
Property Specification Patterns for Finite-State Verification*

Matthew B. Dwyer George S. Avrunin
Kansas State University University of Massachusetts

Department of Computing Department of Mathematics

and Information Sciences and Statistics

234 Nichols Hall Box 34515

Manhattan, KS 66506-2302 Amherst, MA 01003-4515

dwyerQcis. ksu.edu avrunin@math.umass.edu

James C. Corbett
University of Hawai’i

Department of Information

and Computer Science

Honolulu, HI 96822

corbettQhawaii.edu

ABSTRACT

Finite-state verification (e.g., model checking)
provides a powerful means to detect errors that
are often subtle and difficult to reproduce. Nev-
ertheless, the transition of this technology from
research to practice has been slow. While there
are a number of potential causes for reluctance
in adopting such formal methods in practice, we
believe that a primary cause rests with the fact
that practitioners are unfamiliar with specifica-
tion processes, notations, and strategies. Recent
years have seen growing success in leveraging ex-
perience with design and coding patterns. We
propose a pattern-based approach to the presen-
tation, codification and reuse of property speci-
fications for finite-state verification.

Keywords

Patterns, fin&state verification, formal specification,
concurrent systems

1 INTRODUCTION

Formal specification and verification have been active
areas of research for over two decades. While formal
approaches offer practitioners some significant advan-
tages over the current state-of-the-practice, they have

‘This work was partially supported by NSF grants CCR-
9308067, CCR9407182, CCR9703094, and CCR-9708184.

Pumission to make digimblwd copy of all or pan of this work for petsonttl or
clasmom use is pntcd without fee provided that copies are not made or
distributed for profit or co-ciai advantage, the copyright notice. the tide of the
publication and its dare appear. and notice is given that copying is by permission of
ACM. Inc. To copy otherwise. to republish. to post on - nr to rcdislributc to
lists, requires prior specific permission and/or a fee.
i=MSP 98 Cle-r Beach. FL USA
8 1998 ACM O-89791-954-8/98/0003 3.50

not been widely adopted. In addition to a lack of defini-
tive evidence in support of the cost-saving benefits of
formal methods, a number of more pragmatic barriers
to adoption of formal methods have been identified [26]
including the lack of good tool support, expertise in or-
ganizations, good training materials, and process sup
port for formal methods.

We believe that the recent availability of tool support
for finite-state verification provides an opportunity to
overcome some of these barriers. Finite-state verifica-
tion refers to a set of techniques for proving properties
of finite-state models of computer systems. Properties
are typically specified with temporal lo&s or regular
expressions, while systems are specified as finite-state
transition systems of some kind. Tool support is avail-
able for a variety of verification techniques including,
for example, techniques based on model checking [23],
bisimulation [8], language containment [18], flow anal-
ysis [15], and inequality necessary conditions [3]. In
contrast to mechanical theorem proving, which often
requires guidance by an expert, most finite-state verifi-
cation techniques can be fully automated, thus relieving
the user of the need to understand the inner workings
of the verification process.

Despite the automation, users of finite-state verification
tools still must be able to specify the system require-
ments in the specification language of the tool. For
example, a user who wants to verify that “Between
process A updating a value and process B reading the
value, the value must be flushed from process A’s cache”
using a linear temporal logic (LTL) [21] model checker
would have to translate this prose into the formula:

0 ((UpdateA A OReadB) + -ReadB U FlushA)

Although the property and the formula are relatively
simple, writing the LTL formula requires knowledge of
several standard LTL idioms. For example, the prop
erty is (implicitly) a safety property, thus the formula
begins with the 0 operator. To say event & always fol-

lows event P, we would usually write a specification of
the form P + OQ. In our case, however, we want to
constrain the intermediate events, so we use the until
operator U instead of 0. Since the FlushA need not
occur unless the ReadB does, we prohibit ReadB until
FlushA only if a ReadB does eventually occur.

system and Section 8 concludes.

2 DESIGN AND OTHER PATTERNS

Even if they do not make use of all of the features and
expressive power of the specification formalisms associ-
ated with formal verification techniques, users of those
techniques do need to be expert enough to accurately
express the requirements they wish to verify in the ap
propriate specification formalisms. We contend that
acquiring this level of expertise represents a substantial
obstacle to the adoption of automated finite-state veri-
fication techniques and that providing an effective way
for practitioners to draw on a large experience base can
greatly reduce this obstacle.

