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A B S T R A C T  

Information about which pairs of statements in a con- 
current program can execute in parallel is important 
for optimizing and debugging programs, for detecting 
anomalies, and for improving the accuracy of data flow 
analysis. In this paper, we describe a new data flow 
algorithm that finds a conservative approximation of 
the set of all such pairs. We have carried out an initial 
comparison of the precision of our algorithm and that 
of the most precise of the earlier approaches, Masti- 
cola and Ryder's non-concurrency analysis [8], using a 
sample of 159 concurrent Ada programs that includes 
the collection assembled by Masticola and Ryder. For 
these examples, our algorithm was almost always more 
precise than non-concurrency analysis, in the sense 
that the set of pairs identified by our algorithm as 
possibly happening in parallel is a proper subset of 
the set identified by non-concurrency analysis. In 132 
cases, we were able to use reachability analysis to de- 
termine exactly the set of pairs of statements that may 
happen in parallel. For these cases, there were a to- 
tal of only 10 pairs identified by our algorithm that 
cannot actually happen in parallel. 
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1. I N T R O D U C T I O N  

As the number and significance of parallel and concur- 
rent programs continue to increase, so does the need 
for methods to provide developers with information 
about the possible behavior of those programs. In this 
paper, we address the problem of determining which 
pairs of statements in a concurrent program can possi- 
bly execute in parallel. Information about this aspect 
of the behavior of a concurrent program has applica- 
tions in debugging, optimization (both manual and au- 
tomatic), detection of synchronization anomalies such 
as data races, and improving the accuracy of data flow 
analysis [8]. 

The problem of precisely determining the pairs of 
statements that can execute in parallel is known to 
be NP-complete [12]. Most work in the area has 
therefore focused on finding methods for computing 
a conservative approximation to the set of pairs that 
can execute in parallel, that is, computing a set of 
pairs of statements that contains all the pairs that 
can actually execute in parallel but may also contain 
additional pairs. The goal is to find a useful tradeoff 
between precision and cost. 

Several approaches have been proposed. Callahan and 
Subhlok [1] proposed a data flow algorithm that com- 
putes for each statement in a concurrent program the 
set of statements that must be executed before this 
statement can be executed (B4 analysis). Duester- 
wald and Sofia [2] applied this approach to the Ada 
rendezvous model and extended B4 analysis to be in- 
terprocedural. Masticola and Ryder proposed an it- 
erative approach they called non-concurrency analy- 
sis [8] that computes a conservative estimate of the set 
of pairs of communication statements that can never 
happen in parallel in a concurrent Ada program. (The 
complement of this set is a conservative approximation 
of the set of pairs that may occur in parallel.) In that 
work, it is assumed initially that any statement from 
a given process can happen in parallel with any state- 
ment in any other process. This pessimistic estimate 

24 



is then improved by a series of refinements that  are 
applied iteratively until a fixed point is reached. Mas- 
ticola and Ryder show that  their algorithm yields more 
precise information than the approaches of Callahan 
and Subhlok and of Duesterwald and Sofia. 

In this paper, we propose a new data  flow algorithm 
for computing a conservative approximation of the set 
of pairs of statements that  can execute in parallel 
in a concurrent Ada program. We have conducted 
a preliminary empirical comparison of our algorithm 
and non-concurrency analysis, using a set of 159 Ada 
programs that  includes the programs used by Mas- 
ticola and Ryder to evaluate non-concurrency anal- 
ysis. For the purposes of this comparison, we took 
the complement of the set of pairs of statements iden- 
tified by our algorithm as possibly occurring in par- 
allel to get a conservative approximation of the set 
of pairs of statements that  cannot occur together, as 
computed by non-concurrency analysis. On these pro- 
grams, our algorithm finds all of the pairs identified 
by non-concurrency analysis in 150 cases; in 118 cases, 
our algorithm finds pairs that  are not found by non- 
concurrency analysis. In 9 cases, non-concurrency 
analysis identifies pairs that  are not found by our 
algorithm but, in all of these cases, our algorithm 
finds many more pairs that  are not identified by non- 
concurrency analysis. For .132 cases, we were able to 
run a reachability analysis to determine exactly the 
pairs of statements tha t  cannot occur in parallel. (In 
the remaining cases, the reachability analysis ran out 
of memory.) For these 132 programs, there were 5 
cases in which our algorithm failed to find all the pairs 
of statements tha t  cannot happen together, missing a 
total of 10 pairs. 

The next section introduces the program model that  
we use and describes our algorithm. Section 3 briefly 
describes non-concurrency analysis and the relation 
between its program model and the model used for our 
algorithm. Section 4 presents the results of the com- 
parison of our algorithm and non-concurrency analy- 
sis, and Section 5 discusses some conclusions and de- 
scribes future work. 

2 .  T H E  M H P  A L G O R I T H M  

2 . 1 .  P r o g r a m  r e p r e s e n t a t i o n  

The program representation used in this work is the 
trace flow graph (TFG) introduced by Dwyer and 
Clarke [3,4]. This representation is conservative in the 
sense that  it models a superset of all feasible program 
executions. Informally, TFGs are forests of control 
flow graphs (CFGs), one for each concurrent process, 
or task, in the program, with nodes and edges added 
to represent intertask communications. (If the code 
region represented by node n in one task contains a 
synchronization statement tha t  can correspond to one 

represented by node m in another  task, a new node is 
added with incoming edges from n and m and outgoing 
edges to all successors of n and m. This is illustrated 
in the figures.) 

