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Abstract

This paper describes a systematic approach for incre-
mentally improving the security of election processes by
using a model of the process to develop attack plans and
then incorporating each plan into the process model to
determine if it can complete successfully. More specif-
ically, our approach first applies fault tree analysis to a
detailed election process model to find process vulner-
abilities that an adversary might be able to exploit, thus
identifying potential attacks. Based on such a vulnerabil-
ity, we then model an attack plan and formally evaluate
the process’s robustness against such a plan. If appro-
priate, we also propose modifications to the process and
then reapply the approach to ensure that the attack will
not succeed. Although the approach is described in the
context of the election domain, it would also seem to be
effective in analyzing process vulnerability in other do-
mains.

1 Introduction

An election is a complex process composed of many
steps, some executed by computers, and others by elec-
tion officials, voters, and other people. Improving elec-
tion security has been an important research area. Past
work has focused largely on the security and accuracy
of the computers (e.g., [1, 3, 10, 28, 31, 37]) or on the
cryptographic protocols (e.g., [15, 7]) used in election
processes. Our focus is slightly different: we examine
the overall process itself, attempting to improve its se-
curity. The complexity of the election process, coupled
with the need for formal, rigorous analysis, makes exam-
ining such a process and determining how to modify it to
improve its security a daunting task.
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Our earlier work on evaluating election processes fo-
cused on identifying potential points of failure [33]. This
paper extends that work by modeling potential attacks,
then integrating each attack with a model of the elec-
tion process that is to be attacked and determining the
changes to the process model that will suffice to thwart
that attack. Specifically, we apply fault tree analysis
(FTA) to a precisely-specified, detailed election process
model to automatically locate vulnerabilities that an ad-
versary might exploit. Next, we work with election of-
ficials to develop models of specific plans that might
be used to exploit these vulnerabilities. We then use
model checking to formally evaluate the election pro-
cess’s robustness against each such plan. Experts can
propose modification to the process, if it is deemed insuf-
ficiently robust. After these modifications are reflected
in the process model, the process model can then be ana-
lyzed again to confirm that it indeed is more robust. This
improved process model can then be further improved
by considering additional attacks, and repeating the im-
provement procedure just described.

Thus, the contribution of this paper is a systematic and
semi-automated approach that uses rigorously defined
process models and rigorous analyses to support contin-
uously improving the security of election processes. This
approach, while requiring significant human participa-
tion and insight, also exploits automated computer analy-
ses (FTA and model checking) to effect much faster and
more thorough analyses than could be achieved solely
through human effort. By looking for vulnerabilities be-
fore the occurrence of attacks that seek to exploit them,
our work complements existing work that focuses on de-
tecting attacks such as intrusions that occur during or af-
ter the fact [32, 6, 25]. Penetration testing also tries to
identify vulnerabilities beforehand, but typically does so
by informal, non-rigorous means (e.g., [36, 19]). Other
work either does not consider processes (such as work
on analyzing computer network vulnerabilities [13, 30])
or does not explicitly or formally define them [24]. The
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formal analysis of rigorously-defined processes allows us
to proactively identify and remove vulnerabilities before
attacks that attempt to exploit them actually occur. It also
enables us to analyze modifications to determine their ef-
fectiveness in thwarting the attacks without actually im-
plementing the modifications, thereby saving time and
money, and enabling determination of possible adverse
impacts of the changes. Election officials can directly
use the results of this work to make elections more se-
cure and safer to change as new technologies, laws, and
regulations need to be enforced.

The remainder of the paper is organized as follows.
Section 2 presents an overview of the approach. Sec-
tion 3 introduces the process modeling language Little-
JIL. Section 4 reviews FTA and presents as examples two
attack scenarios developed to exploit the vulnerability of
a specific election process allowing an unqualified voter
to get a regular ballot. Section 5 describes how we model
the attack using Little-JIL and then compose the result-
ing attack model with the original process model before
using model checking to analyze their composition. Sec-
tion 6 describes related work and Section 7 describes
limitations of this approach along with some of our plans
to address these limitations. Section 8 summarizes the
benefits.

2 Approach overview

Figure 1 shows an overview of our incremental pro-
cess security improvement approach. It consists of two
phases: identifying potential attacks on a process and
then, for each selected credible attack, analyzing the pro-
cess’s robustness in the presence of that specific attack.

In the first phase, we use a process modeling language
with rigorous semantics to model a real-world process so
that we can reason about it. We hypothesize that an ad-
versary might attack the process, creating an undesired
state, called a hazard. Using a specification of the haz-
ard, we apply FTA to the process model to find out how
that hazard might occur. FTA produces a set of mini-
mal cut sets, each of which contains a set of events that
causes the hazard. An earlier paper [33] described in
detail the application of FTA to election process mod-
els to determine the possibility of the occurrence of haz-
ards. Here, we build upon these understandings to pro-
pose attack plans—models of specific ways in which an
attack might cause the specified hazard to occur, and
an “attack-always-fails” property that defines precisely
what it means for the modeled attack to never succeed.

In the second phase, we compose the model of the at-
tack with the model of the process being attacked to pro-
duce a composed process model. This composed model
represents the execution of both the election process and
the attack, represented as concurrently executing sub-

processes. We perform model checking on the com-
posed model to check if the “attack-always-fails” prop-
erty is satisfied by the composed model, thus determining
whether the modeled attack can succeed. If the property
does not hold, it is possible for the attack to succeed,
and the model checker will produce a trace of how this
could happen. Election security experts can then suggest
modifications to the election process that should succeed
in thwarting the attack. We can then reapply our analy-
ses to evaluate the effectiveness of the suggested modi-
fications as countermeasures. Once an improvement has
been shown to be effective, we can continue our process
improvement by examining another minimal cut set pro-
duced by FTA, or proposing and reasoning about addi-
tional hazards and attacks.