We propose to capture this experience base and enable
the transfer of that experience between practitioners
by way of a specijkation pattern system. Patterns were
originally developed to capture recurring solutions to
design and coding problems [17]. Design and coding
languages are rich expressive formalisms that provide
for a wide-variety of solutions to a given problem, but
the full range of possible solutions is is usually much
wider than is necessary or useful. Patterns are success-
ful because practitioners want to solve naturally occur-
ring domain problems. They don’t need the full ex-
pressiveness of the languages they use and would often
prefer guidance on how best to use language features
to solve a specific problem. The same appears true in
formal specification languages for concurrent and reac-
tive systems. While there are a number of very ex-
pressive formalisms, such as CTL* and the modal mu-
calculus, the specifications that are documented in the
literature, for example in [l, 6,12,14,24,27], appear rel-
atively simple. They can be expressed fairly simply
in existing specification formalisms and don’t require
advanced, complex features. Thus, we believe a collec-
tion of simple patterns can be defined to assist practi-
tioners in mapping descriptions of system behavior into
their formalismof choice, and that this may improve the
transition of these formal methods to practice.

Design patterns were introduced [17] as a means of
leveraging the experience of expert system designers.
Patterns are intended to capture not only a description
of recurring solutions to software design problems, but
also the requirements addressed by the solution, the
means by which the requirements are satisfied, and ex-
amples of the solution. All of this information should be
described in a form that can be understood by practi-
tioners so that they can identify similar requirements
in their systems, select patterns that address those
requirements, and instantiate solutions that embody
those patterns. It is important to stress that not all
descriptions of artifacts are patterns. Most design spec-
ifications and documents do capture a solution to a do-
main problem, describe requirements and provide an
example solution, yet, they are not patterns. Patterns
seek to generalize experience across multiple specific
problems. Care must be taken, however, to keep pat-
terns from being too abstract or removed from practice.
A well-defined design pattern has the following charac-
teristics [2]:

In the following section we describe the idea of design
patterns and how that idea has been extended to soft-
ware development domains other than design. Section 3
discusses the application of patterns to the description
of specifications and lays out our terminology and for-
mat for describing specification patterns. Section 4 de-
scribes an initial specification pattern system for finite-
state verification. We then describe, in Section 6, some
preliminary experiences using patterns to teach devel-
opers to write property specifications. Section 7 dis-
cusses ongoing and future development of the pattern

It Solves a Specific Problem, or class of problems,
rather than being an abstract principle or strategy.

It is a Proven Concept that has been demonstrated
to be effective in practice.

The Solution isn’t Obvious and is not a direct ap
plication of basic principles.

It Describes Relationships between solution com-
ponents rather than isolated components of a solu-
tion.

It is Generative in that it demonstrates how to con-
struct a solution.

An active community has grown up around the idea of
design patterns, as evidenced by the formation of nu-
merous workshops (e.g., [lo]) and recently the notion of
patterns has been spreading to other software related
endeavors. For example, the idea of patterns has been
applied to describe data models [19], system level analy-
sis and modeling information [16], software process and
organizational structures [5], and curricula for educat-
ing software developers [22]. It is our intention in this
paper to adapt and apply the notion of patterns to the
description of specification of properties for finite-state
verification.

8

Absence

Intent
TO describe a portion of a system’s execution that is free of certain events or states. Also known a.s Never.

Example Mappings

CTL P is false:
Globally AG(+)
Before R A[-P U(R V AG(-R))]
After Q AG(Q + AG(-P))
Between Q and R AG(Q + A[-P U(R V AG(-R))])
After Q until R AG(Q + -E[-R U(P A -R)])

LTL P is false:
Globally q (-,P)
Before R OR+-PUR
After Q O(Q + 0(-p))
Between Q and R q ((Q A oOR) + (1P A o(-IP U R)))
After Q until R q (Q + (‘PA 0(-P U(R v 0-P))))

Quantified Regular Expressions Let C be the set of all events, let [-P, Q, R] denote the expression that
matches any symbol in C except P, Q, and R, and let e? denote zero or one instance of expression e.
Event P does not occur:
Globally [-PI*
Before R [-R]*I[-P, R]*RC*
After Q [-Ql* (QWI’)?
Between Q and R ([-Q]*Q[-P, R]*R)*[-Q]*(Q[-RI*)?
After Q until R (t-Ql*Q[-P, Rl*R)*[-Ql*(Q[-P, RI*)?

