Thus, if the
variable z; ; is 1 if the solution represents a tour in which the
salesman goes directly from city ¢ to city j, and 0 otherwise,
the standard formulation of the Traveling Salesman
problem would include, for each j, the inequality

in,j =1 (5)

to enforce the requirement that each city is entered and left
exactly once. To eliminate the possibility of a subtour in the
subset U we would add the inequality

Y wzl (6)

i¢UjeU

which requires that the salesman travel from a city outside
U to a city in U. (Of course, we need an inequality like (6)
for every subset U of size at least 2 and at most N — 2,
where N is the number of cities.)

In our case, to prevent a solution in which there is flow in
a disconnected cycle C, we can add an inequality requiring
that, when there is flow in C, there must be flow entering C
from outside. This is a little more complicated than the
situation for the Traveling Salesman Problem. In that case,

SIEGEL AND AVRUNIN: IMPROVING THE PRECISION OF INCA BY ELIMINATING SOLUTIONS WITH SPURIOUS CYCLES

we know by (5) that the the solution must enter each city
exactly once. In our case, we do not want to require flow
into one of the states making up C' unless there is flow along
one of the transitions in C. For instance, we only want to
require flow on transition 4 in our example when there is
flow on transition 5. To do this in general, we would need a
quadratic inequality such as

T4Zs Z ZTs5. (7)

Integer quadratic programming is, however, much harder
than integer linear programming and we would like to
avoid introducing quadratic inequalities. The standard
technique is to impose an upper bound B on all the
variables (i.e., to assume that no transition occurs more than
B times) and to replace the quadratic inequality (7) with the
linear inequality

X5 — BCE4 S 0. (8)

The integer solutions of (7) having x4, z5 < B are exactly the
same as those of (8). (We note that imposing an upper
bound on all the variables would mean that INCA’s
analysis is no longer strictly conservative. If the system of
inequalities has no solutions with the z; all less than or
equal to B, we only know that no execution on which each
transition occurs at most B times can violate the property.
Since B can be taken to be quite large, such as 10,000 or
100,000, this restriction is unlikely to be a serious one in
practice.)

The problem with these approaches is that they may
require too many extra inequalities. The number of subtours
that have to be eliminated in the Traveling Salesman
Problem is essentially the number of subsets of the set of
cities and is clearly exponential in the number of cities.
Similarly, the number of cycles in an FSA can be essentially
equal to the number of subsets of its set of states. We have
constructed a small concurrent Ada program with only
90 lines of code in which the FSA for one task has only
42 states but has 1,160,290,624 distinct subsets of states each
forming at least one cycle. An integer programming
problem with that many inequalities is completely intract-
able. A better method is required.

3.2 A More Practical Method

In this section, we describe a method for preventing
spurious cycles for which the number of additional
variables and inequalities is linear in the size of the
program being analyzed.

The basic idea is as follows: Suppose we have a solution
to the system of equations and inequalities originally
generated by INCA. For each FSA, the solution determines
a subgraph G’ consisting of the edges with positive flow
and the vertices with flow in or out. If G’ is not connected,
i.e., if some vertex is not reachable from the initial vertex,
the solution must involve a spurious cycle in that FSA. To
show that G’ is connected, it is sufficient to construct a
subgraph of G’ having the same vertex set as G’ and such
that 1) if there is flow along any edge into a vertex v in the
solution, some edge terminating in v and having positive
flow in the solution must occur in the subgraph and 2) each
vertex v of the subgraph can be assigned a “depth” d, in

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:52:55 UTC from IEEE Xplore. Restrictions apply.

119

such a way that the depth of a given vertex is greater than
that of any of its predecessors in the subgraph. The second
condition makes the subgraph acyclic and then the first
condition ensures that each vertex with incoming flow in
the solution has an incoming edge in the subgraph and is
therefore reachable from the initial vertex.

If the original solution has no disconnected cycles, we
can choose for our subgraph a spanning tree for the edges
with flow and take the depth of a vertex to be the distance
from the root of the tree to the vertex. If the solution has a
disconnected cycle C, however, we cannot construct such a
subgraph. To see why, suppose we could construct the
subgraph and let v be a vertex in C for which d, < d,, for all
u € C. Since there is flow into v in the solution, v must have
some predecessor u in the subgraph. Since the cycle C is
disconnected from the flow starting at the initial state of the
FSA, the state u must also lie in C. But, if u is a predecessor
of v in the subgraph, we have d, > d,, contradicting the
minimality of d, on C.

Of course, we do not want to consider the possible
solutions to the system of equations and inequalities
generated by INCA one at a time, attempting to construct
the subgraph separately for each solution. Instead, we add
new variables and inequalities, leading to an augmented
system of equations and inequalities whose integer solu-
tions correspond exactly to the integer solutions of the
original system for which the appropriate subgraph can be
constructed.

3.2.1 The Flowgraph

In general, a query can specify more than one interval, so the
situation is slightly more complicated than that illustrated
in our example. In the general case, INCA constructs a
flowgraph as follows: First, it creates one copy of each FSA
for each interval specified in the query. The FSAs for each
interval can then be optimized independently, removing
unnecessary states or transitions based on the restrictions
imposed for that interval in the query. As discussed in
Section 2.1, INCA can analyze the query to determine the
possible states in which each FSA could be at the end of the
interval. Given such a state in an FSA for a task in an
interval (other than the last one), INCA adds a “connect”
edge to the corresponding state in the FSA for that task in
the next interval. These edges, which do not correspond to
events in the execution of the system, allow flow to pass
from one interval to the next. INCA adds an initial vertex,
vy, with connect edges to the initial states of the FSAs in the
first interval, and a final vertex, vp, with incoming connect
edges from each of the possible end states of FSAs in the
final interval. This flowgraph is the structure that INCA
actually uses to generate the system of equations and
inequalities. Note that several different edges in this graph
may correspond to a single edge in an FSA, representing
flow along that edge in different intervals.