The TFG model deliberately does not specify exactly 
what kind of region in the task each CFG node rep- 
resents, imposing only the weak restrictions that  a re- 
gion cannot contain more than one synchronization 
statement and that ,  if a region contains a synchroniza- 
tion statement,  it must be the last s tatement  in this 
region. This underspecification provides for greater 
flexibility of the model. For example, a CFG node can 
represent a single machine level instruction, a basic 
block, or even a set of paths from one synchronization 
point to another. We also add a unique initial node 
that  has no incoming edges and has outgoing edges to 
the start  nodes of all CFGs and a unique final node 
that  has no outgoing edges and has incoming edges 
f rom the end nodes of all CFGs. 

Formally, a TF G  is a labeled directed graph 
(N, E,  niniti~l, n/~nal, #), where N is the set of nodes, 
E C N x N is the set of edges, niniti~l,nl~nal E N are 
unique initial and final nodes, and # is a mapping from 
nodes to regions of code within tasks. The set of all 
nodes from the CFGs for all tasks forms the set of local 
TF G  nodes, LOCAL. The elements of the set of non- 
local nodes, COM = N \ (LOCAL U {n~n,ti~l, n/~n~t}), 
are communication nodes, which represent task ren- 
dezvous. In building a TF G  from a collection of CFGs, 
the communication nodes are obtained by syntactic 
matching of synchronization statements. As a result, 
some nodes in COM may be unreachable, but  our al- 
gorithm is capable of detecting some of these. For 
each node n, we let Pred(n) and Succ(n) be the sets of 
(immediate) predecessors and successors of n, respec- 
tively. 

Figure l(a) shows a program that  consists of two com- 
municating Ada tasks, Figure l(b)  shows the corre- 
sponding CFGs with nodes labeled with the corre- 
sponding Ada program statements,  and Figure l(c) 
gives the corresponding TFG.  The local nodes in this 
TFG have the same labels as the corresponding nodes 
in the CFGs. Nodes 1 and 2 are communication 
nodes; node 1 represents the communication between 
the tasks at entry call T2.E1, and node 2 represents 
the communication at entry call T2. E2. 

The TFG model offers a compact representation of 
the program's behavior. The number of local nodes 
in the TFG is linear in the number of program state- 
ments. A communication node is created for every 
syntactically matching pair of call and accept state- 
ments, so, for example, the local node corresponding 
to a single c a l l ( T 2 . E )  statement in task T1 would 
share a separate communication node successor with 
each a c c e p t  E statement in task T2. In the worst case, 
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task body T1 is 
begin 

if B then 
x:= 2; 
T2.EI; 

end if; 
T2.E2; 

end T2 

task body T2 is 
begin 

accept El; 
accept E2; 

end T2; 

(a) Code 

T1 

(b) CFGs 

T2 

~f 

(c) TFG 

Figure 1: A T F G  example 

this results in the number of communication nodes be- 
ing quadratic in the number of program statements. 
However, this blow-up in the number of communica- 
tion nodes does not seem common in practice. Our 
experimental results support  this hypothesis. 

Given a pair (m, n) of nodes in a TFG,  we are in- 
terested in determining whether, on some computer 
system, the program represented by the TFG has an 
execution in which code corresponding to a statement 
in the task region represented by m executes at the 
same time as code corresponding to a s tatement in the 
task region represented by n. (For the sake of brevity, 
in the rest of the paper we will use the phrase "node 
n executes" to mean "an instruction from the task re- 
gion represented by node n executes" .) If there is such 
an execution, we say that  m and n may happen in par- 
allel, and define MHPverl(m,n) to be true. This def- 
inition of the MHPp~rl relation identifies the "ideal" 
set of pairs of statements tha t  may execute in paral- 
lel. The algorithm presented in this paper computes 
a conservative approximation MHP to MHPperl. 

2 . 2 .  T h e  M H P  a l g o r i t h m  

In this section we give the detailed description of the 
MHP algorithm and state the major results about  
its termination, conservativeness, and worst-case time 
bound. Rather  than using the lat t ice/function space 

view of data  flow problems [5], we give da ta  flow equa- 
tions for TF G  nodes. This is done for two reasons. 
First, it makes explanations and especially proving 
properties of this algorithm more intuitive. Second, 
one aspect of the algorithm precludes its representa- 
tion as a purely forward- or backward-flow data  flow 
problem or even as a bidirectional [10] da ta  flow prob- 
lem. We conclude the description of the algorithm by 
giving pseudo-code for its worklist version. 