As the analysis of the process relies on the pro-
cess model, that model must reflect reality as closely
as possible. The process model in this paper de-
scribes the election process in Yolo County, Califor-
nia (http://www.yoloelections.org/). It was developed
by interviewing Freddie Oakley, the Yolo County Clerk-
Recorder (and head election official) and her chief
deputy, Tom Stanionis, both of whom developed the elec-
tion policies and procedures and supervise their imple-
mentation. In addition to interviewing experts to validate
the model, we also used model checking as a tool for
uncovering process modeling defects. A property is a
requirement that the process must adhere to. If model
checking determines that a property is violated, we then
work with domain experts to review the process model to
determine whether the process itself does not conform to
the property, or whether the property is stated incorrectly,
or whether the process model has a defect. In the latter
case, the process model must be corrected with the assis-
tance of the domain experts. We iteratively improved the
model until the domain experts felt that it was an accu-
rate description, as described in Simidchieva et al. [33],
and is the model upon which this current work is based.

It should be noted that the process model is a living
document—if at some point in the future the process
changes or some details need to be added, it is necessary
that the process model be modified and re-evaluated with
the existing hazard and property specifications. Thus,
this process improvement loop may need to continue in-
definitely as election processes evolve to respond to new
laws and technology or as new hazards or attacks are en-
visioned.

3 Process modeling with Little-JIL

Our approach relies on models of real-world processes
that are represented in a modeling language with ex-
pressive and well-defined semantics so that the result-
ing models can closely capture the processes and can
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Figure 1: The systematic process-model-based approach. Fully automated steps are in double-edged boxes.
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Figure 2: Little-JIL process model: Elaboration of step “authenticate, issue ballot, and record vote”
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be analyzed rigorously. It also relies upon the use of a
notation that makes process models readily understand-
able by election officials. This section provides an intro-
duction to Little-JIL, a visual process modeling language
with such formally defined semantics [39].

Little-JIL represents a process as a hierarchy of steps
carried out by agents that may be humans, hardware de-
vices, or software systems. A Little-JIL model consists
of activity diagrams showing the hierarchical decompo-
sition of steps, a specification of the artifacts manipu-
lated by the steps, and a specification of the agents and
resources needed to perform the steps.

A Little-JIL step is a specification of a unit of work
assigned to an agent in the process. A step may be de-
composed into sub-steps. A leaf step has no sub-steps
and its behavior depends entirely on its assigned agent.
A non-leaf step’s behavior consists of the behaviors of
its sub-steps and their order of execution. For exam-
ple, the model reflecting the election process used by
Yolo County, California consists of the root step “con-
duct election”, which is decomposed into sub-steps rep-
resenting activities such as the preparations made be-
fore election day, the conduct of the election at a single
precinct, the counting of ballots, and the post-election
canvass. These sub-steps in turn are decomposed into
steps that specify lower levels of detail. Figure 2 shows
the part of the elaboration of “authenticate, issue ballot,
and record vote”—one of the steps in the Yolo County
election process. This step has two sub-steps, “authen-
ticate and issue ballot” and “record voter preference”,
which are executed sequentially (denoted by the arrow
on the step bar).

Each step may contain a specification of pre-requisites
that must be satisfied before an agent can begin the work
(e.g., voterQualified==true is the pre-requisite of
the step “issue regular ballot”), and post-requisites to
check that the work was completed correctly (not present
in this example).

A step may also specify how to handle exceptions that
occur during the execution of its descendant steps. An
exception handler can be a Little-JIL step, capable of
defining an arbitrarily complex response to an exception,
or can be a simple handler that specifies only how exe-
cution should continue after the occurrence of the excep-
tion. In the example in Figure 2, the X on the “authenti-
cate and issue ballot” step bar connects to a simple han-
dler that handles VoterUnqualifiedException that
might be thrown by the sub-step “check off voter as
voted”. In this example, the simple handler specifies
that the sub-step throwing the exception will be termi-
nated, and process execution moves on to the next step in
line (“issue ballot”—which in turns invokes “issue regu-
lar ballot” or “issue provisional ballot” depending on the
value of the artifact voterQualified).

Each Little-JIL step has an artifact declaration defin-
ing the artifacts it will be accessing and/or providing. Ar-
tifacts are generally passed through the coordination hi-
erarchy between steps and their sub-steps. For example,
the ballot artifact is output from the step “authenticate
and issue ballot” to its parent step “authenticate, issue
ballot and record vote”, which then passes it down as the
input into the sub-step “record voter preference”.

A Little-JIL process model also includes agent spec-
ifications. Each step specifies the kind of agent that is
to be assigned to be responsible for the execution of that
step. Voter and Election Official are two specifications
of agents in the election process model (not shown in the
diagram).

More details about Figure 2 are discussed later in sec-
tion 4.2 where we explain the application of FTA to the
process model.

4 Identifying process vulnerabilities using
FTA

This section presents FTA and describes the application
of FTA to the Yolo County election process model to
identify process vulnerabilities and create attack scenar-
ios that might exploit the vulnerabilities to cause the haz-
ard that an unqualified voter receives a regular ballot.

4.1 FTA overview

FTA is a deductive, top-down analytical technique used
in a variety of industries [9, 35, 12, 4] to study hazards.
In an election process, an example of a hazard is that
“an unqualified voter gets a regular ballot”. With FTA,
one first postulates the possibility of a hazard, and then
attempts to find out which events in the process could
combine to cause the actual occurrence of the hazard.
Given the hazard, FTA produces a fault tree, a graphical
model of all the various combinations of events that can
lead to the hazard.

A fault tree consists of two basic elements: events and
gates. At the top (root) of the fault tree is the hazard.
In the fault tree, intermediate events are elaborated fur-
ther, and primary events are not. Events are connected to
each other by Boolean-logic gates. A gate connects one
or more lower-level input events to a single higher-level
output event. There are three types of gates:

• AND gates: the output event occurs if and only if all
the input events occur, implying that the occurrence
of all of the input events causes the output event;

• OR gates: the output event occurs if and only if at
least one of the input events occurs, implying that
the occurrence of any of the input events causes the
output event; and
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• NOT gates: the output event occurs if and only if
the (only) input event does not occur.