Examples and Known Uses
The most common example is mutual exclusion. In a state-based model, the scope would be global and P
would be a state formula that is true if more than one process is in its critical section. For an event-based
model, the scope would be a segment of the execution in which some process is in its critical section (i.e.,
between an enter section event and a leave section event), and P would be the event that some other process
enters its critical section.

Relationships
This pattern is the dual of the Existence pattern. In fact, in many specification formalisms negation and
explicit queries for existence will be used to formulate an instance of the Absence pattern, as seen in the
examples above.

Figure 1: Absence Pattern

3 WHAT IS A SPECIFICATION PAT-
TERN?

A property specification pattern is a generalized de-
scription of a commonly occurring requirement on
the permissible state/event sequences in a finite-state
model of a system. A property specification pattern
describes the essential structure of some aspect of a
system’s behavior and provides expressions of this be-
havior in a range of common formalisms.

Example specification patterns are given in Figures 1
and 2 (we use a variant of the “gang-of-four” pattern

format [17]). A pattern comprises a name or names, a
precise statement of the pattern’s intent (i.e., the struc-
ture of the behavior described), mappings into common
specification formalisms, examples of known uses, and
relationships to other patterns.

Some specification formalisms (e.g., quantified regular
expressions (QRE) [25]) are event-based, while others
(e.g., various temporal logics, such as LTL and compu-
tation tree logic (CTL) [7]) are state-based. In our pat-
terns, capital letters (e.g., P, Q, R, S) stand for events
or disjunctions of events in event-based formalisms and
stand for state formulas in state-based formalisms.

9

Response

Intent
To describe causeeffect relationships between a pair of events/states. An occurrence of the first, the cause,
must be followed by an occurrence of the second, the effect, within a defined portion of a system’s execution.
Also known as Follows and Leads-to.

Example Mappings
In these mappings P is the cause and S is the effect.

CTL S responds to P:

Globally AG(P -+ AF(S))
Before R A[(P + A[-R U((S A ‘R) v AG(-R))]) U(R V AG(yR))]
After Q AG(Q + AG(P + AF(S)))
Between Q and R AG(Q + A[(P + A[-R U((S A -R) V AG(-R))]) U(R V AG(lR))])
After Q until R AG(Q + -E[-R U -,(P + A[?R U Sj) A -RI)

LTL S responds to P:

Globally q (P + OS)
Before R (P -+ (‘R U(S A -R))) 24(R V 0-R)
After Q q (Q -+ o(P + OS))
Between Q and R O((Q A oOR) + (P + (7R U(S A -R))) 2.4 R)
After Q until R O(Q + ((P + (‘R U(S A -R))) 24 R) V O(P + (1R U(S A -R))))

Quantified Regular Expressions Let C be the set of all events, let [-PI denote the expression that matches
any symbol in C except P, and let e? denote zero or one instance of expression e.
S responds to P:

Globally [-P]‘(P[-s]*s[-PI’)’
Before R [-R]*I[-P, R]*(P[-S, R]*S[-P, R]*)*RC*
After Q [-Ql*(Q[-pl*(P[-~*S[-PI*)*)’
Between Q and R [-&1*(&[-P, R]*(P[-S, R]*S[-P, R]*)*R[-Q]*)*

(Q[‘R]*)?
After Q until R [-Q]*(Q[-P, R]*(P[-S, RI*+P, Rl*)*R[-Ql*)*

(Q[-P, R]*(P[-S, R]*S[-P, RI*)*)? t

Examples and Known Uses
Response properties occur quite commonly in specifications of concurrent systems. Perhaps the most com-
mon example is in describing a requirement that a resource must be granted after it is requested.