Fig. 5 shows the flowgraph generated from the system of
Fig. 2 for a query with two intervals that describes
executions on which a rendezvous at a occurs before the
rendezvous at b does. (This is the two-interval version of
the query used to check the property that a b can never be
preceded by an a, as described in Section 2.1.) The query

120

interval 1

interval 2

Fig. 5. Flowgraph for example with two-interval query.

specifies that the first interval ends as soon as an a occurs
and contains no b. The second interval ends as soon as the b
occurs. The connect edges are shown with dashed lines. The
vertices (other than the initial and final ones) and edges are
labeled the same way as the corresponding vertices and
edges in Fig. 2. Since the first interval ends with the first a
and does not allow a b, INCA can determine that the last
event in task t1 in the first interval must be the transition
on edge 4 from state 2 to state 4, and the last event in task
t2 must be the transition on edge 8 from state 6 to itself.
Because no b is allowed in the first interval, INCA can
prune edges 2 and 3 from the FSA for t1 and edge 9 from
the FSA for t3 in the first interval.

INCA associates a variable z, to each edge e, and
generates flow equations as follows: For each vertex other
than the initial or final vertices, INCA generates the
equation flow-in = flow-out, where flow-in is the sum of the
variables associated with edges entering the vertex and
flow-out is the sum of the variables associated with edges
leaving the vertex. For each task, INCA generates an
equation setting the flow from the initial node to the start
node of that task equal to one and an equation setting the
sum of the flow along edges from nodes of that task to the
final node equal to one. Communication equations of the
type described in Section 2.1 are generated for each interval
to ensure that the communicating tasks agree on the
number of communications that occur in each interval
and additional constraints are added to reflect additional

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:52:55 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.2, FEBRUARY 2002

requirements or restrictions imposed by the query on the
possible events occurring in the different intervals. (The fact
that the different edges in the flowgraph, representing flow
in different intervals, correspond to the same transition in
an FSA representing a task makes it possible to require an
event to occur in one interval and forbid it in another.)

3.2.2 The Augmented System of Inequalities

We now precisely describe the procedure for generating the
augmented system of equations and inequalities that
eliminates solutions with disconnected cycles.

We will say that an ILP problem P is a set of integer
variables with upper and lower bounds specified for each
variable, together with a set of linear equations and
inequalities in those variables such that all the coefficients
are integers. (The bounds on a variable may be taken to be
infinite.) A solution to an ILP problem P is an assignment of
integers to the variables such that the value of each variable
lies between its upper and lower bounds and all the
equations and inequalities are satisfied. (In standard usage,
an ILP problem would also include a linear function of the
variables and the task is to find a solution that maximizes or
minimizes this objective function. In our case, we are
primarily interested only in the feasibility of the ILP problem,
that is, whether or not there are any solutions and, in this
paper, we can ignore the objective function. In applying
INCA, we use the objective function to improve perfor-
mance when there are solutions to the ILP problem.)

Let G be a directed graph with a specified initial vertex
vy and a specified final vertex vp such that v; has no
incoming edges and vy has no outgoing edges. Let P be an
ILP problem containing 1) a variable x, with lower bound of
0 for each edge e in G and 2) the flow equation flow-in =
flow-out for each vertex in G other than v; and vp. (P may
contain additional variables and constraints, we are just
requiring that it contain at least these.)

Given a solution to P, we say that an edge e has flow if
z. >0 and we say that a vertex v has flow if some edge
entering or leaving v has flow. By the flow subgraph of G
corresponding to the solution, we mean the subgraph G’ of G
consisting of all the vertices and edges with flow. We say
that the solution is connected with respect to G if G' is
connected, that is, if every vertex in G’ is reachable from the
initial vertex v;. We may suppress the qualification “with
respect to G” if the graph G is clear from context.

The idea, as described at the beginning of Section 3.2, is
to construct a subgraph of G’ having the same set of vertices
as G', but possibly fewer edges. We require that 1) for each
vertex v # vy of G', some edge of G’ entering v must be in
the subgraph and 2) each vertex v can be assigned a “depth”
d, in such a way that the depth of a given vertex is greater
than the depth of any of its predecessors in the subgraph.
Our goal is to describe an augmented ILP problem P’ such
that a solution of P can be extended to a solution of P’ if and
only if its flow subgraph G’ has a subgraph satisfying
conditions 1 and 2.

For each edge e in G, we introduce a new variable s, with
bounds

0<s <1 9)

SIEGEL AND AVRUNIN: IMPROVING THE PRECISION OF INCA BY ELIMINATING SOLUTIONS WITH SPURIOUS CYCLES 121

(Note that the imposition of an upper or lower bound on a
variable can of course be thought of as adding an
inequality, but is usually handled somewhat differently
by ILP packages. In this discussion, we will separate the
imposition of bounds from the introduction of new
inequalities.) This variable will be 1 if the corresponding
edge is in the subgraph, and 0 otherwise.

For each vertex v in G, we introduce a new variable d,
with bounds

0<d, <N, (10)

where N is some integer which is at least the maximum
length of any nonself-intersecting path through the graph.
For instance, N can be taken to be the number of vertices in
G. The variable d, will be the depth of v.

We then generate inequalities involving these new
variables. For each edge e:u — v, we generate the inequal-
ities

Te 2 Se
dy>d, +(N+1)s,— N.

(11)
(12)

The first inequality says that s, must be 0 if z. is 0, so that
the corresponding edge can be in the subgraph only if the
solution has positive flow along that edge. The second
inequality requires that d, be greater than d, if the edge
from u to v is in the subgraph. If the edge is not in the
subgraph (i.e., if s, is 0), the inequality reads d, > d, — N,
and the bounds on d, and d, make that vacuous.

Finally, let B be a fixed positive integer, and impose the
upper bound z. < B for each e. (As noted earlier, B can be
taken to be quite large.) For each vertex v of G, other than
the initial vertex, we generate the inequality

Bln()| Y se> > .,
)

e€In(v ecIn(v)

(13)

where In(v) denotes the set of edges entering v. By imposing
the upper bound of B on the z., we see that (13) will hold if
z. =0 for all e € In(v) or if s, =1 for at least one such e.
This is how we enforce the requirement that each vertex
with flow has some incoming edge in the subgraph of G'.

We have added V + E new bounded variables and V +
2F — 1 new constraints, where V is the number of vertices
in the graph and E is the number of edges. Let P’ be the
ILP problem obtained from P and G by adding the
variables and inequalities in this fashion. We have the
following theorem.

Theorem. Let G, P, and P’ be as above. A solution of P’ assigns
values to all the variables in P as well as additional variables;
we thus obtain a solution to P from a solution to P by
projection. The set of connected solutions of P with each x, <
B is exactly equal to the set of projections of solutions of P'.