Figure 3 shows a fault tree example with the top
event, or hazard, Artifact “ballot” to “record voter pref-
erence” is wrong1. An OR gate connects this event
with another lower-level event, Artifact “regularBallot”
is wrong when step “issue regular ballot” is completed,
meaning that the higher-level event occurs if the lower-
level events occurs. With further elaboration, the event
Artifact “regularBallot” is wrong when step “issue regu-
lar ballot” is completed, which occurs if and only if both
of the two lower-level events occur, is connected to the
lower-level events through an AND gate. The event Step
“get voter name” produces wrong “voterName” is a pri-
mary event so it is not elaborated further in the fault tree.
This fault tree is an abstract view of the larger fault tree
resulting from the application of FTA to the Yolo County
process model with the hazard “an unqualified voter gets
a regular ballot”, which is discussed further in the next
section 4.2.

A cut set is a set of event literals such that the occur-
rence of all the event literals is a sufficient condition for
the hazard to occur. An event literal is either a primary
event or the negation of a primary event. A cut set is
considered minimal if, when any of its event literals is
removed, the resulting set is no longer a cut set.

A minimal cut set (MCS) indicates one potential pro-
cess vulnerability, which might be a flaw or weakness in
the process’s design, implementation, or operation and
management, that could be exploited to allow a hazard
to occur. An MCS with one element represents a sin-
gle point of failure. The probability of a hazard occur-
ring can be calculated if sufficient information about the
probabilities of event literals in the MCSes is available.

Many software tools, commercial as well as open-
source, facilitate the manual construction of fault trees.
When fault trees become large, which they typically do,
manual construction, even with such tool support, may
be error-prone and time-consuming. There have been at-
tempts to generate fault trees automatically, for example
from source code written in Ada [18]. We developed a
process-driven FTA tool to automate fault tree construc-
tion and MCS calculation from process models written
in sufficiently precisely-defined languages [4]. Thus, for
example, given a process model written in the Little-JIL
language, and a hazard specification, this tool constructs
a fault tree and then calculates its MCSes.

1Section 4.2.1 will explain in detail how this top event corresponds
to “an unqualified voter gets a regular ballot”.

4.2 Example: can an unqualified voter get a regular
ballot?

In this section we present an example of applying FTA
to the Yolo County election process model, including the
specification of a hazard of interest, the derived fault tree
and its MCSes, and the multiple interpretations of one
MCS that resulted in developing multiple attack scenar-
ios.

4.2.1 The hazard and its specification

One of the requirements of an election process is that
only qualified voters may vote. By definition, a “quali-
fied voter” at the time the voting takes place is one who
has registered and not cast a ballot. By applying FTA to
the election process model with a representation of the
hazard “an unqualified voter gets to vote” we expect to
expose vulnerabilities in the process that attackers might
exploit to allow unqualified voters to cast ballots.

The process-driven FTA tool allows a fault tree haz-
ard to be modeled as an artifact being either incorrect
input to, or incorrect output from, a step2. Therefore,
we model the hazard of interest as an incorrect artifact
provided or accessed by a step in the process. With re-
spect to the hazard “an unqualified voter gets to vote”, the
ballot is the artifact of interest in the Yolo County’s elec-
tion process model. The step “record voter preference” is
where a voter casts the ballot. This step takes the artifact
ballot as input (see Figure 2). Thus the hazard specified
with this tool is: Artifact “ballot” to “record voter pref-
erence” is wrong.

It is important to note that this fault tree hazard mod-
els two different cases, namely “an unqualified voter get-
ting a regular ballot” and “a qualified voter not getting
a regular ballot”. Thus some analysis skill is required
to model a fault tree hazard, and to interpret the MCSes
resulting from FTA. We address this issue further in the
next subsection, and in Section 8.

4.2.2 The derived fault tree and MCSes

With the hazard defined as above, the FTA tool produces
a fault tree with more than 100 nodes. At the top of the
tree is the hazard Artifact “ballot” to “record voter pref-
erence” is wrong.

Based on that fault tree, the FTA tool computes 11
MCSes having cardinalities ranging from 2 to 4; there
are no single points of failure. Although an MCS con-
tains event literals that lead to the occurrence of the haz-
ard, understanding how the MCS events could occur in
the process and making sense out of the MCS are non-
trivial. It is worth noting that only 5 of those 11 MCSes
consist of events that cause the process hazard of interest,

2An artifact may be incorrect for a number of reasons such as being
of wrong type or containing incorrect information. At this point we do
not distinguish between these cases.
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: AND gate

: NOT gate

: OR gate E : intermediate event E

P : primary event P

Figure 3: Abstract view of the Yolo fault tree containing only the events relevant to one example MCS

“an unqualified voter gets a regular ballot”. Another 5
MCSes consist of events that cause the “a qualified voter
does not get a regular ballot” process hazard. The re-
maining MCS indicates a wrong ballot being issued due
to an incorrect voting roll.

To illustrate, here we describe in more detail the elab-
oration of the step “authenticate, issue ballot and record
vote” shown in Figure 2. The step “authenticate, issue
ballot and record vote” is decomposed into two sequen-
tial sub-steps, “authenticate and issue ballot” and “record
voter preference”. The latter sub-step is where the hazard
is defined. Its details are elaborated in another diagram
but they are not important for the discussion here. The
former sub-step, “authenticate and issue ballot”, itself
has three sub-steps, performed in the following order:
“perform pre-vote authentication”, “check off voter as
voted”, and “issue ballot”. The step “issue ballot” itself is
a try step (denoted by an arrow with an X on its step bar);
this means its first sub-step “issue regular ballot” will
be attempted first. If no exception is thrown when “is-
sue regular ballot” is completed, the step “issue ballot”
is also completed. If an exception is thrown while per-
forming “issue regular ballot”, the next alternative “issue

provisional ballot” will be executed. In this case, the pro-
cess is modeled so that VoterUnqualifiedException
will be thrown while performing “issue regular ballot” if
its prerequisite voterQualified==true fails.

