
A Practical Technique for Bounding the Time Between Events in

Concurrent Real-Time Systems

James C. Corbett George S. Avrunin

Information and Computer Science Department Department of Mathematics and Statistics

University of Hawaii University of Massachusetts at Amherst

Honolulu, HI 96822 Amherst, MA 01003

Abstract

Showing that concurrent systems satisfy timing constraints on their behavior is difficult, but may be essential for critical

applications. Most methods are based on some form of reachability analysis and require construction of a state space of size that is. in

general, exponential in the number of components in the concurrent system. In an earlier paper with L. K. Dillon and J. C. Wileden,

we described a teehnique for finding bounds on the time between events without enumerating the state space, but the technique

applies chiefly to the case of logically concurrent systems executing on a uniprocessor, in which events do not overlap in time. In

this paper, we extend that technique to obtain upper bounds on the time between events in maximally parallel concurrent systems.

Our method does not require construction of the statespaceand the results of preliminary experiments show that, for at least some
systemswith large statespaces,it is quite tractable. We also briefly describe the application of our method to the case in which there

are multiple processors, but several processes run on each processor.

1 Introduction

As the use of real-time software systems in safety-critical appli-

cations becomes widespread, the verification of their correct-

ness has become an important concern. A real-time system is

correct if it produces the correct result and produces it within

specific deadlines. If a system does not guarantee that every

result will be produced within its deadline, then either the sys-

tem’s performance or its requirements must be changed before

it can be considered correct. One standard way to try improve

the performance of the system is by dividing computations into

segments that can be executed concurrently. Unfortunately, this
makes analysis of the timing properties of the system more com-

plicated and, consequently, the verification of the presumably

faster system more difficult.

In this paper, we consider the case of a concurrent system

utilizing synchronous communication between its processes and

executing in a maximally parallel fashion in a multiprocessor
environment. This means that each process proceeds with its

computation unless it is blocked because it is unable to com-

municate with another process or gain access to some resource

(usually this will require that each process have its own proces-
sor). We describe a method for deriving an upper bound on the

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ACM-lSSTA’93-6/93 /Cambridge, MA, USA
@ 1993 ACM O-8979J-608-~/93/0006/OJ 10... $1.50

time that can elapse between any two given events in an execu-

tion of such a system. This method does not require construction

of the state space of the system and can be fully automated. A

prototype implementation has been built and application of this

prototype to several families of examples has shown that the

method can be quite tractable on systems with very large state

spaces. We also briefly describe the extension of our technique

to the case in which multiple processes are statically assigned

to each processor.

2 Previous Work

Various methods have been proposed for showing that con-

current systems satisfy timing constraints. Most have relied

on either proving theorems in some logical setting (e.g., [7])

or some form of reachability analysis (e.g., [5], [6]). The

theorem-proving techniques have been hard to automate and
the reachability-based techniques require construction of the

state space of the concurrent system. Since the size of this state

space is, in general, exponential in the number of processes
in the system, these techniques are computationally infeasible

except in certain special cases.

In an earlier paper with Laura K. Dillon and Jack C. Wile-

den [3], we described a technique for finding upper and lower

bounds on the time between events in the execution of a con-

current system. This technique does not require construction of

the state space of the system and experiments have shown that

it can be used with systems having state spaces that are quite

110

large (e.g., with more than 2200 states). However, the technique

assumes that events do not overlap in time, so the upper bounds

determined by this method, though valid, are likely to be use-

ful only in the case of a logically concurrent system executing

on a single processor and the lower bounds are valid only in

that case. The work described here extenck that work to the
maximally parallel multiprocessor setting. Since the unipro-

cessor technique is an important component of the new work,

we review it briefly here.