Note that for the state-based formulations S and P may occur in the same state; thus, it is possible for cause
and effect states to coincide.

Relationships
Note that a Response property is a sort of converse of a Precedence property. Precedence says that some
cause precedes each effect, and Response says that some effect follows each cause. They are not equivalent,
because a Response allows effects to occur without causes (Precedence similarly allows causes to occur
without subsequent effects).

Note that this pattern does not require that each occurrence of a cause will have its own occurrence of an

Figure 2: Response Pattern

Each pattern has a scope, which is the extent of the state/event), between (any part of the execution from
program execution over which the pattern must hold. one given state/event to another given state/event) and
There are five basic kinds of scopes: global (the en- after-until (like between but the designated part of the
tire program execution), before (the execution up to a execution continues even if the second state/event does
given state/event), after (the execution after a given not occur). The scope is determined by specifying a

10

Global being in some sense dual to the Absence property stat-
ing that a proposition holds at no state in the scope.

Before Q
I

In event-based formalisms, although it is easy to ;e-
quire that only certain events occur within a scope, the
property that a proposition holds throughout the scope

After Q would probably be expressed in terms of the appropri-
ate occurrence of an event indicating that the proposi-
tion has become true and the absence of an event in-

Between Q and R
I dicating that it has become false, which does not bear

a simple relation to the Absence pattern. Similarly, we

After Q until R note that some formalisms can express conditions in-
volving infinite executions, while others are limited to
finite sequences of states or events. Although we ex-

State Sequence 1 ‘Q R Q QRQ pect that, in practice, almost all of the properties to be
specified can be expressed in almost all of the commonly
used formalisms, the pattern system should point out

Figure 3: Pattern Scopes these differences to the user.

starting and an ending state/event for the pattern.

For state-delimited scopes, the interval in which the
property is evaluated is closed at the left and open at
the right end. Thus, the scope consists of all states
beginning with the starting state and up to but not
including the ending state. We chose closed-left open-
right scopes because they are relatively easy to encode
in specifications and they work for the real property
specifications we studied. It is possible, however, to de-
fine scopes that are open-left and closed-right as well;
we discuss this in Section 7. In event-based formalisms
the underlying model does not allow two events to co-
incide, thus event-delimited scopes are open at both
ends. v

4 A SYSTEM OF SPECIFICATION
PATTERNS

We propose to develop a system of property specifi-
cation patterns for finite-state verification tools. The
pattern system is a set of patterns organized into one
or more hierarchies, with connections between related
patterns to facilitate browsing. A user would search
for the appropriate pattern to match the requirement
being specified, use the mapping section to obtain the
essential structure of the pattern in the formalism used
by a,particular tool, and then instantiate that pattern
by plugging in the state formulas or events specific to
the requirement.

Figure 3 illustrates the portions of an execution that are We believe the most useful way to organize the pat-
designated by the different kinds of scopes. We note terns will be in a hierarchy based on their semantics.
that a scope itself should be interpreted as optional; For example, some patterns require states/events to oc-
if the scope delimiters are not present in an execution cur or not occur (e.g., the Absence pattern), while other
then the specification will be true. patterns constrain the order of states/events [e.g., the

Scope operators are not present in most specification
formalisms (interval logics are an exception). Neverthe-
less, our experience strongly indicates that most infor-
mal requirements are specified as properties of program
executions or segments of program executions. Thus a
pattern system for properties should mirror this view
to enhance usability.

We note that the various specification formalisms have
different semantics and expressive power, and that a
property that can be expressed easily in one formalism
may be unnatural, or even impossible to capture pre-
cisely, in a different formalism. For instance, in state-
based formalisms such as LTL or CTL, it is reasonable
to specify that a certain proposition hold throughout a
scope (the Universality pattern), and to regard this as

Response pattern). One organization for our pattern
system is the hierarchy illustrated in Figure 4. This
hierarchy distinguishes properties that deal with the
occurrence and ordering of states/events during system
execution. It also provides separate patterns for com-
pound properties that are built up from combinations
of more basic patterns. Since different users may think
about patterns in different ways, patterns could appear
under several categories. For example, the Absence pat-
tern with a non-global scope, in Figure 1, could be seen
to constrain the order of states/events and could be
put under ordering patterns in Figure 4. Patterns can
also be organized into hierarchies based on their syn-
tactic structure. This would allow someone who can
specify a property in one formalism to find the corre-
sponding pattern quickly, from which he or she could
determine how to specify the property in another for-

11

Universality Existence Existence

Figure 4: A Pattern Hierarchy

malism. (Note that the hierarchy shown here does not
explicitly address fairness issues, which will be included
in the complete pattern system.)