Proof. There are two things we must show. First, we must
show that, given any connected solution to P with all
z, < B, there are values that can be assigned to the new
variables to give a solution to P'. Second, we must prove
that the projection of any solution for P’ is a connected
solution for P. We tackle these in order.

Suppose we are given a connected solution for P.
Then, in the flow-subgraph G, every vertex is reachable

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:52:55 UTC from IEEE Xplore. Restrictions apply.

from the initial vertex v;. So, G’ has a spanning tree T
rooted at vy, i.e., T is a subgraph of G’ that is a tree with
root v; and that contains all the vertices of G'. For each
edge e in G, let

ifeisin T

(1
Se = {0 otherwise.

For each vertex v in G, let d, be the depth of v in T For
vertices v not in G’, d, may be assigned any value
between its bounds.

We claim this is a solution for 7'. Indeed, inequality
(11) follows from the fact that T C G'. To see that (12)
holds, suppose we are given an edge e:u — v. If eisin T,
then d,=d,+1, and (12) reduces to the statement
dy, > d, + 1, which certainly holds. On the other hand,
if e is not in T, then (12) becomes d, > d, — N, which
must hold because d, > 0 and d, < N. Now, consider a
vertex v # vy in G. If v does not have flow then (13) holds
trivially as its right-hand side is 0. If v does have flow,
then it is in 7' and, therefore, s, =1 for some edge e
occurring in the sum. So, the left hand side of (13) is at
least [In(v)|B. On the other hand, there are |In(v)| terms
in the sum on the right hand side and each z. < B, so

S, < ()3,

and (13) holds in this case as well.

Now, suppose we are given any solution to 7. We
wish to show that the projection of this solution is
connected. Let G’ be the flow subgraph for the projected
solution. Let U be the set of vertices in G’ that are not
reachable in G’ from the initial vertex. To say that the
solution is connected is equivalent to saying that U is
empty. So, suppose U is not empty, and let v be a vertex
in U for which d, < d,, for all win U. Since v has flow and
v is not the initial vertex, v has incoming flow (either
because v=vr or by the flow equation for v). This
implies that the right-hand side of (13) is at least 1, so for
some edge e:u — v we have s, = 1. Now, (11) implies
z, > 1. Since u has flow out to v, if © were reachable from
vy, v would also be reachable. But, v € U is not reachable,
so we must have u € U as well. Now, (12) implies

dy>d,+1,

which contradicts the minimality of d,,. O

3.2.3 Local Application of Cycle Elimination

For systems generated by INCA, it is often not necessary to
apply the cycle elimination algorithm over the entire
flowgraph. One reason for this is the following: As there
are no edges from vertices of one interval to vertices of a
previous interval, any cycle must be contained in a single
interval of the flowgraph. Furthermore, as there are no
edges from the vertices of one task to vertices of another
task, a cycle must be contained within a single task of a
single interval. Experience has shown us that, as far as
cycles are concerned, these task-interval “sectors” of the
flowgraph often behave independently: Existence of spur-
ious cycles in one sector usually has no bearing on the
existence of spurious cycles in another sector.

122 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.2, FEBRUARY 2002

Although some of the preliminary experiments de-
scribed below suggest that the expense of applying our
cycle elimination algorithm routinely may not be excessive,
we expect that it will often be applied only when an attempt
to verify a property without using cycle elimination has
produced a solution with spurious cycles. So, once a
spurious cycle has been encountered this way, it would
be useful if there were a way to generate cycle elimination
constraints for only the relevant sector of the flowgraph
and, therefore, save on the number of new constraints and
variables generated—and probably analysis time and
memory as well.

In fact, this requires only a slight modification of the
algorithm. Suppose we are given a graph G and an ILP
problem P as in Section 3.2.2. Let V' be a subset of the
vertices of GG not containing the initial or final vertices. We
say that a solution to P is V'-connected with respect to G fif,
in the flow subgraph G’ corresponding to that solution,
every vertex in V' is reachable from some vertex outside
V’. (A solution has a spurious cycle entirely contained in V'
if and only if it is not V’-connected.) Suppose that we want
to eliminate solutions to P that are not V’-connected. We
construct a new graph from the vertices in V' and the
edges of G entering or leaving those vertices and apply the
augmentation algorithm described above to that graph.
This produces a set of new variables and constraints.
Adding those to P and imposing the upper bound of B on
the z.,, we get an augmented system whose solutions
project to the solutions of P having no disconnected cycles
contained in V'.

Let G be the subgraph of G obtained by first deleting all
edges that do not enter or leave a vertex in V' and then
deleting all vertices outside of V' with no incoming or
outgoing edges. The subgraph G contains all the vertices in
V" and all the vertices with an edge to or from a vertex in V'
and all the edges of G that enter or leave vertices in V.

We add a new initial vertex wr and a final vertex wg to
G1. For any edge e: u — vin G, from a vertex u notin V' to a
vertex v in V', we replace e by a new edge ¢": w; — v. For
any edge f:v — w from a vertex v in V' to a vertex w not in
V', we replace f by a new edge f’:v — wr. We then remove
all vertices other than w;, wr, and those in V. Let G be this
new graph. (Another way to think of this process is the
following: Let U be the set of vertices u of G; that do not
belong to V' but have an outgoing edge to a vertex in V’. Let
W be the set of vertices of G; that do not belong to V' but
have an incoming edge from a vertex in V. The graph G is
obtained from G, by collapsing each of the sets U and W to
a single vertex.)

Corollary. Given G and P, as in Section 3.2.2, and a subset V' of
the vertices of V not containing vy or v, define G as above.
Let P be the augmented system obtained by applying the
algorithm of Section 3.2.2 to G and P. Then, the set of
solutions of P that are V'-connected and have all z, < B is
exactly equal to the set of projections of solutions of P.

Proof. The graph G and the system P satisfy the hypotheses
of the theorem of Section 3.2.2. Moreover, the solutions of
P that are connected with respect to G are exactly the
solutions that are V’-connected with respect to G. O

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:52:55 UTC from IEEE Xplore. Restrictions apply.