Our algorithm associates three sets with each node 
n of the TFG:  GEN(n), IN(n), and M(n). The set 
M(n) is the current approximation to the set of nodes 
that  may happen in parallel with n, while GEN(n) 
represents the nodes we can place in the approxima- 
tion based on information local to n and IN(n) rep- 
resents the nodes we can place in the approximation 
using information propagated from the predecessors 
of n. Initially, all three sets for all nodes are empty. 
These sets are repeatedly recomputed until the algo- 
r i thm reaches a fixed point and the sets do not change. 
At this point set M(n) represents a conservative over- 
estimate of nodes with which node n may execute in 
parallel. 

In addition to these three sets, we assign a Reach bit 
to each communication node. This bit is initially set 
to f a l s e .  Its value is set to t r u e  if, on some itera- 
tion, each of its two local predecessors belongs to the 
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(a) (b) (c) 

Figure 2: Illustrations for the MHP equations 

M set of the other. Intuitively, a task rendezvous rep- 
resented by a communication node can take place only 
if both tasks are ready to participate in it. Until the 
Reach bit of a communication node is set to t r u e ,  the 
algorithm assumes that  the task synchronization rep- 
resented by this node is not possible. If the Reach 
bit of a communication node is still f a l s e  after the 
algorithm reaches a fixed point, this means that  the 
task communication represented by it is not possible 
on any execution of the program. 

The sets GEN and IN  are computed on each it- 
eration of the algorithm as follows. If n is a local 
node, let P be the set consisting of ni,itiat, if n is 
a successor of ninitial, and all communication nodes 
C that  have n as a successor and have Reach(C) set 

t rue.  Then aF, N(,) = \ { m  I to 

m is in the same task as n }. Informally, GEN(n) is 
the set of local nodes m such that  m and n are both 
successors of a reachable communication node, or of 
the initial node. The idea is that ,  if a local node 
is a successor of a reachable communication node, it 
may happen in parallel with other successors of this 
communication node since both tasks participating 
in the communication can execute immediately after 
the communication. For example, in Figure 2(a), af- 
ter rendezvous C1 is executed, nodes ml and n may 
happen in parallel. If n is a communication node, 
GEN(n) = 0. 

For a local node n, we put  IN(n) = UpePred(n) M(p), 
while if n is a communication node, we put  

I N ( n ) = { ~  pEPred(n) M(p) otherwise.ifReach(n) 

Here the idea is that ,  since tasks can execute at vary- 
ing rates, a local node that  may execute in parallel 

with another node may also execute in parallel with 
all local successors of tha t  node. A communication 
node, however, can execute only when both  of its pre- 
decessors have executed, and so may not execute in 
parallel with a node that  cannot execute in parallel 
with both of its predecessors. Figure 2(b) provides an 
illustration. Suppose that  nodes n and p may happen 
in parallel (i.e., that  node C is reachable), and nodes 
m and p may not happen in parallel. Since node L 
can happen only after both rn and n happened, it may 
not happen in parallel with node p. Note that  by con- 
struction a communication node can never have nodes 
in its IN set from the two tasks whose rendezvous it 
represents. 

On each iteration, we set M(n) = IN(n) U GEN(n). 
Up to this point the algorithm is a s tandard forward- 
flow data  flow algorithm [5]. However, after com- 
puting GEN, IN, and M sets for each node, we 
have to take an additional step to ensure the sym- 
metry nl E M(n2) ¢* n2 E M(nl) by adding n2 to 
M ( n l )  if nl  E M(n2).  Figure 2(c) illustrates this 
necessity: without this additional step the M sets 
of nodes nl  and ml are {n2} (GEN(ml) = {n2} 
and IN(m2) = {n2}), but the M set of n2 is {nl} 
(GEN(n2) = {nl}).  Thus, n2 e M(ml) holds but  
ml  E M(n2) does not and so the symmetry  step in 
necessary to put  ml  in M(n2). 

In Figure 3, we give a worklist version of the MHP al- 
gorithm. Although steps (12)-(14) do not allow cast- 
ing the algorithm in the general da ta  flow algorithm 
form and using the standard complexity results [7] di- 
rectly, we can show that  the algorithm has polynomial 
worst case bound, as stated below in Theorem 4. 

To conclude the discussion of the MHP algorithm, we 
state some results about  its termination, conservative- 
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I n p u t :  A TFG (N, E ,  ni~it~t, n/in~,/z) 
O u t p u t :  Vn E N : a set MHP(n) of TF G  nodes 
such that  Vm ~ MHP(n), m may not happen in 
parallel with n. 
Initialization: The M sets for all nodes are ini- 
tially empty, and the worklist W initially contains 
start nodes for all tasks in the program. 
For each n E N,  set M(n) = 0. 

k Set W = (nl,...,nk), where Ui=lni = {n  [ 
(niniti~l, n) E E } 
Main Loop: We evaluate the following statements 
repeatedly until W = 0 

(1) n := the first element from W 
(2) W := W \ {n} 
(3) Mold :---- M(n) 
(4) if n E COM then 
(5) {Pl,P2} :---- Pred(n) 

(6) Reach(n) : -  (Pl E M(p2)) 
(7) if Reach(n) then 
(8) M(n) := M(pl) fq M(P2) 

end if; 
else 

(9) Compute GEN(n) 
(10) M(n) := (JpePred(n) M(p) U GEN(n) 

end if; 
(11) if Mold ~ M(n) then 
(12) For each m E (M(n) \ Mold) 
(13) i ( m )  := i ( m )  tA {n} 
(14) W := W U Succ(m) 
(15) W := W U Succ(n) 

end if; 
Finalization: 

For each n E N 
(16) MHP(n) := i ( n )  

Figure 3: MHP algorithm 

ness, and polynomial-time boundedness. 