To understand the difficulties of interpreting an MCS,
consider the 4 event literals that comprise one of the com-
puted MCSes:

1. Step “get voter name” produces wrong “voter-
Name”

2. Step “verify voter has not voted” does not
throw “VoterNotRegisteredException” (while
checking prerequisite)

3. Step “check off voter as voted” does not throw
“VoterUnqualifiedException” (while checking
prerequisite)

4. Step “issue regular ballot” does not throw
“VoterUnqualifiedException”

Figure 3 displays an abstract view of the derived fault
tree. This view contains only the nodes related to the
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events in the MCS being discussed. It shows how the
combination of the primary events lead to the hazard. We
provide two different scenarios in which all of the event
literals in this MCS can happen but differ depending how
one event literal is interpreted.

4.2.3 Scenario 1

Event literal 1 Step “get voter name” produces wrong
“voterName” can be interpreted as an impostor gives
the election official the name of a legitimate voter but
the name given is not the impostor’s name. This is the
step “get voter name”. The next step is “confirm voter
name in in voting roll”. In this case, the interpretation is
that the name really is in the voting roll. Thus the arti-
fact voterRegistered output from this step evaluates
to true, and is then passed to the next step “verify voter
has not voted” (literal 2). As the prerequisite for this step
is voterRegistered==true, no exception is thrown.
The real registered voter has not voted, so the step “ver-
ify voter has not voted” produces voterQualified with
value true. This artifact is passed to the subsequent
steps “check off voter as voted” and “issue regular bal-
lot” (literals 3 and 4 respectively). Neither of these steps
would throw an exception while checking prerequisites,
satisfying event literals 3 and 4 in the MCS respectively.

Thus, in this scenario, an impostor has provided the
name of a registered voter who has not voted, and so the
impostor can vote with a regular ballot.

4.2.4 Scenario 2

The previous scenario assumed that the real voter had
not yet voted. Changing this assumption to one in which
the real voter has already voted changes the interpreta-
tion of the MCS. More precisely, in this case the artifact
voterQualified, output from the step “verify voter has
not voted” (literal 2) evaluates to false.

Now the step “check off voter as voted” (literal 3)
should throw VoterUnqualifiedException, because
the prerequisite condition voterQualified==true is
not satisfied. But that literal in the MCS says the
step “check off voter has voted” does not throw
the VoterUnqualifiedException—perhaps the agent
performing the step is not doing the job right. It
could be a mistake, but it could also be malicious
behavior. One interpretation is that the agent mali-
ciously ignores the fact that voterQualified’s value is
false (that is, that the named voter has already voted).
Similarly, suppose the agent performing the step “is-
sue regular ballot” (literal 4) maliciously ignores that
voterQualified’s value is false and does not throw
the VoterUnqualifiedException.

In this particular scenario, the impostor is using the
name of a registered voter who has already voted. The
hazard occurs because of collusion with the election of-

ficial(s), who ignores the fact that the voter is marked as
having voted in the voting roll, and issues a regular ballot
to the impostor voter. A slightly different scenario, hav-
ing the same result, is that the impostor uses the name
of a registered voter who has already voted, but the elec-
tion officials simply make mistakes performing the steps
(marking the voter as voted and issuing the regular bal-
lot) and let the impostor vote with a regular ballot—there
need not be any malicious intent on the part of the elec-
tion officials.

This example shows how interpreting one event in an
MCS in different ways can result in different scenarios
causing a hazard. The challenge of interpreting MCSes
will be discussed further in section 8. Each interpreted
MCS scenario exposes a potential vulnerability in the
process. One question, then, is whether all of the event
literals in the MCS can occur in one process execution,
and, in particular, whether attacker agents could cause all
of those events to occur. In short, “can attackers exploit
the potential vulnerability to create a real vulnerability
and undermine the integrity of the process?” Note that an
MCS shows what events must or must not occur for the
hazard to occur. It also shows which agents are involved
in those events but not what specific actions each must
take, how practical these actions are, and what the asso-
ciated costs are. Domain expert knowledge is required to
devise a credible attack plan—a scheme to exploit a vul-
nerability to create a hazardous situation. A well-defined
attack plan enables further analysis, for example, to for-
mally prove that a process model is resilient against such
an attack, or to derive a process execution in which the
attack succeeds so that countermeasures can be proposed
for modifying the process. The next section presents the
analysis of a process model when such an attack plan is
available.

5 Analyzing a process model in the pres-
ence of an attack plan using model
checking

The work described in the previous section produces in-
formal attack scenarios based on the MCSes. Domain ex-
perts can select which potential attacks are worth inves-
tigating. These can be crafted into formal attack plans,
allowing analysis to evaluate whether the attacks can suc-
ceed. This section describes an approach for using model
checking to analyze a process model in the presence of
an attack plan to determine if the attack would succeed.
The idea is to consider both the process of interest and
the attack. We illustrate this approach using an exam-
ple from the Yolo County election process model with
an impostor attack plan.

Model checking exhaustively explores all possible ex-
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ecution paths in a finite model of a process, determines
whether a particular property holds in the model, and
produces a counterexample if the property does not hold.
If we can combine a detailed attack plan with the model
of the attacked process, we can apply model checking
to the combined model to determine whether the attack
could succeed. To do this, we need to have appropriate
formal representations of the process model, the attack
plan, and the property representing the failure of the at-
tack. The model checking tool FLAVERS [8] can take
as input a process model represented in Little-JIL and a
property represented as a finite-state automaton (FSA).
We therefore model the attack plan as a process defini-
tion in Little-JIL and compose it with the model of the
process being attacked.