4 PRELIMINARY EXPERIMENTS

The current version of INCA consists of about 12,000 lines
of Common Lisp. INCA writes out a file describing the
ILP problem in a standard format (the MPS format) and
we use a commercial package called CPLEX to read this
file and solve the system. (We also use a separate program
to translate Ada programs into the native input language
of INCA). The optimizations INCA uses to reduce the
number of variables and inequalities make the introduc-
tion of new variables and inequalities somewhat compli-
cated, and integrating our method into INCA will involve
a substantial programming effort. For our initial explora-
tion of the effect of applying our method, we have
therefore chosen to proceed by modifying the MPS file
produced by INCA. We have written a Java program that
reads this file, and another file describing the flowgraph,
and produces a new MPS file representing the augmented
system of equations and inequalities. We can then
compare the performance of CPLEX on the original system
and the augmented system. We are not as interested in the
time it takes to run the Java program because the
algorithm which this program implements is very simple
and is clearly linear in the number of nodes and edges in
the graph used for cycle elimination. The algorithms used
for solving ILP problems, on the other hand, are extremely
complex and we have no theoretical way of estimating the
time it takes to solve the ILP systems we produce. If there
is a practical barrier to our cycle elimination technique, it
will arise from solving the ILP systems, not from
generating them.

In any case, the times for the Java program ranged from
one to 22 seconds for the example in Section 1, two to 14
seconds for Section 2, two to 28 seconds for Section 3, and
one to two seconds for Section 4. The CPLEX times will be
given in more detail below.

For these experiments, we used INCA version 3.4,
Harlequin Lispworks 4.1.0, Java 2 SDK 1.3.0, and CPLEX
version 7.0 on a Sun Enterprise 3500 with two 336 MHz
processors and 2 GB of memory, running Solaris 2.8. The
upper bound B representing the maximum number of times
an edge may be traversed in a violating execution was taken
to be 10,000. We used the default options on CPLEX, except
for the following changes: MIP EMPHASIS was set to 1,
MIP LIMITS TREEMEMORY to 2000, and MIP LIMITS
SOLUTIONS to 1. (The first option affects choices made in
the branch-and-bound algorithm, the second controls the
storage of branch-and-bound nodes, and the third stops the
search as soon as an integer solution is found.) For each
ILP problem, we ran CPLEX five times and took the average
time. The times reported here were collected using the
timex command, and include both user and system time.

4.1 A Scalable Version of the Example

from Section 2
For the first experiment, we created a scalable version of the
simple example described in Section 2.1. Given an integer
n > 2, we modified the Ada program in Fig. 1 to have n
copies of task t2 and to have n + 1 alternatives in the select
statement. Each of the new copies of task t2 calls the same
entries in t1. (In detail, we replaced task t2 with n copies

SIEGEL AND AVRUNIN: IMPROVING THE PRECISION OF INCA BY ELIMINATING SOLUTIONS WITH SPURIOUS CYCLES 123

of itself, calling these tci,...,tcn. In the body of t1, we
replaced the first accept c line with n copies of itself and
replaced the body of text beginning with the first accept a
and ending with the last or with n copies of itself.)

As before, we wish to verify that one cannot have the
rendezvous at entry b preceded by a rendezvous at entry a.
Using the standard 1-interval query, for each n, INCA finds
a spurious solution involving a disconnected cycle in t1.
After applying our cycle elimination algorithm to the sector
of the flowgraph involving t1, we get an ILP problem that
CPLEX reports has no integer solutions, thus verifying the
property.

There is another way to get around the cycle problem in
this case. As we mentioned in Section 2.1, one can express
the query using two intervals: The first interval begins with
the start of execution, ends with an a, and does not contain
a b, and the second interval ends with a b. Because of the
trimming that INCA performs on each interval of the
flowgraph, the opportunity for a spurious cycle is removed.
So, using this 2-interval version of the query, we were also
able to verify the property.

At this point, we are considering three distinct families of
ILP systems:

e Pi(n): the system produced by INCA for the single-
interval query (which has a spurious solution, so the
analysis is inconclusive),

e Py(n): the system produced by INCA for the two-
interval query (which is inconsistent, so the property
is verified), and

e Ps(n): the system obtained by applying cycle
elimination to P;(n) (which is also inconsistent and
verifies the property).

For n > 3, the number of variables in P;(n) is 4n® + 2n
and the number of constraints (equations and inequalities)
is 4n + 2. The graph G used for cycle elimination has 2n +
4 vertices and 4n? +3 edges; hence, the algorithm adds
4n® +2n+7 variables and 8n?+2n+9 constraints to
produce Ps(n).

The number of variables in system Py(n) is 5n? + 7n and
the number of constraints is 11n + 3 (for n > 2). Hence, in
size, P2(n) falls between P;(n) and Ps(n).

In Fig. 6, we show the time it takes CPLEX to analyze
each of these systems, for n =1,...,40. All of these times
are very modest—under 15 seconds—and are in fact
dwarfed by the time it takes INCA to generate either ILP
system. It is also clear that, for this problem, as far as
CPLEX time is concerned, using the 2-interval query is
better than the single-interval query plus cycle elimination.
However, it took INCA approximately three hours to
generate P;(40) and it took the Java program 23 seconds
to apply the cycle elimination algorithm to produce P3(40),
whereas it took INCA approximately 10 hours to generate
P2(40). So, when total analysis time is taken into considera-
tion the cycle elimination technique wins hands down.
Nevertheless, it does seem that, for large n, the substantial
increase in the number of constraints in Ps(n) due to the
large number of edges in the FSA for t1, begins to have a
significant impact on the time to solve the ILP problem.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:52:55 UTC from IEEE Xplore. Restrictions apply.

Conclusive result with cycle elimination -
Conclusive result with 2-interval query
Spurious solution without cycle elimination

time (seconds)

Fig. 6. CPLEX times for scaled simple example.

4.2 Spurious Cycles in Chiron

The second experiment involves the Chiron user interface
system [13]. A Chiron client comprises some abstract data
types to be depicted, artists that maintain mappings
between these ADTs and the visual objects appearing on
the screen, and runtime components that provide coordina-
tion. In particular, certain events indicating changes in the
state of the ADTs are defined and an ADT Wrapper task
notifies a Dispatcher task whenever an event occurs. The
Dispatcher maintains an array for each event that records
which artists are interested in being notified of that event.
(Artists register and unregister for an event to indicate their
current interest in being notified.) After receiving the event
from the ADT Wrapper, the Dispatcher then loops
through the artists in the appropriate array and calls an
entry in each artist to notify it of the event. The Chiron
architecture is highly concurrent and even a toy Chiron
interface represents about 1,000 lines of Ada code. In [4], we
compared the performance of several finite-state verifica-
tion tools (FLAVERS [14], INCA, SMV, and SPIN) in
checking a number of properties of a Chiron interface with
two artists and n different kinds of events, for n ranging
from 2 to 70.