We model each task, or process, in a concurrent program

with a finite automaton whose alphabet corltains symbols rep-

resenting internal computation or synchronous communication

with another task. We derive the bounds from necessuy condi-

tions, in the form of linear equations, for a sequence of events to

be a trace of the concurrent system. These actuations are derived

by considering the automata as flow networks and finding a flow

from the start state to some accepting state. More precisely, to

each transition in an automaton we assign an integer variable

that represents the number of times that transition is made. We

then write an equation for each state equating the number of

times the state is entered (the sum of the variables labeling in-

coming transitions) with the number of times the state is exited

(the sum of variables labeling outgoing transitions). In addition,
we generate an equation for each synchronous communication

channel requiring that the two tasks the channel connects agree

on the number of times they have communicated along that

channel. This enforces some consistency between the actions

of the tasks, but does not guarantee that the communications

take place in a consistent order (e.g., these conditions allow

the impossibility that one task could synchronously communi-

cate with another on channel A and then on channel B, while

the other task performs the communications in the reverse or-

der). Primarily for this reason, these equations are not sufficient

conditions for a sequence of events to be a trace.

To derive bounds on the execution time of the whole pro-

gram, we find an integer solution to the linear system that max-

imizes (or minimizes) an objective function consisting of the

sum of all the variables, each weighted by the duration of the

event labeling the corresponding transition. Since the linear

system represents necessmy conditions for a set of events to be

a trace (i.e., every trace has a corresponding solution), the value

of the objective function at a maximal (minimat) solution gives

an upper (lower) bound on the execution time of the program.

To derive bounds on the time between two specific events, we

force the flow to start before the beginning event in the task(s)

containing that event, and allow the flow to start anywhere in

a task if it contains no beginning events. Similarly, we force

the flow to stop after the ending event in the task(s) containing

that event, and allow the flow to stop anywhere in a task if it

contains no ending events.

This approach is described in detail in [3]. It is an extension

of the constrained expression analysis techrlique for concurrent

software [2] which uses essentially the same necessary condi-

tions to overcome, at least in some cases, the state explosion

problem inherent in reachability-based analysis techniques.

Task 1 Task 2

Figure 1: Wait Graph

3 Extension to the Multiprocessor

ting

The chief difficulty in extending the above technique

Set-

to the

multiprocessor setting is calculating the parallel execution time

of a set of events. On a uniprocessor, the execution time is

simply the sum of the durations of the events that occur. On

a multiprocessor, however, some events may happen concur-

rently and the execution time depends not only on the choices

that the tasks make but on the synchronization structure created

by those choices.

By restricting attention to the case where each task has

its own processor, we can use a well-known technique from

scheduling theory to calculate the parallel execution time,

Given a set of actions to be completed, each with a duration, and

a partiat order (<) on these actions representing await relation

(i.e., if A < B then action A must complete before action B

can start), the following is well known: The minimum time

to complete all the actions, assuming an action can proceed

once ready, is equal to the length of the longest path, called

the crirical path, through the graph of the wait relation. Here

the length of a path is the sum of the durations of the actions

along the path. If the durations of the actions are known, the

critical path can be found in time linear in the size of the wait

relation by successively marking actions with the earliest time

they could commence, starting with actions that do not wait for

other actions and proceeding up the partial order,

Given a specific execution of a concurrent program in a

maximally parallel setting (which can then be viewed as a set

of “straight-line” tasks that allow no choices), we can calculate

the parallel execution time using this technique. Events in the
concurrent program model correspond to actions in the tech-

nique. Event A immediately precedes event B in the partial

order if either A and B are in the same task and A immediately

precedes B in that task, or A is a communication event and B

is the event following the matching communication event in the

111

v
(03’

5/ ._ .8

v /’ 67\ v

! 4 ~

\
1.+ /’b c i, 6

1 3YV, J / ‘::

; \b/ , ,\ /1516

a
o

4
>< c d

/\ ,12

/

(

\/ ‘g’ ,/ \

‘ \ 10 11

~) 2A ,’ ‘/”N,

‘\ >/ w

\+/ /

~)f5

Task 1 Task 2 Task 3
(customer) (resource) (customer)

1–Z1–22

aG+~T–~10–~11–h4

Z~ — %6 ‘$10

bl–yl–yz–ys–yh

w+y2+y5+y9-e2

bl+k+h

YI – cl

Y3 – X2

Y3 – $10

Figure 2: A simple system and some of the inequalities generated for it

other task. We graph this partial order for a trivial example in

Figure 1, using arcs to represent actions and nodes to connect

the actions. This graph is the dust of the usual graph of a par-

tial order, in which actions are represented by nodes, however,

it allows us to use the finite automata representing the tasks

directly in the wait graph, Arcs in the wait graph that come

from the matching of communication events rather than from

the task automata are called cross arcs and are shown as dashed

arrows. For simplicity, we will assume that as ymbol represent-

ing an internal computation event occurs only in the alphabet

of a single automaton, and symbols representing synchronous

communication between two tasks occur only in the alphabets

of the automata corresponding to those tasks. This can always
be achieved by suitable encoding of task and channel names.