T h e o r e m  1 ( T e r m i n a t i o n ) .  Given a TFG for a 
concurrent program, the worklist version of the MHP 
algorithm will eventually terminate. 

Termination follows easily from the finiteness of the 
information tha t  can appear in the M sets of all nodes 
in the TF G and from the fact that  the M sets of all 
nodes increase monotonically. 

T h e o r e m  2 ( C o r r e c t n e s s ) .  After the MHP 
algorithm terminates, M(n) = GEN(n) U 
Uq~Pred(n) M(q) for every reachable local node 
n, i.e., the algorithm finds a fixed point of the data 
flow equations. 

The fact tha t  the algorithm computes a fixed point 
follows from the observation that ,  whenever an M(n) 
is changed, all nodes directly affected by the change 
are placed on the worklist. 

T h e o r e m  3 ( C o n s e r v a t i v e n e s s ) .  For all nl ,n2  E 
N, MHPperl(nl, n2) ~ nl  E MHP(n2). 

The proof of this result is based on a case-by-case ex- 
amination of all configurations of nodes nl  and n2 in 
the TFG.  

Theorem 4 (Polynomial-Time Boundedness).  
The worst-case time bound for computing MHP sets 
for all nodes in the TFG is O(IN13). 

To prove this, we construct an optimized version of the 
worklist algorithm which limits the amount  of infor- 
mation passed among the nodes in the T F G  by sending 

each node from the M set of a given node to each of its 
successors only once. Then we prove that  this efficient 
algorithm computes exactly the same information as 
the MHP algorithm in Figure 3 and show that  the 
complexity of the efficient algorithm is (.9(INI3). 

The idea of the efficient algorithm is that ,  if node m 
is one of control predecessors of node n, each node in 
M(m) should only be inserted in M(n) once. This is 
achieved by defining an additional set OUT for each 
node. A node is placed in OUT(m) if and only if it is in 
M(m) and has never been placed in OUT(m) before. 
The IN set for a local node is set equal to the union 
of the O UT sets of all its predecessors. Since each lo- 
cal node has O(INI) predecessors, and the number of 
nodes that  can be put  in the OUT set of each of the 
predecessors in the course of the algorithm is O(INI), 
the number of times a node is added to the IN set 
of each local node is (.9(]NI2). Combined over all lo- 
cal nodes, there are at most O(INI ~) insertions in IN 
(and thus M) :sets. Because each of the communica- 
tion nodes in the graph has exactly two predecessors, 
computation of IN sets for communication nodes can 
be based on the M sets of their predecessors, exactly 
as in the algorithm in Figure 3, and thus takes O(IN[) 
operations. Each node in the graph may be placed on 
the worklist at most O([N[ 2) times, and so the overall 
complexity of computing M sets for communication 
nodes is O([N[3). 

The GEN sets for all nodes in the graph can be 
largely precomputed and only modified in the course of 
the algorithm as communication predecessors of local 
nodes become reachable. This precomputat ion takes 
O([N[ 3) and the modification is O(IN[) for each local 
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node for the course of the algorithm. 

Combining the complexities for the parts of the al- 
gorithm, we obtain the cumulative complexity of 
VdNP) .  

We note that, in the worst case IN[ is itself quadratic 
in the number of statements in the program (due to 
the introduction of communication nodes). In prac- 
tice, however, INI is usually a small multiple of the 
number of program statements. In Section 4, we re- 
port on the relation between the number of TFG nodes 
and the size of the program for our sample of 159 pro- 
grams. 

3. COMPARING NON-CONCUR-  
R E N C Y  ANALYSIS WITH THE 
M H P  ALGORITHM 

This section introduces the most precise of the pre- 
vious approaches for computing the MHP informa- 
tion, Masticola and Ryder's non-concurrency analy- 
sis. Since the program model used by this approach is 
different from TFG, we describe the technique for cre- 
ating TFGs automatically from the non-concurrency 
graphs. Finally, since the MHP algorithm computes 
pairs of nodes that may happen in parallel and non- 
concurrency analysis computes pairs of nodes that 
cannot happen in parallel, we present a mapping be- 
tween these two sorts of data. This mapping allows 
us to compare the information computed by the two 
approaches. 

3.1. Non-concurrency Analysis 
Non-concurrency analysis computes can't happen to- 
gether (CHT) information, which is the opposite of 
what the MHP algorithm computes. The model of the 
program used in this approach is the sync graph, where 
each node represents a number of control paths in a 
task that end in a single synchronization point. Possi- 
ble rendezvous are represented as hyperedges, connect- 
ing the synchronizing paths. Initially it is assumed 
that a given node can happen together with any of 
the nodes in the other tasks. Four CHT refinements 
are then applied, in arbitrary order, until a fixed point 
is reached. The four refinements are pinning analysis, 
B~ analysis, RPC analysis, and critical section anal- 
ysis. The complexity of each of the four refinements 
is O(INsuncl3), and the complexity of the overall ap- 
proach is O(INsy~cl5), where N, unc is the set of sync 
graph nodes [9]. The number of sync graph nodes is 
proportional to the number of statements in the pro- 
gram. 