We proceed as follows:

1. Model the attack plan in Little-JIL to obtain the at-
tacking process model.

2. Compose the attacking process model with the at-
tacked process model, yielding the composed pro-
cess model.

3. Apply FLAVERS to determine if the composed pro-
cess model satisfies the property “the attacking pro-
cess fails”. If the property is not satisfied, we exam-
ine a counterexample trace produced by FLAVERS
to propose process improvements via process mod-
ifications.

The following sub-sections describe each step.

5.1 Modeling an attack plan in Little-JIL

An attack plan needs to be more than a set of attacking
events; it needs to specify where in the attacked process
these events are to occur, and which artifacts the attack-
ing events need to corrupt. As noted in the previous sec-
tion, an MCS derived from the process model’s fault tree
contains information about the process steps that an ad-
versary might exploit. In order for domain experts to cre-
ate a Little-JIL attack model, the experts will have to aug-
ment the MCS information with coordination diagrams,
artifact flows, and agent specifications. The level of de-
tail in the resulting model will have to match that of the
attacked process model so that the attacking and attacked
process models can be composed3.

The first interpretation of the MCS example in the pre-
vious section 4.2.3 suggests that if an impostor has pro-
vided the name of a registered voter who has not voted,
the impostor can vote with a regular ballot. Based on

3If an attack plan already exists in another format it could be con-
verted to a Little-JIL attacking process model. The method of conver-
sion will vary depending on the original format and the information
contained in the attack plan. Note that conversion to Little-JIL might
not be straightforward if the original attack plan lacks details or is too
abstract, requiring domain experts to be consulted. In some cases, it
might be easier to model an attack plan in Little-JIL from scratch rather
than convert it from an existing format.

this insight, together with the attacked process model’s
steps that are involved in the MCS, an attack plan might
be crafted into a Little-JIL process model as shown in
Figure 4. The attacking process model requires the step
“gather name of unlikely voter” to provide the artifact
“voterName”, which is passed into the step “give name”
(a sub-step of the step “impostor pass the authentication
check”), and then from there it will be passed to the
attacked process model’s step “get voter name” as we
will explain later when we compose the process models.
Also, to match the level of detail of the attacked process
model, we make sure that the attacking process model is
elaborated to contain the steps “get regular ballot” and
“impostor cast ballot” corresponding to the steps “issue
regular ballot” and “record voter preference” in the at-
tacked process model respectively.

5.2 Composing the attacking process model with the
attacked process model

The next step is to compose the attacking process model
with the attacked process model. To do this, we create
a new process model in which the two sub-processes,
the attacking and the attacked process, execute in par-
allel with appropriate synchronization. Currently, this is
done manually based on the intuitions and experiences
of domain experts. For this example, we create a new
root step “composed process” with a parallel sequencing
badge and make the two sub-process models (“conduct
election” and “attack by impersonation”) sub-steps of the
new step, as shown in Figure 5.

To synchronize the two sub-processes, we carefully
examine common artifacts and common activities shared
between the sub-processes. In this example, the artifact
representing a voter’s name named voterName is com-
mon to both sub-processes. A quick traversal through the
steps providing or accessing that artifact suggests where
to set up the synchronization: the step “give name” in
the attacking sub-process model has voterName as out-
put, and that artifact can be passed to the step “get voter
name” in the attacked sub-process model, which takes
voterName as input. Also, the step “issue regular bal-
lot” in the attacked model produces the artifact “ballot”,
which can be passed into the step “get regular ballot” in
the attacking model.

When devising the attack plan from the fault tree’s
MCSes, domain experts may already have some idea
about where the synchronization points should be, and
which attack steps aim at which parts of the attacked pro-
cess. In the future, we plan to implement support for
identifying these points when devising attack plans from
MCSes to assist the process model composition.

Steps representing the same activities must also be ex-
amined carefully. For example, the step “impostor cast
ballot” in the attacking sub-process and the step “record
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Figure 4: Impostor attack plan as a Little-JIL process model

Composed Process

conduct election attack by impersonation

get voter name give name

…

issue regular ballot get regular ballot

…
voterName

(regular) ballot

…

…

Figure 5: Composed process model: The root step “com-
posed process” is a parallel step composing the two sub-
processes: the attacked and the attacking. The Little-JIL
channel feature is used to define how artifacts such as
“voterName” and “ballot” must be passed between the
steps of the attacking and attacked sub-processes in or-
der to support the defined attack.

voter preference” in the attacked sub-process both repre-
sent the activity of the voter casting the ballot, as shown
in Figure 6. These pairs of steps can be synchronized
using message passing, so that the steps of the attacking
and attacked sub-processes occur in the proper temporal
order for the attack.

Little-JIL channels provide support for synchronous
and asynchronous message passing. A channel declared
at a Little-JIL step is accessible by all of its descendant
steps. If a step writes an artifact to a channel, that ar-
tifact is available in the channel for access as soon as
the writing step completes without an exception being
raised, but the artifact is not available if the step termi-
nates because of an exception. If a step is declared to
take an artifact from a channel and the channel is empty,
the step is blocked from execution until the artifact be-

comes available. For example (see Figure 5), the chan-
nel VoterName is declared at the root step of the com-
posed process model to allow synchronization: the step
“give name” writes the artifact voterName to the chan-
nel; and the step “get voter name” takes the artifact from
that channel. Thus, the step “get voter name” can only
proceed if the “give name” step writes the artifact to
the channel. Similarly, the step “issue regular ballot”
in the attacked sub-process writes the “ballot” artifact
into a predefined channel when it completes its execu-
tion. Only then can the step “get regular ballot” in the
attacking sub-process proceed and complete.