Thus, the arcs labelled a and c in the figure represent events

intemat to the two tasks and the arcs Iabelled b represent a syn-

chronous communication between the two tasks. The critical

path, assuming all events take one time unit, is shown by the

bold arrows in the figure.

Unfortunately, tasks in real concurrent systems are more

complicated than those in the example of Figure 1. Allowing

branches in the task automata makes static determination of

matching communication events impossible since the matching

may depend on what branches the tasks execute. Loops in the

tasks introduce cycles in the task automata and the wait graph,
making the above algorithm, which only applies to partial or-

ders, inapplicable. Scheduling theorists, to our knowledge,
have not addressed the problem of finding the minimum time to

complete a set of actions when the structure of the wait relation

varies. Rather, their work has focussed on the more common

problem of finding expected completion times when the wait

relation is fixed, but the durations of the actions are given by

random variables having distributions of a specific form. Our

technique assumes fixed upper bounds on action durations and

derives an upper bound on the minimum time to complete the

actions given a variable wait relation that reflects the different

=0
=0
=0
=0
=0
=1

<0
<0
<0

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

possible executions of the concurrent program,

An overview of the technique follows. Just as in our unipro-

cessor technique, we derive a set of linear inequalities from the

task automata and the semantics of the model. The optimal

integer solution to this system is abound on the execution time.

The inequality system we derive for the multiprocessor tech-

nique has three parts, The execution part is exactly the set of

linear equations derived for the uniprocessor technique that was

described in Section 2. These equations “find” an execution of

the concurrent program (i.e., choose what branches the tasks

take, how many times each loop is traversed, etc.), The critical

path part of the inequality system is a set of equations derived

from the potential wait graph, a kind of wait graph described

below. These equations “find” a path through the potential wait

graph. The bounding part of the inequality system is a set of

inequalities that bounds the variables from the critical path part

with variables from the execution part, forcing the path found

by the critical path part to pass through only those events that

actually occurred in the execution found by the execution part.

Maximizing the length of the path found by the critical path part

will give an upper bound on the length of the critical path over

all possible executions. This is an upper bound on the parallel

execution time.

The potential wait graph is formed by assuming each com-

munication event could be paired with any syntactically possible
match and adding a pair of cross arcs to the task automata for

each possible match (as was done for the single possible match

in Figure 1), This graph represents all possible wait relations

and also some that are not possible. If this graph contains cycles

(as it will if the tasks contain loops), a path through the graph

may cross certain arcs multiple times; each traversal of an arc

represents a different instance of the corresponding event. The

number of traversals will usuatly be bounded by the execution

part.

Due to space limitations, we omit a format description and

simply illustrate the technique with the example shown in Fig-

112

ure 2. (A complete description of the technique can be found

in [4].) Two tasks representing customers each choose whether

to rendezvous with a common task that represents a resource.
The resource task would most naturally be modeled with a

loop, but the resulting cycle in the task’s automaton degrades

the bound derived by our technique. For this reason we have

unrolled the loop as many times as it could possibly execute.

We seek a bound on the time for all tasks to complete.

Some of the inequalities generated for the example are also

shown in Figure 2. The variables are numbered according to

the states and arcs they represent as follows: z~ represents the

number of times arc i is traversed in the execution; y~represents

the number of times arc i is traversed as part of the critical path;

b, and ei are 1 if the critical path starts or ends, respectively,

at state i and O otherwise; hi is 1 if the execution of a task

halts at state i and Ootherwise. All of these variables represent

nonnegative integers and the b~, e~, and hi variables can only

have the values Oor 1.