4.1 Discovering Patterns

In defining a specification formalism, one attempts to
give a small set of independent concepts from which
a large class of interesting specifications can be con-
structed. With the collection of specification patterns,
however, we are neither trying to give a smallest set
that can generate the useful specifications nor a com-
plete listing of specifications. Patterns are in the system
because they appear frequently as property specifica-
tions.

We have had a difficult time finding property specifica-
tions to study. This is most likely due to the fact that
property specifications have not been adopted by a large
segment of practicing developers and, consequently, a
large body of specifications does not exist. For this rea-
son we have been forced to draw from our own experi-
ences writing specifications for finite-state verification
and to use specifications that appear in the literature
as examples of practical property specifications.

For example, in Chamillard’s experimental study of the
performance of finite-state verification methods [S] he
writes specifications for fourteen different properties in
CTL, QREs, and never claims (automata to which LTL
formula are converted by SPIN). While the systems he
studies and the meanings of the properties are very dif-
ferent there is significant structural similarity among
the specifications in terms of patterns of temporal and
logical operators, for example. Study of the structure of
specifications of graphical user interface software [14],
an automobile control system, and a home security sys-
tem also revealed these structural similarities.

With these studies as a backdrop, we generalized from
the specific patterns of operators that appeared in real
specifications to arrive at our property specification
patterns. Each property specification pattern was then

integrated into the pattern system by expressing its
mappings in a consistent style. We also assume that
if a pattern appears in practice for one type of scope
then it may occur in another context for another type
of scope, so we provide mappings for all pairs of pat-
terns and scopes.

In our experience, only a small fraction of the possible
constraints that can be specified using logics or regular
expressions commonly occur in practice and this carries
over to the small focused set of patterns. We expect
that this set of patterns will be expanded as developers
encounter property specifications of real systems that
do not easily map onto the existing patterns.

4.2 The Patterns

Space limitations prohibit description of the patterns in
full detail; for that we have set up a web-site [13]. The
full patterns will contain additional examples, explana-
tion of relationships among the patterns, and mappings
in other formalisms. Here we give the intent of some
common patterns.

Occurrence Patterns include

Absence A given state/event does not occur within
a scope. This pattern is also known as Never.
Figure 1 gives the key elements of the pattern.

Existence A given state/event must occur within a
scope. This pattern is also known as F’uture and
Eventuality.

Bounded Existence A given state/event must oc-
cur k times within a scope. Variants of this pattern
specify at least k occurrences and at most k occur-
rences of a state/event.

Universality A given state/event occurs throughout
a scope. This pattern is also known as Globally,
Always and Henceforth.

Ordering Patterns include

12

Precedence A state/event P must always be pre
ceded by a state/event Q within a scope.

Response A state/event P must always be followed
by a state/event Q within a scope. This pattern is
also known as Follows and Leads-to. This pat-
tern is a a mixture of Existence and Precedence,
and expresses a causal relationship between two
subject patterns. Figure 2 gives the key elements
of the pattern.

Compound Patterns include

Chain Precedence A sequence of states/events
PI,... , P,, must always be preceded by a sequence
of states/events Qr , . . . , Qm. This pattern is a gen-
eralization of the Precedence pattern.

Chain Response A sequence of states/events
PI,... , P,, must always be followed by a sequence
of states/events Qr , . . . , Qm. This pattern is a gen-
eralization the Response pattern. It can be used
to express bounded FIFO relationships.

Boolean Combinations Most of the patterns de
limit scopes and describe inter-scope properties in
terms of individual events/states. There are cases
where we want to generalize the patterns to al-
low for sets of states/events to describe scopes and
properties. In some cases this is straightforward
and disjunctions or conjunctions of state/event de-
scriptions can be substituted into patterns; in other
cases this yields the incorrect specification. These
patterns outline how boolean combinations can be
applied in different cases.