3.2. Deriving TFGs from Sync Graphs 
In order to compare information computed on sync 
graphs and TFGs, we construct a special restricted 

trace flow graph (RTFG) from a sync graph. Here we 
give only a sketch of this construction. We create a 
single local RTFG node for each sync graph node, ex- 
cept for those nodes in the sync graph that represent 
entry calls to accept statements with bodies, for which 
two local RTFG nodes are constructed. One RTFG 
node represents the execution of the caller task before 
the callee task accepts the call. The second RTFG 
node represents the state of the calling task while the 
accept body executes. Similarly, a single communica- 
tion RTFG node is created for each hyperedge that 
models an entry call to an accept statement without 
a body and two communication nodes are created for 
each hyperedge that models an entry call to an accept 
statement with a body. 

Figure 4 gives an example. The sync graph in Fig- 
ure 4(b) models the communication structure of the 
simple program in Figure 4(a). The hyperedge repre- 
senting the call to entry E, made by task Tl, is shown 
as a dashed line, and the wavy line represents the sub- 
graph corresponding to the body of the accept state- 
ment in T2. The RTFG derived from this sync graph 
is shown in Figure 4(c). The matching sync graph and 
RTFG nodes are labeled with the same numbers. The 
node labeled 1 ~ in the RTFG represents the second 
local node created for the sync graph node 1. 

3.3. Mappings between the information 
computed by the two approaches 

The algorithm for constructing RTFGs from sync 
graphs provides us with a mapping ~u : Nsync --~ 2 N, 
where N~ync is the set of nodes in the sync graph and 
N is the set of nodes in the corresponding RTFG. 
We define a function #-1 : 2 ~ _~ 2N,~c by setting 
/,-1(S) = {~ I #('~) n S # 0}. 

Using these mappings, we can "translate" the MHP 
information from the RTFG to the corresponding sync 
graph by mapping the MHP set computed for a node 
n in the RTFG to the corresponding node in the 
sync graph. In cases where a sync graph node ~ has 
two corresponding RTFG nodes nl and n2, MHP(~) 
is defined as the union of the two translated sets 
MHP(nl) and MHP(n2). In general, MHP(~z) = 
U,~,(~) #-1 (MHP(n)). 

The result is that each node in the sync graph has 
a CHT set and an MHP set associated with it. To 
compare these sets, we must take the facts that, 
for each node ~ in the sync graph, ~ ~ MHP(~) 
and fi ~ CHT(~) into account. For any function 
A: N~ync ~ 2 N'y~c, let A+(fi) -- A(fi) U {~}. Then 
CHT(fi) computed by non-concurrency analysis cor- 
responds to MHP+(~) computed by the MHP algo- 
rithm, where the bar indicates the complement. Thus, 
to compare the precision of the two techniques, we 
compare the sets CHT(~z) and MHP+(~). One tech- 
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task body T1 is 
begin 

T2.E; 
end TI; 

task body T2 is 
begin 

accept E do 

and'E; 
end T2; 

3 

4 

j 

14 

21 

(a) Code (b) Sync graph (c) RTFG 

Figure 4: Example of RTFG construction 

nique is more precise than the other if, for each node 
fi, the set computed by the former contains the set 
computed by the latter. 

seems to indicate that  the gain in precision may not 
warrant this added complexity. We plan to investigate 
these trade-offs in our future work. 

3.4. Theoret ical  comparison 
We compared the theoretical precision of informa- 
tion computed by the MHP algorithm and non- 
concurrency analysis. Specifically, we compared the 
MHP algorithm to each of the four refinements used 
by non-concurrency analysis, a t tempting to prove or 
disprove that  our algorithm is more precise than this 
refinement. We say that  the MHP algorithm subsumes 
a refinement if, given that  the MHP information was 
at least as precise as the CHT information before the 
refinement (i.e., tha t  CHT(~) C_ MHP+(~) for all ~), 
tha t  is still the case after the refinement. Due to space 
limitations, we briefly state the results of this compar- 
ison without proof. 

We were able to prove that  the MHP algorithm sub- 
sumes the pinning and B4 refinements of the non- 
concurrency approach. On the other hand, we found 
counterexamples showing that  the MHP algorithm 
does not subsume the critical section and RPC refine- 
ments. The MHP algorithm can be improved to take 
advantage of critical section regions 1. However, the 
resulting algorithm is more complicated than the one 
presented in this paper  and its worst-case complexity 
is O(IN[5). Our initial evaluation of the performance 
of the MHP algorithm, discussed in the next section, 

lIn the TFG model the subgraph corresponding to the RPC 
structure is just a special case of the critical section structure. 
Therefore, this extension of the MHP algorithm also takes ad- 
vantage of the information about remote procedure calls. 