This same approach can be used for synchronizing the
step representing the same activity. For example, both
steps “record voter preference” (part of the attacked sub-
process) and “impostor cast ballot” (part of the attacking
sub-process) represent the activity of the voter casting
the ballot (Figure 6). Through a predefined channel, a
token is passed upon the completion of the step “record
voter preference” to the step “impostor cast ballot”. By
doing this, we make sure that the step “impostor cast bal-
lot” cannot complete unless the step “record voter pref-
erence” completes.

5.3 Performing verification

Having the composed process model, we now want to
perform the verification of the property representing the
absence of a successful attack. In other words, the attack
must never complete. We specify this property as an FSA
as shown in Figure 7. The event “attack succeeds” is
the only event specified in the FSA, which starts in an
accepting state. If the event “attack succeeds” occurs,
the FSA will progress to the violation state. Note that
the property is specified somewhat independently of the
process model, thus before the verification can be done,
the association must be specified between the property
events and the process events.
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Synchronization example: record voter preference

token ▷

In this example, the token 

channel serves merely for 

synchronization purposes, not 

for artifact flow.

part of “conduct election” sub-process

token▶

part of “attack by impersonation” sub-process

Figure 6: Example of synchronization using steps representing the same activities.
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Step 3: Specify Property

Desired property: the absence of a successful attack

– Specified as a finite state automaton

34

When doing the verification, the event “attack succeeds” is then bound 

to step “attack by impersonation” being completedFigure 7: Property as an FSA representing attack never
succeeding

When verifying a Little-JIL process model using
FLAVERS, each event in the property has to be bound
(correspond) to one or more events in the process model.
Events in a Little-JIL process model include a specific
exception being thrown by a step or a step being in a
specific state. The execution of a Little-JIL step is mod-
eled as progress through several states. Step execution
begins in the posted state during which execution of the
step is assigned to an agent. Execution then proceeds
to the started state, when the agent begins performing
the step. Eventually the step enters either the completed
state (normal execution) or the terminated state (execu-
tion ends with an exception). In this example, the event
“attack succeeds” in the property FSA is bound to the
event the step “attack by impersonation” is completed in
the process model.

Running FLAVERS on the composed model shows
that the property is violated—the step “attack by imper-
sonation” can succeed. The produced counterexample
reveals an attack trace in which the impostor provides the
election official with a voter’s name, the step “confirm
name in voting roll” does not throw an exception, and all
the subsequent steps are carried out normally without any
exception being thrown: the election official verifies that

the voter has not voted, checks off the voter’s name in
the voting roll, issues a regular ballot, the impostor gets
the regular ballot and casts the ballot. The counterexam-
ple suggests that the impersonation attack could succeed
when an attacker has access to the name of a registered
voter who has not voted.

The attack trace may also provide domain experts with
some insights about how to modify the process to thwart
the attack. In this case, an additional authentication step
could be added to the attacked sub-process model, so that
the impostor will fail to authenticate (for example, a se-
cret PIN that only the voter knows, or some biometric
information). The step “additional authentication” is de-
clared to take an authentication artifact from a predefined
channel in order to proceed. Since there is no step in
the attacking sub-process that provides such an artifact
to the channel, the attacking sub-process will not be able
to reach the completed state. This is verified by running
the verification on the new composed model.

In the second scenario (Section 4.2.4), the impostor
has the name of a registered voter, but in this case the
registered voter has already voted. An election official,
however, ignores that the voting roll shows the voter has
voted. The election official issues a regular ballot to
the impostor voter, allowing the hazard to occur. The
attack plan devised from this scenario is similar to the
one discussed above, except that the agent performing
the step “verify voter has not voted” and the agent per-
forming the step “check off voter as voted” must never
raise any exception while performing these steps. Com-
posing this attack plan with the attacked election process
model is similar to the previous case; that is, the parallel
root step is created and channels for synchronization are
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declared. But now we have to model the behavior of the
inside attackers, the agents performing the steps “verify
voter has not voted” and “check off voter as voted”, such
that no exception will ever be raised at these steps. For
this to work, the step “verify voter has not voted” only
throws VoterUnqualifiedException if its prerequi-
site voterQualified==true fails. The same is true for
the step “check off voter as voted”. Thus, we can model
these inside attack behaviors by either setting the value
of the Boolean artifact voterQualified to true, or re-
moving the prerequisites from these steps.

Applying FLAVERS to this new composed process
model shows that the attack might succeed. The coun-
termeasure for this scenario is more complex than that
of the first scenario. Perhaps the most appropriate is to
have election officials work in pairs, in the hope that er-
rors by one election official would be caught by the sec-
ond. Thus, the improvement here would be to add an
additional agent and extra checking steps.

These examples show that the model can validate that
an attack will be successful. For more complex attacks,
one could send each artifact to a number of different
places in the process and look for combinations of des-
tinations that would cause the attack to succeed. In this
way, one could also examine variants that might attack
the process in unanticipated ways.

6 Related Work

6.1 Attack modeling

Several attack models have been proposed, each provid-
ing a different representation of attacks. Moore et al.
modeled attacks in the form of attack trees and attack pat-
terns for the purpose of documentation [23]. Lazarus cre-
ated a catalog of election attacks in the form of a single
attack tree [17], attempting to provide a threat model and
a quantitative threat evaluation that are reusable across
different jurisdictions.