5 RELATED WORK

There have been some attempts at describing tax-
onomies for property specifications.

The most popular and long-lived of these distinguishes
safety and liveness properties [20]. While this provides
a very high-level intuitive understanding of classes of
specifications, i.e., “nothing bad will ever happen” vs.
“something good will eventually happen” it is much too
coarse to be of practical use in constructing particular
specifications.

Manna and Pnueli [21] describe a finer taxonomy baaed
on the syntactic structure of LTL formulae. This tax-
onomy is defined in terms of canonical forms. Some of
these forms do not match the way that specifications
are typically encoded in LTL, so they provide some al-
ternative codings for canonical forms. They also give
a number of examples along with textual descriptions
of the intuition behind the specifications. This is the

closest thing to a pattern catalog that appears in the lit-
erature on specification of concurrent and reactive sys-
tems. Unfortunately, even this taxonomy is too coarse
for many users. Furthermore, since it is syntactic in
nature, it suffers from two additional drawbacks. First,
it is specific to LTL, while users of particular finite-
state verification tools may need to couch their specifi-
cations in another formalism. Second, practitioners do
not naturally attack a problem starting from its syntax
in a particular specification formalism, but rather begin
from an informal understanding of the meaning of the
requirements. Thus, a taxonomy organized by features
related to meaning is more appropriate.

6 EXPERIENCE WITH A PATTERN
SYSTEM

We have taught a one semester graduate course in
specification and verification of reactive systems. This
course is a component of a Masters of Software Engi-
neering curriculum. The students in the course were
almost exclusively non-traditional students working in
the software industry. A number of these students had
never taken a logic or discrete mathematics course while
a few had taken such courses in the distant past. We
believe this group is representative of a broad class of
practicing software developers who are clearly not ex-
perts in formal methods. The course involved devel-
opment of a significant collection of formal specifica-
tions for selected realistic systems including graphical
user interfaces [14], transactional processing in an in-
ventory control system, an automobile control system,
and a home security system. These specifications were
derived from informal English language statements of
system requirements, which had been refined into a styl-
ized structured English. The specifications were subse-
quently verified using model-checking.

We presented the writing and reading of formal spec-
ifications as a process of identifying and composing a
small set of patterns similar to those described in Sec-
tion 4. Students were able to write correct specifica-
tions for their projects in a matter of weeks; they also
were able to read and critique each others specifications.
While the project work focused mostly on CTL as a
specification formalism, students were also required to
express properties in other formalisms including LTL,
QREs, finite state automata, and GIL [12]. The bene-
fits of the pattern-based approach stood out here since
for most of these formalisms mapping from CTL to pat-
terns and back to alternative formalisms is straightfor-
ward.

While our experience to date is limited and anecdotal
we do feel that the pattern-based approach is useful as
an educational tool and as a means of transferring ex-

13

pert knowledge. All students in the course, including
those with the weakest formal backgrounds, were capa-
ble of producing readable specifications, in more than
one specification language, by the end of the semester.
Subsequently, it has become clear that at least three
students have internalized the pattern system and map
pings sufficiently well to apply them independently in
projects for their master’s degrees.

7 FUTURE DIRECTIONS

In addition to adding more patterns to our system, we
plan to extend this work in several ways. We plan to
provide mappings for other formalisms, such as Graph-
ical Interval Logic (GIL) [12]. the INCA query lan-
guage [ll], automata, and various process algebra for-
malisms (e.g., CCS and CSP) [S]. We also plan to
explore alternate organizations for the patterns. For
example, a hierarchy based on the syntax of a particu-
lar formalism would allow an analyst proficient in that
formalism to quickly find a pattern and subsequently
translate a specification into another formalism. Also,
we might provide variations of some patterns. For ex-
ample, simple changes in the mappings of the chain
patterns would allow the analyst to restrict the possi-
ble states/events that could occur between the chain
elements.