4. E X P E R I M E N T A L  RESULTS 
We measure the precision of the information computed 
by a technique in terms of the set of pairs of nodes in 
the sync graph that  this technique determined cannot 
happen in parallel. We write PNCA for the set of CHT 
pairs found by non-concurrency analysis and PMHP for 
the set of CHT pairs found by the MHP algorithm. 

Stephen Masticola graciously provided us with his im- 
plementation of non-concurrency analysis, writ ten in 
C. We used this for our experiments, together with our 
own implementation of the MHP algorithm, writ ten in 
Java. In addition, we wrote a reachability tool to find 
all reachable program states of the RTFG model, also 
in Java. Although the reachability tool runs out of 
memory for some of our test programs, in the cases 
where it ran successfully, it determined the "ideal" set 
of pairs of nodes that  can happen in parallel. Assum- 
ing that  no data  sharing and no unreachable code ex- 
ists in the program, this set is equal MHPrerf. Given 
this set, we computed CHTperf, the "ideal" set of pairs 
of nodes that  cannot happen together.  We ran the 
non-concurrency tool on a Sun Sparc 10 with 32 MB 
of memory, and the MHP tool and the reachability 
tool on an AlphaStation 200 with 128 MB of memory. 
(The non-concurrency tool would not compile on the 
AlphaStation, which is our primary platform.) 

We used a sample of 159 Ada programs, including 
the suite of 138 programs Masticola and P~yder used 
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~ I CHTpe~! 
I CHTper] I \PIvcAI 

699 72373 98103 25990 260 
55 334 361 362 28 1 
88 1039 1155 1157 118 2 

194 668 815 177 30 
232 800 1025 261 36 

97 953 1282 337 8 
44 345 355 356 11 1 

268 15395 17310 17312 1917 2 
56 373 423 427 54 4 

I CHTp~rf NCA MHP reach.  
\PMHPl I t ime  ~ t i m e  I t i m e  I 

28 1 
118 2 

11 1 

1917 2 
54 

277.54 1860.41 
2.81 0.32 3.14 

10.67 1.04 140.90 
57.62 26.30 
90.15 48.04 
35.16 1.37 

0.89 0.30 0.35 
26.58 45.14 19.54 

2.12 0.45 1.72 

Table 1: Data for the 9 cases where non-concurrency analysis found some pairs that the MHP algorithm did not 

in their experiments with non-concurrency analysis. 
Most of the remaining programs are examples drawn 
from the concurrency literature, such as the dining 
philosophers and the gas station. Of the 159 pro- 
grams, 25 did not have loops. The sizes of the pro- 
grams range from only a few lines of code to several 
thousand lines. This program sample contains sev- 
eral groups of programs representing different sizes 
and variations of the same basic example and actu- 
ally contains approximately 90 significantly different 
examples. It is, of course, unlikely that this sample of 
relatively small programs is representative of concur- 
rent Ada programs in general, but our results provide 
some initial data indicating that the MHP algorithm 
is very often more precise than non-concurrency anal- 
ysis. 

In the following discussion of the results, we sepa- 
rate the program sample into three subsets, which 
we discuss separately. First, we consider the 25 pro- 
grams without loops. For all of these programs, which 
come from the Masticola-Ryder collection, the MHP 
algorithm found all the CHT pairs found by non- 
concurrency analysis. Second, we describe our results 
for the 9 programs in which non-concurrency analy- 
sis detected some CHT pairs not found by our MHP 
algorithm. Finally, we describe the results for the 
remaining 125 programs, those with loops for which 
the MHP algorithm found all the CHT pairs found 
by non-concurrency analysis. The focus of our dis- 
cussion is on the detection of CHT pairs by the two 
approaches. We do comment briefly on the execu- 
tion times for non-concurrency analysis and our MHP 
approach, but these times do not have much signifi- 
cance. Neither we nor Masticola and Ryder aimed to 
maximize the speed of the implementations. In ad- 
dition, non-concurrency analysis was implemented in 
C, a compiled language, and the MHP algorithm was 
implemented in Java, an interpreted language. Fi- 
nally, as mentioned above, the tools were run on differ- 
ent machines with different operating systems, clock 
speeds, and memory sizes. Thus, we view the com- 
parison of the precision of the two approaches as the 
primary goal of this experiment. 
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4.1. Programs without loops 
We realize that the programs without loops are not 
likely to be realistic examples, and so we consider 
them separately from other programs. The reachabil- 
ity analysis was completed successfully for all but one 
of the 25 programs without loops, and in all such cases 
the MHP algorithm found all pairs found by reacha- 
bility (so PMHP -~ CHTperf for all RTFG nodes). In 
8 cases, the MHP algorithm found a small number 
of pairs that non-concurrency analysis did not, with 
the average ratio IPMHPI/IPNcAIOf 1.01. The average 
timing ratio (NCA time)/(MHP time) was 1.82, with 
most running times for both tools well under a second. 