One of the properties we wish to verify about this
system, called Property 4 in [4], is that the Dispatcher
notifies the artists of the right event. For example, if the
Dispatcher receives event el from the ADT_Wrapper,
we wish to show that it does not notify any artist of some
other event instead. To formulate this property as an INCA
query takes two intervals.

We were in fact able to verify this property using INCA,
but only in systems where the number of kinds of events, n,
is at most five. (FLAVERS and SPIN were able to verify this
property up to at least n = 40 and n = 36, respectively.) To
scale the problem further with INCA, we needed to
decompose the Dispatcher task into a subsystem. This
entails creating a new task Dispatch_ei, fori=1,...,n,
which maintains the array for event ei. The Dispatcher
task itself is left as an interface which just passes register,
unregister, and notification requests on to the appropriate
Dispatch_ei in a way such that no additional concur-
rency is introduced. (If the internal communications of the

124 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,

Dispatcher subsystem are hidden, the new system is
observationally equivalent to the original one.) This decom-
posed system has the advantage that as n increases, the size
of each Dispatch_ei FSA remains constant, although the
number of these tasks increases. In general, this decom-
position greatly improves the performance of INCA. For
example, we were now able to verify several of the other
properties in sizes up to n = 70. But, attempting to verify
Property 4 with the decomposed Dispatcher task gave an
inconclusive result. The problem is a disconnected cycle in
the task Dispatch_el in the second interval.

In [4], we got around this problem by reformulating the
property using different events to represent the high-level
requirement. This depended on the prior verification of
other properties relating the events used in the original and
new formulations and was cumbersome and time-consum-
ing. (Once the property was reformulated, however, the
performance of INCA on this decomposed system was
considerably better than that of the other tools. By n = 30,
the INCA time was roughly an order of magnitude better
than the times for the other tools and INCA could verify the
property for much larger values of n. The differences in
performance of the tools on this property for the two
versions of the Chiron system are typical of what we
observed on other properties. The implications of this are
discussed in [4].)

Using the cycle elimination algorithm described here, we
were able to verify the original property directly, without
reformulating it, for 2 < n < 70. In this case, the number of
variables in the original ILP system (for n > 3) is

(2620 + A\(n))/3,

where A(n) is 207, 395, or 301, according as n is congruent
modulo 3 to 0, 1, or 2, respectively. (This reflects the way we
chose to have artists register for events as we scaled the
number of events.) The number of constraints in the original
system is

(137n + k(n))/3,

where similarly the value of x(n) is 213, 301, or 257. For
each n, the graph G constructed from the Di spatch_el-
interval 2 sector of the flowgraph has 23 vertices and 63
edges; hence, the algorithm adds 86 variables and 148
constraints. In this case, eliminating spurious cycles adds a
constant number of variables and constraints as n increases.
The CPLEX times for each n, for the original system for
which CPLEX found a spurious solution and the result of
the analysis was inconclusive and, for the augmented
system for which the property was conclusively verified,
are given in Fig. 7. Again, the times are all under eight
seconds and represent a small portion of the total analysis
time. (For n = 70, this was about 64 seconds.) As the figure
shows, there is essentially no cost in additional CPLEX time
for cycle elimination for this example.

4.3 The Cost of Unnecessarily Preventing
Spurious Cycles

We also tried adding the cycle elimination variables and

constraints to a system which already yielded a conclusive

result. This might yield insight into the marginal cost of

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:52:55 UTC from IEEE Xplore. Restrictions apply.

VOL. 28, NO. 2, FEBRUARY 2002

Conclusive result with cycle elimination -
Spurious solution without cycle elimination

time (seconds)

o L=t e 1 1 1 L I
Q 10 20 30 40 50 80 70
events

Fig. 7. CPLEX times for Chiron Property 4.

having INCA add cycle elimination by default for any
problem.

For this experiment, we used another property from [4].
In this case, we used Property 1b, which says that an artist
never unregisters for an event unless it is already registered
for that event. As in [4], we restricted ourselves to a single
artist and event. The resulting property requires two
intervals for its formulation as an INCA query. Using the
decomposed dispatcher version of the client code, INCA
verified this property without any need for cycle elimina-
tion, for n < 70. The number of variables in the INCA-
generated ILP system (for n > 3) is

100n + «(n),

where a(n) is 77, 146, or 107 according as n is congruent
modulo 3 to 0, 1, or 2, respectively. The number of
constraints is

51n + B(n),

where similarly 8(n) is 69, 96, or 81.

We then applied the cycle elimination algorithm to the
entire flowgraph, which consists of two intervals of n + 6
tasks each. (In the experiment discussed in the previous
section, we only applied the algorithm to a single task-
interval sector of the flowgraph.) The flowgraph has

(124 +~(n))/3
vertices, where ~(n) is 204, 272, or 238, and
111n + 6(n)

edges, where 6(n) is 116, 187, or 148. Hence, cycle
elimination adds

(45Tn + p(n))/3

new variables to the system, where p(n) is 552, 833, or 682,
and adds

(790n 4+ v(n))/3

new constraints, where v(n) is 897, 1391, or 1123. The times
required by CPLEX to find the conclusive result in each case
are graphed in Fig. 8.

SIEGEL AND AVRUNIN: IMPROVING THE PRECISION OF INCA BY ELIMINATING SOLUTIONS WITH SPURIOUS CYCLES

Conclusive result with cycle elimination B
Conclusive result without cycle elimination

time (seconds)

20 30 40 50 60
events

70

Fig. 8. CPLEX times for Chiron Property 1b.

Although the ILP systems in the augmented case are
quite large (18,087 variables and 22,563 constraints for
n ="70) for the larger n, it still appears that CPLEX can
determine the inconsistency of the system in a very short
time (less than three seconds). For this example, the real
cost in introducing cycle elimination in INCA lies in
generating the new ILP system, not in solving it. (For
n = 70, our Java program took about 28 seconds to generate
the augmented ILP problem that eliminates cycles.)