These attack trees lack specification of artifact flows
and temporal ordering of events that are necessary for
supporting formal analyses of the sort described in this
paper. In fact, Lazarus’s catalog of informally specified
attacks includes many attacks that could be represented
with our approach, including the impostor attack that we
use as an example in this paper. To study the vulnerabil-
ity of our modeled election processes to this attack, how-
ever, would require the addition of such temporal order-
ing and artifact flow. Several researchers have proposed
approaches to overcome the limitations with attack trees.
Jürgenson and Willemson introduced temporal order to
the attacker’s decision-making process [14]. Helmer
et al. used augmented Software Fault Trees (SFTs), at-
tack trees with temporal order, to model intrusions; in

their representation, the root node represents the intru-
sion and an MCS contains events to be monitored to de-
tect intrusions [11]. Their SFTs are then automatically
converted to colored Petri nets for intrusion detection
systems. Simple Petri nets have also been used to model
attacks [21,40]. McDermott [21] suggested using labeled
tokens in Petri nets to indicate different attackers (an ap-
proach to agent specification). The modeled attacks are
then used to discover and analyze attack scenarios in pen-
etration testing.

Templeton and Levitt proposed a requires/provides
model to represent attacks. A concept (sub-attack) is
specified by the capabilities it requires and provides [34].
This model features the composition of sub-attacks to
form more sophisticated attacks. Using this model, Peis-
ert et al. described multi-stage attacks for use in forensic
analysis [25] and forensic analysis of elections in par-
ticular [2]. This technique sought to use the natural con-
straint of the limited number of entry points into a system
and the limited, enumerable number of assets that one
might wish to defend to provide insight as to where and
how to monitor an otherwise complex and unwieldy sys-
tem. However, like attack trees, this model lacks agent
specifications and artifact flows.

In addition to these graph-based approaches, Cuppens
and Ortalo proposed a declarative language (LAMBDA)
for specifying attacks in terms of pre- and post-
conditions [6]. The language is modular and hierarchi-
cal. Higher-level attacks can be described using lower-
level attacks as components. Attack specifications con-
tain information for specification-based intrusion detec-
tion systems, which detect malicious activity whenever
specifications are violated [16].

Attacks are modeled differently for different purposes
as discussed above. We refer to a process modeling lan-
guage with rich semantic features as a process definition
language. Little-JIL is an example of such a language,
which we have found serves our purposes well.

6.2 Formal reasoning in security

Applying model checking in the security field is not new.
Ritchey and Ammann used it to analyze network vulner-
abilities by encoding the vulnerabilities in a state ma-
chine description suitable for a model checker and then
asserting that an attacker cannot acquire a given privilege
on a given host [30]. Similar to the second phase of our
approach, using model checking to formally assess an at-
tack’s success, Ritchey and Ammann’s approach requires
knowing the vulnerabilities and their exploits in advance.
The first phase of our approach, using FTA, complements
their approach by helping to identify vulnerabilities and
to devise attack plans that can then be used for model
checking. Another difference is that their vulnerabilities
are simply system attributes (e.g., a host running Apache
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version 1.04), and exploits are described by lists of pre-
requisite vulnerabilities, host computer access levels, and
the resulting access levels of the connected hosts. Thus,
the attack plans that are developed using our methods are
more detailed and have more structure.

A large body of work has applied model checking
to security protocol verification. For example, Lowe
used the FDR model checker to find a subtle attack
on the Needham-Schroeder authentication protocol [20].
Meadows created the NRL Protocol Analyzer, a tool
based on a combination of state exploration and theorem
proving techniques, and analyzed the Internet Key Ex-
change protocol [22]. Compagna verified security pro-
tocols using a SAT-based model checking approach [5].
Additionally, Powell and Gilliam proposed a composi-
tional model checking approach. In their approach, se-
curity property verification results of individual compo-
nents of a large system are extrapolated for the overall
system, which they claim would otherwise be beyond
the capabilities of current state of the art model check-
ers due to the state space explosion problem [26]. They
successfully applied their approach in verifying the Se-
cure Socket Layer protocol for NASA systems [27].

Another line of formal reasoning in security studies
attack generation. Sheyner et al. began with rules captur-
ing atomic attacks such as buffer overflows [32]and mod-
eled a computer network system as a finite state machine
where state transitions correspond to the atomic attacks.
They then used model checking to generate an attack
graph in which any path from a root node (an initial sys-
tem state) to a leaf node (an unsafe system state) shows
a sequence of atomic attacks an intruder can employ to
attack the system. Based on the generated attack graph,
they developed a minimal set of atomic attacks that must
be removed to thwart the intruder. Our approach uses
FTA, rather than model checking, to generate possible at-
tacks. The attacks generated by their approach are more
like what we have called attack scenarios. In our ap-
proach, given a hazard we devise (a class of) attack plans
that are more detailed than attack scenarios. Also, our
focus is on overall processes, rather than on the compo-
nents (such as computer networks and sub-systems) that
these processes integrate.

6.3 Process-based security analysis in the election
domain

Raunak et al. [29] used model checking to show that a
property about an election process holds if all agents per-
form the steps correctly, but that the same property may
be violated if some agents are dishonest. Our work de-
velops the attacks in a more systematic manner.

Closest to our approach, and also applied in the elec-
tion domain, is the work of Weldemariam and Vil-
lafiorita [38] that attempts to discover attacks. They

model procedures that are best practices, defining how
critical assets are to be managed, elaborated, and trans-
formed. They then inject threats—actions that alter some
features of an asset or allow some actors privileges (e.g.
a read privilege) on some assets—into the original model
to get an extended model that is encoded as the input for
the NuSMV model checker. They then specify a prop-
erty (e.g., “It is never the case that poll officers receive
an altered version of the election software that can be
run on the machines”) and use the model checker to ver-
ify it. A counterexample produced when the property is
violated is an example of an attack. Our approach differs
from theirs. First, we use FTA instead of model check-
ing to devise more structured and more detailed attack
plans given a hazard. Their attack generation method is
very similar to Sheyner et al’s mentioned above. Sec-
ond, their paper does not describe how the feasibility of
the generated attack is determined whereas we describe
how our approach does so by applying model checking
to the composition of a process model and an attack plan
(Section 5). In addition, they claim that injecting all
possible threat-actions at all possible steps of the pro-
cedure is “the best and most general strategy”. How-
ever, our view is that this approach is likely to produce
many false-positives that obscure the true positives, with
feasible attacks potentially being obscured by an exces-
sive number of attacks that will prove to be infeasible.
Thus our approach emphasizes the importance of deter-
mining the feasibility of a candidate attack by finding a
verification counterexample. Finally, since the example
procedure shown in their paper contains only sequential
steps with asset flows, it is not clear whether their process
models are able to represent concurrency and exception
handling, key parts of real-world election processes.