Another issue that arises with state-based formalisms
is whether the scopes are open or closed (i.e., are the
endpoints included). The scopes we presented here were
closed on the left and open on the right-the first state
of the scope “Between Q and R” is the Q state and the
last state is the state before the R state. Slight changes
to the mappings could be used to open the scope on
the left and/or close it on the right. In general, the
scope can be made open on the left by inserting a next-
state operator, and can be made closed on the right by
changing the ending condition of the until operator. For
example, “S responds to P between & and R” can be
specified for a scope that is open on the left and closed
on the right as follows:

O((Q A OOR) + o(P + (43 u S)) u R)

We plan to provide open/closed variations of the scopes
for all state-based mappings.

Validation is also an important issue. How can the an-
alyst be sure that the specification correctly captures
the intended property? There are two aspects to this
problem. One is ensuring that the analyst has identi-
fied the correct specification pattern. Although we hope
that providing very precise prose descriptions and ex-
amples of the patterns will minimize the risk of error,
this is a difficult problem and one that is really out-
side the scope of the pattern system per se. The other

.4

aspect of validation is ensuring that the mappings are
consistent/correct. The use of the pattern system by a
community of users should, over time, expose any er-
rors in the mappings. In addition, we might check the
mappings of a given pattern for consistency by translat-
ing them into finite-state structures (e.g., using tableau
or other algorithms) and comparing this common rep
resentation of their semantics.

8 CONCLUSIONS

Patterns and the people who define them are charac-
terized by an “aggressive disregard for originality” [4].
Patterns are not research; they are an expression of
best-practice in a software domain. A pattern system
does not belong to an individual, but to the community
of experts and practitioners who contribute to and use
it. It is important that a pattern system be agreed upon
by that community. For these reasons, the system de-
scribed in this paper should only be viewed as a starting
point. If it is to become useful it must grow through
a process of open dialog and critical review. There are
efforts underway in other pattern domains (e.g., [9]) to
provide a web-based mechanism for such collaborative
development of pattern systems. We believe that spec-
ification patterns would flourish if a similar collabora-
tion were undertaken by the formal specification com-
munity and towards this end we have set up a web
site [13] to store the current and future versions of the
specification patterns system. In particular, we want to
stress our belief that users of specification patterns will
benefit from a variety of views of the pattern system,
reflecting semantic hierarchies, the syntactic structure
of specifications in particular formalisms, and other or-
ganizing principles, and we hope the web site will be a
vehicle for collecting and disseminating these views as
well as individual patterns.

In this paper, we have suggested that finite-state verifi-
cation might be made more readily accessible to devel-
opers of concurrent and reactive systems through defi-
nition and use of a pattern system. We have described
an initial version of a pattern system for specification
of properties for finite-state verification tools. Our ex-
perience suggests that such a pattern system enables
non-experts to become proficient at writing and read-
ing formal specifications for realistic systems relatively
quickly.

Development of a pattern system is a community activ-
ity requiring participation by a broad range of experts
both in patterns and in the formal specification domain.
It is our hope that such a collaboration will become a
reality and that the resulting pattern system will be
studied and put to use by practicing developers.

References

PI

PI

PI

f41

[51

PI

[71

PI

PI

PO1

WI

WI

P31

R. Anderson, P. Beame, S. Burns, W. Chan, F. Mod-
ugno, D. Notkin, and J. Reese. Model checking large
software specifications. Software Engineering Notes,
21(6):156-166, Nov. 1996. Proceedings of the Fourth
ACM SIGSOFT Symposium on the Foundations of
Software Engineering.

B. Appleton. Patterns and Software: Essential Con-
cepts and Terminology. http : //uvu . enteract. corn/
-bradapp/docs/patt ems- intro. html, 1997.

G. Avrunin, U. Buy, J. Corbett, L. DiIIon, and J. wile-
den. Automated analysis of concurrent systems with
the constrained expression toolset. IEEE Transactions
on Software Engineering, 17(11):1204-1222, Nov. 1991.

F. Buschmann, R. Meunier, H. R.ohnert, P. SommerIad,
and M. StaI. Pattern-Oriented Software Architecture -
A System of Patterns. Wiley and Sons Ltd., 1996.

B. G. Cain, J. 0. Coplien, and N. B. Harrison. Social
Patterns in Productive Software Organizations. Annals
of Software Engineering, 2:259-286, Dec. 1996.