4.4 An Example with Many Cycles
For each n > 2, we describe a concurrent system which we
call Relay(n). This system has n + 1 tasks. The first task,

125

resource, has a single variable which can take on any
value from 0 to n — 1 and starts with the initial value n — 1.
Within an infinite loop, it has entries for both setting the
value of the variable, and getting the value. The remaining
n tasks are called ti, fori =0,...,n — 1. Task ti does the
following within an infinite loop: It first calls the entry in
resource to get the value of the variable. It then checks to
see if this value is equal to ¢ and, if so, it calls the entry in
resource to set the value to i+ 1 (if i <n—1) or 0 (if
i =n — 1). The source code for Relay(3) is given in Fig. 9.

The intended behavior of this system is that the variable
will be set to the following values in order: 0,1,2,....,n — 1,
0,1,2,..,n—1,..., and so on. One property we checked is
the following: If the variable is set to n — 1, then it must
have previously been set to 0. Let P be the event in which
task resource accepts a call to set with parameter 0 and
let R be the event in which resource accepts a call to set
with parameter n — 1. The standard query describing a
violation of this property consists of one interval which
begins with the start of execution, ends with R, and forbids
P. (This property is an instantiation of the “Existence of P
before R” pattern; see [2].)

The sector of the flowgraph for task resource has an
enormous number of cycles; in fact, there are precisely (2" +
1)™Y 1 distinct subsets of the vertex set which form
cycles. (For n = 6, this is 1,160,290,624, and Relay(6) is the
example mentioned in Section 3.1.) It is not surprising, then,
that of our various examples, this one posed the biggest
challenge to cycle elimination.

For n =2, INCA was able to verify the property in its
preprocessing stage, without calling CPLEX. For 3 <n <9,
we obtained a spurious solution with a cycle when we

package relay is

task resource is
entry set (i : in val);
entry get (j : out val);

end resource;

task t0;

task t1;

task t2;

end relay;

package body relay is
task body resource is
X : val := 2;
begin
loop
select
accept set (i :
X :=1i;
end set;
or
accept get (j
joi=x;
end get;
end select;
end loop;
end a;

in val) de

: out val) do

task body t8 is
y : val;
begin
loop
resource.get (y);
if y = 8 then
resource.set (1);
end if;
end loop;
end t§;
end relay;

subtype val is natural range 9..2;

task body tl is
y @ val;
begin
loop
resource.get (y);
if y = 1 then
resource.set (2);
end if;
end loop;
end tl;

task body t2 is
y @ val;
begin
loop
resource.get (y);
if y = 2 then
resource.set (8);
end if;
end loop;
end t2;

Fig. 9. Source code for Relay example.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:52:55 UTC from IEEE Xplore. Restrictions apply.

126 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.2, FEBRUARY 2002

original original new new time w/o time with
n variables constraints variables constraints cycle elim cycle elim
3 23 19 28 45 0.03 0.05
4 39 26 52 86 0.03 0.05
5 59 33 84 141 0.04 0.12
6 83 40 124 210 0.04 0.56
7 111 47 172 293 0.04 2.93
8 143 54 228 390 0.04 49.14
9 179 61 292 501 0.05 717.16

Fig. 10. Performance on the Relay example.

analyzed the INCA-produced system, and we were able to
conclusively verify the property after applying cycle
elimination to task resource. For the cycle elimination
runs, we told CPLEX to give higher priority to the new s,
and d, variables in its branch-and-bound strategy, and we
tightened the integrality tolerance from 1E-05 to 1E-07. The
data on the numbers of variables and constraints, and the
time (in seconds) it took CPLEX to reach the spurious
solutions and conclusive results are given in Fig. 10. Note
that for n =9 it took a substantial amount of time—just
under 12 minutes—for CPLEX to reach the conclusive
result, although, as mentioned earlier, the time to produce
the new variables and inequalities was less than two
seconds.

5 RELATED WORK

The most common method for detecting faults in computer
systems is testing, that is, executing the system with a
particular set of inputs and comparing that execution with
the expected result. The main problem with testing, of
course, is coverage: It is almost always infeasible to check
more than a very small fraction of the possible executions of
the system and testing can give no information about
executions that are not examined. Testing can thus miss
serious faults. Testing is especially problematic for con-
current systems because such systems tend to behave
nondeterministically in that the same inputs may lead to
very different executions, depending on the order in which
events occur in the different parts of the system. This can
make it difficult even to reproduce a particular execution
and means that a test result in which the execution with
particular input data matches the expected behavior does
not even imply that the system will always behave correctly
when it receives the same inputs.

Finite-state verification techniques, such as model check-
ing [15], algorithmically check properties of a finite-state
model of the system. By constructing models that represent
all possible executions of the system, finite-state verification
techniques can check whether a property such as freedom
from deadlock, mutually exclusive use of a resource, or
guaranteed response to a request, holds on all possible
executions of a system. When a property does not hold,
most finite-state verification tools can provide the user with
a “counterexample” showing how the property can be
violated. Such counterexamples can be extremely useful in
isolating and understanding the fault.

These techniques vary in the nature of the model, the
formalism used to express the properties of interest, and the

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:52:55 UTC from IEEE Xplore. Restrictions apply.

method used to determine whether the model satisfies the
properties. At a conceptual level, most finite-state verifica-
tion tools model the system as a graph whose nodes
represent abstract states of the system and whose edges
represent transitions between system states corresponding
to events in the execution of the system. Executions
correspond to paths through this graph and properties
can be specified in a temporal logic (e.g., LTL [16] or CTL
[17]) or as an automaton accepting sequences of states or
events. Algorithms for determining whether the model
satsifies the property can be based on methods for walking
the graph of states, computing the intersection of automata,
data flow techniques [14] and other approaches.