The first three equations are from the execution part, which

finds a flow from a start state to an accepting state in each task.

Since we are bounding the time of the whc~le execution rather

than an interval between events, we can omit the start variables

for all tasks (as described in [3]) and simply add an implicit

flow in of one for the starting states of the tasks. For the same

reason, we can omit the halt variables for tasks one and three,

which have only one accepting state, and simply add an implicit

flow out of one for their accepting states, Task 2, however, has

three accepting states and so we add a halt variable hi to each

accepting state (counted as flow out) which allows the flow

through that task to stop at any of these states, Equations 1 and

2 are the flow equations for states 1 and 4 respectively, Note the

implicit flow in of one for state 1 since it is the starting state of

task 1. Similar equations would be generated for the remaining

states. Equation 3 requires that the number of b events in Task

1 match the number of b events in Task 2, A similar equation
is generated for the c communication events.

The next three equations belong to the critical path part,

which finds a flow through the potentiat wait graph. The criti-

cat path must begin at a start state and end al an accepting state,

thus there are only bi’s (counted as flow in) for states 1,3, and

6, and there are only e~’s (counted as flow out) for states 2,3,4,

5, and 7. Equations (4) and (5) are the flow equations for states

1 and 2 respectively. A similar equation would be generated

for each state. In addition, we force the critical path to begin at

exactly one state by summing the b~’s to 1, as done in equation

(6).

The last three inequalities belong to the bounding part,

which restricts the critical path found to use only events that

occur in the execution found. Inequality (7) is the bounding

inequality for arc 1. A similar inequality would be generated

for each arc in the task automata, Inequalities (8) and (9) are the

bounding inequalities for cross arc 3, which requires a match-

ing between the events on arcs 2 and 10. A similar pair of

inequalities would be generated for each cross arc.

Let di be the duration of the event labeling arc i, where we

1

regard cross arcs as labeled by the corresponding communica-

tion event. Then the value of xi yi di for a solution that maxi-

mizes this function is an upper bound on the parallel execution

time of the concurrent program when run on a multiprocessor in

a maximally parallel fashion. If all events take unit time, then

the bound will be 2, produced by a solution in which the tasks

both try to use the resource and must contend. If the b event

takes 10 units instead, then the bound will be 11, produced by

the same solution. Note that the critical path part alone would

yield abound of 20 by selecting a path that does not correspond

to a feasible execution (i.e., one passing through two b events

in the resource task). If event a takes 10 units and the other

events take only one, then the bound will be 10, produced by a

solution in which task 1 does not use the resource.

As shown in [4], this technique can easily be generalized to

find an upper bound on the time between two specific events by

generating an execution part of the inequality system that finds

segments of an execution beginning and ending with specific

events, asdescribed in [3]. Additional bi and ei variables would

allow the path found by the critical path part to begin anywhere

a task could be after the starting event and end anywhere a task

could be after the ending event.

The bound obtained by this technique need not be the least

upper bound for severat reasons. As mentioned in Section 2, the

conditions used in the execution part are only necessary and not

sufficient, so the solution to this part of the inequality system

might not correspond to any possible execution. Also, cycles in

the wait graph may allow circular flow in the solution that is not

part of the critical path found. Finally, the execution part might

find an execution in which a task chooses to wait to commu-

nicate with a task that is busy rather than communicating with

a third task that is ready, thereby violating the assumption of

maximal parallelism. Refinements to the method that partially

address the first two problems are described in [3]. In the next

section, we show how the third problem can be eliminated if

the DFAs are acyclic.