4 .2 . '  P r o g r a m s  w h e r e  n o n - c o n c u r r e n c y  
a n a l y s i s  f o u n d  p a i r s  t h a t  t h e  M H P  
a l g o r i t h m  d i d  n o t  

Non-concurrency analysis found some CHT pairs not 
found by the MHP algorithm in 9 of the 159 cases we 
ran. The complete data for these cases are presented 
in Table 1. The first column of this table shows the 
program size in terms of the number of nodes in the 
sync graph. The next three columns give the num- 
ber of pairs of nodes that cannot happen together, as 
found by the three different methods. The fifth col- 
umn gives the number of pairs found by the MHP 
algorithm that were not found by non-concurrency 
analysis, while the sixth column gives the number of 
pairs found by non-concurrency analysis but not by 
the MHP algorithm. The seventh and eighth columns 
give, for the 5 cases that our reachability tool could 
handle, the number of nodes in CHTperl that were 
not found by non-concurrency analysis and by the 
MHP algorithm, respectively. Finally, the last three 
columns show the time used by each of the analysis 
methods; times are in seconds and include both user 
and system time. An interesting observation is that, 
for the 5 cases in which our reachability tool could 
determine CHTp~rl, although neither the MHP algo- 
rithm nor non-concurrency analysis found all possible 
pairs, the combination of the two approaches was as 
precise as reachability. 



Figure 5: Precision comparison for the 9 cases where non-concurrency analysis found some pairs tha t  the MHP 
algorithm did not 

Figure 5 compares the precision of the two approaches 
by comparing the total  number of CHT pairs found 
by each of them to the number of CHT pairs in the 
union PNCA t2 PMHP. As just noted, this union is 
equal to CHTperI in the 5 cases tha t  our teachability 
tool could handle. Note that  in all cases the MHP 
algorithm outperformed non-concurrency analysis in 
terms of the total  number of CHT pairs found. 

4.3.  T h e  o t h e r  125 p r o g r a m s  

The remaining 125 programs are those that  have loops 
and where the MHP algorithm found all CHT pairs 
tha t  non-concurrency analysis did. Of these, the 
reachability tool ran in 102 cases. For all of these 102 
cases in which we were able to determine CHTp~rf, the 
MHP algorithm found all the pairs in CHTperf. Non- 
concurrency analysis found all the pairs in CHTp~r I 
in only 22 cases. 

Of these 125 programs, there were 101 cases in 
which the MHP algorithm found some pairs tha t  
were not found by non-concurrency analysis (in the 
remaining 24 cases, the MHP algorithm and non- 
concurrency analysis found exactly the same pairs). 
Figure 6 plots the ratio IPMHP]/IPNcAI against the 
program size, measured as the number of nodes 
in the sync graph. The average precision ratio 
IPMHPI/IPNcAI W a s  1.41 and the average timing ra- 
tio (NCA time)/(MHP time) was 2.94. The running 
times of both tools were under 4 minutes for all pro- 
grams. 

4.4. T h e  n u m b e r  of  R T F G  n o d e s  

In addition to comparing the performance of the two 
approaches, we examined the question of potential  
quadratic blow-up in the number of RTFG nodes. We 
plot the number of sync graph nodes against the num- 
ber of RTFG nodes in Figure 7. The figure also shows 
the least-squares regression line, which has a slope of 
1.84. The correlation coefficient is .984. This sam- 
ple of programs thus offers strong support  for the hy- 
pothesis that ,  in practice, the number of RTFG nodes 
depends linearly on the number of sync graph nodes. 
Since the size of the sync graph is linear in the number 
of program statements, the same appears to be true 
for RTFGs. 

5. C O N C L U S I O N  

• Information about  which pairs of s tatements may ex- 
ecute in parallel has important  applications in opti- 
mization, detection of anomalies such as race condi- 
tions, and improving the accuracy of da ta  flow anal- 
ysis. Efficient and precise algorithms for computing 
this information are therefore of considerable value. 
In this paper, we have described a da ta  flow method 
for computing a conservative approximation of the set 
of pairs of statements in a concurrent program that  
may execute in parallel. Theoretically, neither non- 
concurrency analysis nor our MHP algorithm has a 
clear advantage in precision. However, based on our 
experimental data, the MHP algorithm often is able to 
determine the pairs of statements tha t  may execute in 
parallel more precisely than non-concurrency analysis. 
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Figure 6: The precision ratio [PMHPI/IPNcAI for the 125 programs with loops where the MHP algorithm found 
all CHT pairs found by non-concurrency analysis 
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Figure 7: Least-squares fit of the number of RTFG 
nodes to the number of sync graph nodes 

As a part of our experiments, we compared the pre- 
cision of the MHP algorithm with the precision of a 
technique based on the exhaustive exploration of the 
program state space. While this reachability tech- 
nique, being exponential in the program size, is not 
practical in general, with its help we were able to com- 
pute "perfectly" precise information for many exam- 
ples. For these examples, the information computed 
by the MHP algorithm was remarkably close to that 
of the reachability technique. 

At present, the MHP algorithm is being used as part 
of the FLAVERS tool [3, 11] for data flow analysis of 
concurrent programs. 