7 Limitations and Future Work

Our approach has some limitations. First, it is based on
process models, which inevitably capture real-world pro-
cesses incompletely. Any model will omit some details,
possibly because they are irrelevant or possibly because
they cannot be modeled conveniently in a given model-
ing notation. But we view the process model as a liv-
ing document to be updated on an ongoing basis, for ex-
ample when the process is modified, when more process
details are needed for analysis, or when superior model-
ing capabilities become available. In general we expect
that when changes or elaborations are necessary, they
will be of the sort that can be modeled relatively eas-
ily and then re-analyses can be done relatively quickly
on the modified model using existing specifications of
hazards and properties. Radical process changes can be
expected to entail considerably more modeling and anal-
ysis work, but are expected to be far more infrequent.
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Second, since our approach starts with the identification
of specific hazards that are then used to identify specific
process vulnerabilities, we must acknowledge that there
will always be hazards that were not initially considered
or that might be particularly difficult to represent. Given
that election process vulnerabilities will probably be rec-
ognized incrementally over time (perhaps as previously
recognized vulnerabilities are better defended against) it
will be necessary to perform our analyses incrementally
as these vulnerabilities are identified. Thus, the work de-
scribed here should be taken as a specification of a single
iteration in what we believe must be a continuing itera-
tive procedure of identification of hazards and removal
of consequent vulnerabilities.

Despite these limitations, our initial evaluations and
experiences with this process-model-based analysis ap-
proach are promising and suggest several avenues of re-
search to extend this work. One such extension is to in-
crease the level of automation as much as possible so
that human participation can be restricted to activities
that make the best possible use of human intuition and
judgment. Currently, we can automatically generate fault
trees and therefore the MCSes used to identify process
vulnerabilities; and we can automate use of the formal
verification to determine the possibility of the success of
an attack plan. However, using insights derived from the
MCSes, domain experts still need to manually devise at-
tack plans. In future work, we hope to be able to auto-
mate the construction of at least initial attack plans from
an MCS. The resulting plans might be coarse but it would
give domain experts a better starting point for elaborat-
ing these plans into ones that are more detailed. More-
over, process model composition (integrating an attack
plan and the attacked process model) was done manu-
ally in this work by having humans study the two mod-
els and identify synchronization point. We believe that
this model composition can also be at least partially au-
tomated.

We also want to look into ways to simplify the in-
terpretation of MCSes. One MCS can be interpreted in
multiple ways, complicating the analysis. For example,
the MCS event “failure to throw an exception” could be
interpreted to mean that the exception is not thrown at
all or that it is not thrown when it is supposed to be
thrown. These interpretations lead to different scenar-
ios, as shown in the example in Section 4.2. An OR gate
in the fault tree can be used to distinguish between these
interpretations, but this increases the fault tree size, and
probably the number of MCSes as well. Thus the value
of such automated help needs to be determined through
further research. Other research is needed to address
such additional issues as determining whether resulting
scenarios are equivalent, or whether we should define
one formal attack plan for each scenario or one formal

attack plan that covers multiple scenarios.
Another way in which our approach could be extended

to suggest process vulnerabilities is by considering the
agents that perform the steps involved in an MCS. It
might be the case that an MCS does not comprise a sin-
gle point of failure, but that all the steps in the MCS are
performed by only one agent. In that case, that agent
might be viewed as a single point of threat. Or when two
or more agents are involved, collusion or coercion might
be a possibility worth considering. Therefore analyses of
the agents that execute MCS steps can provide domain
experts with additional insights into process vulnerabili-
ties.

Our approach could also be extended to provide bet-
ter insights into vulnerabilities to insider attacks. In sec-
tion 5.2, we used channels as a mechanism for studying
how well outsider attacking behaviors could be defended
by insiders executing the election process. But other ap-
proaches are likely to be more effective in representing
an attack that involves collusion between outside attack-
ers and privileged agents inside the process. We intend to
explore the use of detailed specifications of agent behav-
iors, including specifications of malicious and collusive
behaviors of agents inside the attacked process (inside
attackers) as well as the behaviors of those attacking the
process (outside attackers), to explore vulnerabilities to
insider attacks.

8 Conclusion

This paper describes a systematic and semi-automated
approach to continuous process improvement by auto-
matically identifying process vulnerabilities by applying
FTA to a detailed model of the election process. The de-
rived MCSes provide insights about potential attacks that
are then used to create attack plans. After composing
each attack plan with the detailed process model, model
checking is used to determine if the attack can succeed.
The generated counterexample(s) can be used by domain
experts to improve the process so that it can thwart such
attacks. We envision this approach being applied incre-
mentally as election processes evolve with the introduc-
tion of new laws and technology.

To evaluate this approach, we applied it to a portion
of the Yolo County election process. Our preliminary
results seem encouraging. Some results were what we
expected, such as identifying the vulnerabilities that
an impostor can exploit to attack the process, formally
verifying that the attack might succeed, and verifying
that the same attack will fail after appropriate process
modification. What was unexpected was the variety of
possible attack scenarios that could often be derived
from a single MCS. We believe that reducing this
variability so as to improve the focus on more feasible
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and worrisome attacks is one of the more important
directions for future work that we should explore. We
also look forward to conducting a more extensive eval-
uation using more comprehensive models of real-world
election processes. We hope that such an extensive
evaluation will identify unrecognized or overlooked
potential attacks and demonstrate the effectiveness of
process modeling and analysis to detect and successfully
defend those attacks.
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