4 Enforcing the maximal parallelism as-

sumption

This failure to enforce the maximal parallelism assumption

can be seen in the example of Figure 3. This is a modification

of the system of Figure 2 in which Task 1 can no longer perform

the internal computation a and Task 2 performs an additional

internal computation e before communicating with the resource

or performing the computation d. Suppose that each event in

the system has duration 1. The upper bound on the duration

of an execution obtained from the system of inequalities is 3

and a critical path achieving this bound runs from state 6 to

state 5 atong the arcs 12, 13, and 9. This corresponds to an

execution in which Task 3 performs the internal computation
represented by e, then uses the resource (as represented by the

communication event c), and finatly Task 1 uses the resource (as

represented by the communication event b). In this execution,

13

(6)

14-

Task 1 Task 2 Task 3
(customer) (resource) (customer)

Figure 3: Modified example

Task 2 waits to communicate with Task 3 first, even though

it could communicate with Task 1 immediately. This violates

the assumption that processes proceed with their computations

unless blocked. In order to exclude solutlons to the system of

inequalities corresponding to such executions, we need to be

able to determine when a process is waiting for a communi-

cation in a particulm state and then add additional inequalities

thatprevent such waiting when theprocess canproceed. In the

remainder of this section, we outline a method for achieving this

when theautomata representing thetasks are acyclic. Complete

details of the method can be found in [1].

Suppose that Task 2 enters state 3 at time S3 and leaves it

at time t3. Then it is waiting in state 3 during the interval from

S3 to t3. Let S1 and t1 be the corresponding times for state

1. To ensure that Task 2 does not wait in state 3 when it could

communicate with Task 1, we need to ensure that either Task 2

enters state 3 after Task 1 leaves state 1 or Task 1 enters state 1

after Task 2 leaves state 3. Equivalently, we want to avoid cases
in which the open intervals (sl, t1) and (s3, t3)overlap. (We

allow the cases in which one task’s arrival in a state occurs at

the same instant as the other’s departure from the corresponding

state. Thus, for example, Task 1 could enter state 1 at the same

time as Task 2 leaves state 3,)

This can be achieved with the quadratic inequality

(s1 –t3)(s3 – t~) <0

In general, however, integer programming with nonlinea con-

straints is much more difficult than when all constraints are

linear, If we impose an upper bound B on the times at which

the tasks could enter or leave the states, we can achieve the

same results using linear inequalities and additional variables,

as described below. A safe upper bound can be calculated eas-

ily for acyclic DFAs by summing the durations of all possible

events.

Note that it is impossible for both factors of the left side

of this inequality to be positive. If S1 – t3 is positive, Task

1 entered state 1 after Task 2 left state 3. It follows that Task

2 entered state 3 before Task 1 left state 1, so that S3 – tl is

negative. The case we need to exclude is the one in which both

factors are negative. We therefore introduce new variables that

indicate when each of the factors is negative, and use these vari-

ables to enforce the quadratic inequality. Let WI,3 and w3, 1, be

O-1 variables. The inequalities

ta – S1 5 Bw1,3

S1 – t3 < (B + 1)(1 – w1,3)

tl – S3 < Bw3,1

s3–tl < (B+l)(l– W3,J)

force w~,j to be 1 exactly when si – tj is negative. The linear

inequality

‘W1,3+W3,1 < 1

then has the same effect as the quadratic inequality above.

Of course, we have to make sure that the times at which

states are entered and exited are consistent, given the dura-

tions of events and the synchronous nature of communication.

The first set of consistency requirements simply requires that,

if a task changes from state i to state j along an arc labeled

by an event a with duration do, it must enter state j exactly
do units of time after it leaves state i. These conditions are

easily expressed by inequalities involving the entry times for

states i and j and the variable corresponding to the given arc

in the execution part. The consistency requirements reflecting

the synchronization between tasks due to communication are

somewhat more complicated.

To express these conditions, we must be able to determine

which pairs of communication events actually match up in an

execution. The communication between Tasks 1 and 2 can oc-

cur when Task 2 is in state 3 or state 4. In the first case, we

want to set the times the tasks leave states 1 and 3 equal, while

114

Time

11 Tasks Gen Solve Total
~rj Z() 78 7 85

40 40 157 27 184

60 60 226 53 279

80 80 330 82 412

100 100 452 143 595

Number of

1
Ineqs Vars—

627 555
1287 1135

1947 1715

2607 2295

3267 2875—

TABLE 1. Performance results for

divide-and-conquer example

in the second, we need to synchronize the time Task 1 leaves

state 1 with the time Task 2 leaves state 4. To do this, we intro-

duce another variable for each pair of cross arcs, and generate

inequalities to force this variable to be O unless the communic-

ation matching the events corresponding to those cross arcs

takes place. We can then use these variables to enforce the

appropriate synchronization conditions.