In the future, we plan to extend the MHP algorithm 
to apply to programs containing procedure and func- 
tion calls without using inlining. Even in its current 
form, the MHP algorithm can be easily used to sup- 
port a limited form of interprocedural MHP analysis, 
with the restriction that procedures may not contain 
task entry calls. Under this restriction, the MHP sets 
computed for procedure call nodes are sufficient to de- 
termine the MHP sets for all nodes in this procedure. 
Thus, if n is a call node for procedure P,  then any node 
in the body of P may happen in parallel with any node 
in MHP(n), computed the MHP algorithm. Special 
care must be taken when there is a possibility that 
a procedure may be called by more than one task, in 
which case executions of multiple instances of this pro- 
cedure may overlap in time. In this case, unlike task 
nodes, the MHP sets of nodes from the procedure will 
contain other nodes from the same procedure. To de- 
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termine whether this might happen, we have to check 
whether any of the call nodes to P is in the MHP set 
of any of the other call nodes to this procedure (this 
has to be done recursively for nested procedure calls), 
in which case the MHP sets of all nodes in P must 
contain all nodes in P. 

In the case of procedures containing entry calls, we 
plan to use a context-sensitive approach, extending 
the TFG model to include procedure call and return 
edges, similar to the approach of [6], and modifying 
the MHP algorithm accordingly. 

In addition, we plan to implement an algorithm that 
improves the precision of the MHP algorithm by tak- 
ing advantage of information about regions in the pro- 
gram that can only execute in a mutually exclusive 
fashion, in a way similar to the critical section analysis 
refinement of non-concurrency analysis. Then we plan 
to carry out a careful comparison of the performance 
of this improved algorithm with that of the algorithm 
presented in this paper and of the non-concurrency 
approach. The initial hypothesis, which seems to be 
supported by this work, is that in practice the im- 
proved algorithm will be only marginally more precise 
than the current algorithm. We hope to perform these 
experiments for a larger program sample with more re- 
alistic programs and to evaluate the trade-ofis of pre- 
cision and cost added by the improved algorithm. 

Finally, we are working on an MHP algorithm for con- 
current Java programs. The differences in the way 
communications between threads of control are real- 
ized in Ada and Java imply different program models. 
While we are able to use the same general principle 
for Java as the one we introduce in this paper for Ada, 
there are a number of significant changes in the data 
flow equations used by the algorithm for Java. It will 
be interesting to see if the practical precision of the 
MHP algorithm depends on the differences in commu- 
nication mechanisms of the different concurrent lan- 
guages. 

Acknowledgments 
We thank Stephen Masticola and Barbara Ryder for 
graciously providing us with their non-concurrency 
analysis tool and a set of sample Ada programs that 
we used in our experiments. We are also grateful to 
Lori Clarke for helpful suggestions on this work. 

R e f e r e n c e s  

[1] D. Callahan and J. Subhlok. Static analysis of 
low-level synchronization. In Proceedings of the 
SIGPLAN/SIGOPS Workshop on Parallel and 
Distributed Debugging, pages 100-111, 1988. 

[2] E. Duesterwald and M. L. Sofia. Concurrency 
analysis in the presence of procedures using a 

data flow framework. In Proceedings of the ACM 
SIGSOFT Fourth Workshop on Software Testing, 
Analysis, and Verification, pages 36-48, Victoria, 
B.C., October 1991. 

[3] M. Dwyer. Data Flow Analysis for Verifying Cor- 
rectness Properties of Concurrent Programs. PhD 
thesis, University of Massachussetts, Amherst, 
1995. 

[4] M. Dwyer and L. Clarke. Data flow analysis for 
verifying properties of concurrent programs. In 
ACM SIGSOFT'94 Software Engineering Notes, 
Proceedings of the Second ACM SIGSOFT Sym- 
posium on Foundations of Software Engineering, 
pages 62-75, December 1994. 

[5] M. Hecht. Flow Analysis of Computer Programs. 
North-Holland, New York~ 1977. 

[6] S. Horwitz, T. Reps, and M. Sagiv. Demand in- 
terprocedural dataflow analysis. In Proceedings 
of the Third ACM SIGSOFT Symposium on the 
Foundations of Software Engineering, pages 104- 
115, Oct. 1995. 

[7] T. J. Marlowe and B. G. Ryder. Properties 
of data flow frameworks. Acta Informatica, 
28(2):121-163, 1990. 

[8] S. Masticola and B. Ryder. Non-concurrency 
analysis. In Proceedings of the Twelfth of Sympo- 
sium on Principles and Practices of Parallel Pro- 
gramming, San Diego, CA, May 1993. 

[9] S. P. Masticola. Static detection of deadlocks in 
polynomial time. PhD thesis, Rutgers University, 
1993. 

[10] S. P. Masticola, T. J. Marlowe, and B. G. Ryder. 
Lattice frameworks for multisource and bidirec- 
tional data flow problems. ACM Transactions on 
Programming Languages and Systems, 17(5):777- 
803, September 1995. 

[11] G. N. Naumovich, L. A. Clarke, L. J. Osterweil, 
and M. B. Dwyer. Verification of concurrent soft- 
ware with FLAVERS. In Proceedings of the 19th 
International Conference on Software Engineer- 
ing, pages 594-595, May 1997. 

[12] R. N. Taylor. Complexity of analyzing the syn- 
chronization structure of concurrent programs. 
Acta Informatica, 19:57-84, 1983. 

34 