As noted earlier, the main obstacle to the application of
finite-state verification techniques to concurrent systems is
the fact that the number of reachable states may be
exponential in the number of concurrent processes in the
system. A number of approaches concentrate on construct-
ing a compact model, for instance by taking advantage of
symmetries of the system [15] or using abstraction to
collapse states that do not need to be distinguished to check
a given property. The Bandera toolset [18], [19], for example,
provides facilities for slicing to remove parts of a program
that are not relevant to the property to be checked and for
applying a library of safe abstractions to reduce the size of
the model. Bandera is intended to be used to construct
compact models for a variety of finite-state verification
tools. Other techniques, such as the partial order methods
used in SPIN [8], avoid constructing or examining states that
are not needed to check a particular property. Symbolic
model checkers, such as SMV [9], check properties using
operations on sets of states which can be represented
compactly by special data structures. As mentioned above,
however, most of the questions we want to ask about
concurrent computer systems are at least NP-hard (e.g., [20],
[21], [22]) and no approach will avoid the state explosion
problem completely.

INCA models executions of a computer system that
violate a particular property as solutions to a system of
linear equations and inequalities and uses integer linear
programming techniques to determine whether the system
of inequalities has any solutions. This model may over-
represent the set of actual executions, so that some solutions
do not correspond to real executions of the program. Thus,
if the system of equations and inequalities has no solutions,
no execution exists that violates the property. If the system
of equations and inequalities does have solutions, however,
there need not be any executions of the computer system
that violate the property; the solutions may be spurious.

SIEGEL AND AVRUNIN: IMPROVING THE PRECISION OF INCA BY ELIMINATING SOLUTIONS WITH SPURIOUS CYCLES 127

This approach does not need to explicitly represent each
state of the computer system and can take advantage of
techniques from linear algebra to improve the verification
process.

Several authors have applied ideas similar to those used
in INCA to systems modeled by Petri nets [23]. For
example, Murata et al. [24] used integer programming
methods to compute counts of transition firings that return
a net to its original marking and then try to eliminate
“spurious” counts that do not correspond to real firing
sequences. More recently, Esparza and Melzer [25] show
how to represent traps using inequalities in order to sharpen
the basic approach.

Techniques for detecting or removing cycles from graphs
are of considerable importance in a number of areas of
computer science, such as online deadlock detection. We
note, however, that the connections between such techni-
ques and the algorithm presented in this paper are
somewhat limited. In particular, our algorithm does not
determine whether cycles are present in the flowgraph and
does not modify the flowgraph to remove any cycles. If we
regard the system of equations and inequalities as a model
of certain sets of paths through the FSAs corresponding to
the processes in the program, our algorithm can be viewed
as a way of refining that model so that it does not represent
any collections of paths containing disconnected cycles. It
does this entirely at the level of the system of equations and
inequalities and, thus, is only directly applicable in settings
where paths in graphs can be represented as solutions to
systems of inequalities.

6 CoONCLUSIONS AND FUTURE WORK

Some finite-state verification tools always provide a con-
clusive result on any problem they can analyze. A tool that
walks a graph of the reachable states of a concurrent system
will never report that the system might deadlock when in
fact the system is deadlock-free (assuming, of course, that
the graph correctly represents the reachable state space of
the system). But, such a tool must be able to store the full set
of reachable states and is unable to report any results for a
system whose reachable state space exceeds the storage
available. Other tools, such as INCA, deliberately over-
estimate the collection of possible executions of the system
and, thus, accept the possibility of inconclusive results (or
spurious reports of the possible faults), in order to increase
the range of systems to which they can be applied.

For INCA, there are two main sources of imprecision in
the representation of executions of the system. The first of
these is the fact that semantic restrictions on the order of
occurrence of events in different concurrent processes are
generally not represented in the equations and inequalities
used by INCA. The second source of imprecision is the fact
that the equations and inequalities allow solutions in which
the flow in the FSA representing a concurrent process may
have cycles not connected to the initial state. In this paper,
we have shown how imprecision caused by this second
source may be eliminated. Although our method is aimed at
improving the precision of INCA, it may also be relevant to
other applications of integer programming involving flow
networks.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:52:55 UTC from IEEE Xplore. Restrictions apply.

Specific cases of inconclusive results can often be
addressed by careful reformulation of the property being
checked, although this may require the verification of
additional properties to justify the reformulation. This
process can require very substantial effort on the part of
the human analysts, as well as considerable costs to carry
out the necessary verifications. We have also sometimes
addressed inconclusive results by manually inserting
special inequalities to prevent disconnected flow on a small
number of specific cycles. The problem with generalizing
this approach is that the number of cycles may well be
exponential in the size of the concurrent system and each of
the cycles requires a separate inequality. Even if it were
feasible to automate the generation of these inequalities, the
resulting ILP problems would be far too large to solve. The
numbers of new variables and inequalities introduced by
the method presented in this paper are linear in the number
of states and transitions in the FSAs representing the
processes of the concurrent system being analyzed.

We have reported here the results of some preliminary
experiments aimed at assessing the cost, in increased time
to solve the systems of equations and inequalities, of
applying our method. These experiments suggest that the
cost is relatively small, especially when the effort of the
human analysts is taken into account. We plan to carry out
additional experiments of the same type and to integrate
our technique into the INCA toolset so that we can also
evaluate the time needed to generate the additional
variables and inequalities more precisely.

We are also investigating approaches to eliminating
some of the imprecision caused by not representing
restrictions on the order of events in different processes.
Fully representing the restrictions imposed by the semantics
of the programming language or design notation may not
be practical and might limit the applicability of INCA in the
same way that having to store the full set of reachable states
limits the applicability of tools based on exploring the graph
of reachable states. We are therefore exploring methods that
allow the analyst to control the degree to which restrictions
on order are represented. For example, one approach that
we are considering is to formulate some of the flow and
communication equations in such a way that they hold at
every stage of an execution, not just the end. These
reformulated flow and communication equations therefore
enforce some of the restrictions on the order of events in
different processes. They also determine a region in
n-dimensional Euclidean space, where n is the number of
variables in the system of equations and inequalities. We
then look for a point satisfying the full system of equations
and inequalities that can be reached by taking certain
integer-sized steps through this region. Successfully redu-
cing this kind of imprecision will be important in applying
the INCA approach to many systems where interprocess
communication is only through access to shared data.

ACKNOWLEDGMENTS

This research was partially supported by the US National
Science Foundation, under grant CCR-9708184.