A. ChamiIIard. An Empirical Comparison of Static
Concurrency Analysis Techniques. PhD thesis, Uni-
versity of Massachusetts at Amherst, May 1996.

E. Clarke, E. Emerson, and A. SistIa. Automatic ver-
ification of tit&state concurrent systems using tem-
poral logic specifications. ACM Transactions on Pro-
gramming Languages and Systems, 8(2):244-263, Apr.
1986.

R. Cleaveland, J. Parrow, and B. Steffen. The con-
currency workbench: A semantics based tool for the
verification of concurrent systems. ACM Transactions
on Programming Languages and Systems, 15(1):3&72,
Jan. 1993.

J. CopIien. Organizational Patterns. http:
//wwv.bell-labs.com/cgi-user/OrgF’atterns/
OrgPatterns?Organizationa’XlPatterns, 1997.

J. Coplien and D. Schmidt, editors. Pattern Languages
of Program Design. Addison-Wesley, 1995.

J. C. Corbett and G. S. Avrunin. Using integer pro-
gramming to verify general safety and Iiveness proper-
ties. Formal Methods in System Design, 6:97-123, Jan.
1995.

L. K. DiIIon, G. Kutty, L. E. Moser, P. M. MeIIiar-
Smith, and Y. S. Ramakrishna. A graphical inter-
val logic for specifying concurrent systems. ACM
Transactions on Software Engineering and Methodol-
ogy, 3(2):131-165, Apr. 1994.

M. Dwyer, G. Avnmin, and J. Corbett. A System
of Specification Patterns. http: //VW. cis.ksu.edu/
-dwyer/spec-patterns .html, 1997.

1141

P51

WI

WI

M

P91

PO1

WI

[=I

[23l

[241

[251

WI

I271

M. Dwyer, V. Carr, and L. Hines. Model checking
graphical user interfaces using abstractions. In LNCS
1301, pages 244-261. Proceedings of the 6th European
Software Engineering Conference and the 5th ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, Sept. 1997.

M. Dwyer and L. Clarke. Data flow analysis for verify-
ing properties of concurrent programs. Software Engi-
neering Notes, 19(5):62-75, Dec. 1994. Proceedings of
the ACM SIGSOFT Symposium on the Foundations of
Software Engineering.

M. Fowler, editor. Analysis Patterns: Reusable Object
Models. Addison-Wesley, 1997.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

Z. Har’El and R. P. Kurshan. Software for analyti-
cal devleopment of communication protocols. AT&T
Technical Journal, 69(1):44-59, 1990.

D. Hay, editor. Data Model Patterns: Conventions of
Thought. Dorset House Publishing, 1995.

L. Lamport. Proving the correctness of multiprocess
programs. IEEE Transactions on Software Engineer-
ing, SE-3(2):125-143, 1977.

Z. Manna and A. PnueIi. The Tempoml Logic of Reac-
tive and Concurrent Systems: Specification. Springer-
Verlag, 1991.

M. Mauns, H. Sharp, P. McLaughlin, and M. Pri-
eto. Pedagogical Patterns: Successes in Teaching Ob-
ject Technology. http://wv.cs.unca.edu/‘nauna/
oopsla. html, 1997.

K. McMiIIan. Symbolic Model Checking. Kluwer Aca-
demic Publishers, 1993.

G. Naumovich, L. Clarke, and L. OsterweiI. Verifica-
tion of communication protocols using data flow anal-
ysis. In Proceedings of the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, Oct. 1996.

K. Olender and L. OsterweiI. Cecil: A sequencing
constraint Ianguage for automatic static analysis gen-
eration. IEEE Transactions on Software Engineering,
16(3):268-280, Mar. 1990.

D. Rosenblum. Formal methods and testing: Why
the state-of-the-art is not the state-of-the-practice (IS-
STA%/FMSP’96 panel summary). ACM SIGSOFT
Software Engineering Notes, 21(4), July 1996.

J. Wing and M. Vaziri-Farahaui. Model checking soft-
ware systems: A case study. Software Engineering
Notes, 20(4):128-139, Oct. 1995. Proceedings of the
Third ACM SIGSOFT Symposium on the Foundations
of Software Engineering.

15