128

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.2, FEBRUARY 2002

REFERENCES

(1]

(2]
B3]

(4

(5]

o]

(7]

(8]
&)
[10]

(1]

[12]

(13]

(14]

[15]
[1o]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

J.C. Corbett and G.S. Avrunin, “Using Integer Programming to
Verify General Safety and Liveness Properties,” Formal Methods in
System Design, vol. 6, pp. 97-123, Jan. 1995.

Specification patterns web site. http:/ /www.cis.ksu.edu/santos/
spec-patterns/. 2000.

M.B. Dwyer, G.S. Avrunin, and J.C. Corbett, “Patterns in Property
Specifications for Finite-State Verification,” Proc. 21st Int’l Conf.
Software Eng., pp. 411-420, May 1999.

G.S. Avrunin, J.C. Corbett, M.B. Dwyer, C.S. Pasareanu, and S.F.
Siegel, “Comparing Finite-State Verification Techniques for Con-
current Software,” Technical Report UM-CS-1999-069, Dept. of
Computer Science, Univ. of Massachusetts, Amherst, Nov. 1999.

A.T. Chamillard, L.A. Clarke, and G.S. Avrunin, “An Empirical
Comparison of Static Concurrency Analysis Techniques,” Tech-
nical Report 96-84, Dept. of Computer Science, Univ. of
Massachusetts, Amherst, 1996, revised, May 1997.

J.C. Corbett, “An Empirical Evaluation of Three Methods for
Deadlock Analysis of Ada Tasking Programs,” Proc. Int’l Symp.
Software Testing and Analysis (ISSTA), T. Ostrand, ed., pp. 204-215,
Aug. 1994.

J.C. Corbett, “Evaluating Deadlock Detection Methods for Con-
current Software,” IEEE Trans. Software Eng., vol. 22, no. 3, pp. 161
179, Mar. 1996.

G.J. Holzmann, “The Model Checker SPIN,” IEEE Trans. Software
Eng., vol. 23, no. 5, pp. 279-295, May 1997.

K.L. McMillan, Symbolic Model Checking. Boston: Kluwer Aca-
demic, 1993.

J.C. Corbett and G.S. Avrunin, “A Practical Method for Bounding
the Time Between Events in Concurrent Real-Time Systems,” Proc.
Int’l Symp. Software Testing and Analysis (ISSTA), T. Ostrand and
E. Weyuker, eds., pp. 110-116, June 1993, ftp://ext.math.umass.
edu.

G.S. Avrunin, J.C. Corbett, L.K. Dillon, and J.C. Wileden,
“Automated Derivation of Time Bounds in Uniprocessor Con-
current Systems,” IEEE Trans. Software Eng., vol. 20, no. 9, pp. 708-
719, Sept. 1994.

J.C. Corbett and G.S. Avrunin, “Towards Scalable Compositional
Analysis,” in Wile [26], pp. 53-61, Dec. 1994.

K. Forester, C. MacFarlane, M. Cameron, and G. Bolcer, “Chiron-1
User Manual,” Arcadia Document UCI-93-07, Univ. of California,
Irvine, Sept. 1993.

M.B. Dwyer and L.A. Clarke, “Data Flow Analysis for Verifying
Properties of Concurrent Programs,” in Wile [26], pp. 62-75, Dec.
1994.

EM. Clarke Jr., O. Grumberg, and D.A. Peled, Model Checking.
MIT Press, 2000.

Z. Manna and A. Pnueli, The Temporal Logic of Reactive and
Concurrent Systems: Specification. New York: Springer-Verlag, 1992.
E.M. Clarke, E.A. Emerson, and A.P. Sistla, “Automatic Verifica-
tion of Finite-State Concurrent Systems Using Temporal Logic
Specifications,” ACM Trans. Programming Languages and Systems,
vol. 8, no. 4, pp. 244-263, Apr. 1986.

J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.S. Pasareanu,
Robby, and H. Zheng, “Bandera: Extracting Finite-State Models
from Java Source Code,” Proc. 22nd Int’l Conf. Software Eng.,
pp- 439448, June 2000.

M.B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. Pasareanu, and
H. Zheng, “Tool-Supported Program Abstraction for Finite-State
Verification,” Proc. 23rd Int’l Conf. Software Eng., pp. 177-187, May
2001.

R.N. Taylor, “Complexity of Analyzing the Synchronization
Structure of Concurrent Programs,” Acta Informatica, vol. 19,
pp. 57-84, 1983.

J. Reif and S. Smolka, “The Complexity of Reachability in
Distributed Communicating Processes,” Acta Informatica, vol. 25,
no. 3, pp. 333-354, 1988.

RH.B. Netzer and B.P. Miller, “On the Complexity of Event
Ordering for Shared-Memory Parallel Program Executions,” Proc.
Int’l Conf. Parallel Processing, pp. 1I-93-11-97, Aug. 1990.

T. Murata, “Petri Nets: Properties, Analysis and Applications,”
Proc. IEEE, vol. 77, pp- 541-580, Apr. 1989.

T. Murata, B. Shenker, and S.M. Shatz, “Detection of Ada Static
Deadlocks Using Petri Net Invariants,” IEEE Trans. Software Eng.,
vol. 15, no. 3, pp. 314-326, Mar. 1989.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:52:55 UTC from IEEE Xplore. Restrictions apply.

[25]]. Esparza and S. Melzer, “Verification of Safety Properties Using

Integer Programming: Beyond the State Equation,” Formal Methods
in System Design, vol. 16, pp. 159-189, 2000.

[26] D. Wile, ed., Proc. Second ACM SIGSOFT Symp. Foundations of

Software Eng., Dec. 1994.

Stephen F. Siegel received the PhD degree in
mathematics from the University of Chicago. He
is a senior research fellow in the Department of
Computer Science at the University of Massa-
chusetts, Amherst. His research interests in-
clude tools for the analysis of concurrent
software systems, applications of linear pro-
gramming and group theory to software analy-
sis, and the cohomology and representation
theory of finite groups.

George S. Avrunin received the PhD degree in
mathematics from the University of Michigan. He
is a professor in the Department of Mathematics
and Statistics and an adjunct professor in the
Department of Computer Science at the Uni-
versity of Massachusetts Amherst. In addition to
formal methods and tools for the analysis of
concurrent and real-time software systems, his
research interests include the cohomology and
representation theory of finite groups. Dr. Avru-

)

nin is a member of the IEEE Computer Society, the ACM, and the AMS.

> For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