Full details of this method, and the extensions needed to

bound the time between two given events, rather than the dura-

tion of a complete execution, are given in [1].

5 Experiments

We have demonstrated the feasibility of our approach by con-

ducting experiments on several concurrent systems, The con-

strained expression toolset has been modified to implement our

new techniques. We first report on the application of the tech-

nique described in Section 3 to two example systems with very

large state spaces.

The constrained expression toolset, described fully in [2],

takes as input the specification of a concurrent system in an Ada-

like specification language as well as a query that describes the

property to be verified and other information needed for the

analysis (e.g., the durations of atomic events). The toolset

translates this specification into a set of cmmnunicating finite

state machines and from these produces an inequality system.

This system is solved by a simplex-based branch-and-bound in-

teger programming package and the solution interpreted for the

analyst in the context of the analysis. The technique described

in Section 3 was implemented by changing the component of

the toolset that generates the inequality system.

The first concurrent system to which we applied our tech-

nique models a divide-and-conquer computation using the

fork/join concurrency construct. Each task i = 1, n, once

“activated”, nondeterrninistically chooses to divide the problem

by forking (modeled by activating task i + 1) and performing

a “small” computation, or conquer the problem by performing

a “big” computation, Task 1 is activated when the program

begins; task n cannot fork (the problem size, n, is a limit on the

number of tasks that can simultaneously exist). We sought a

bound on the execution time of the program in a maximally par-

allel setting given durations for the fork and computation times.

Table 1 shows the performance of the toolset on several sizes

of this example. The columns of the table give the size of the

example, the number of tasks, the time requ,med to generate the

K
20 42

40 82

60 122

80 162

100 ~oz

Time

m

Gen Solve Total

147 26 173

354 95 449

573 255 828

832 393 1z25

1177 855 2032

Number of

1

Ineqs Vars

1225 1114

2465 2234

3705 3354

4945 4474

6185 5594

TABLE 2. Performance results for

network example

system of inequalities from the specification, the time to solve

the system, the total time, and the size of the system of inequal-

ities (all times are in seconds on a DECstation 5000/125). In

each case, the correct critical path was identified and the exact

bound obtained,

The second example models the sending of a packet through

a network. The geometry of the network is a grid of nodes with

2 rows and n columns, plus a sender node on the right of the

grid and a receiver node on the left. Each node is connected

to the four nodes in adjacent columns, while the sender and

receiver are connected to the two nodes in the column at their

end of the grid. Upon reception of a packet, a node nondeter-

ministically chooses a node in the column to its left and sends

the packet there. We sought an upper bound on the time to

transmit a packet given durations on the transmission times be-

tween nodes. Table 2 shows the performance of the toolset on

severat sizes of this example. In each case, the correct critical

path was identified and the exact bound obtained,

Note that the state spaces of both examples grow exponen-

tially in n (the size n problem has at least 2n reachable states),

but the analysis times for these systems are clearly subexponen-

tial.

A first implementation of the method for enforcing maximal

parallelism outlined in Section 4 has been completed and we

have some preliminary experience with it. However, this im-

plementation does not take advantage of special structure of the

automata used to represent processes to reduce the size of the

system of inequalities. As a result, the systems of inequalities

are larger than necessary, and considerable degeneracy arises

in solving the associated integer programming problems. The

performance of our toolset is thus relatively poor with these sys-

tems. For instance, for the version of the divide-and-conquer

example with 20 processes, our preliminary implementation

produces 1571 inequalities in 784 variables. This is 2.5 times

the number of inequalities and more than 1.4 times the number

of variables required for the method of Section 3, and our inte-

ger programming package takes approximately 6 times longer

to solve this larger system. We are currently modifying our code

to make better use of the structure of the automata representing

processes to reduce the size of the systems of inequalities, and

we expect this to lead to substantial improvements in perfor-

mance.

115

6 The General Multiprocessor Case

In a general multiprocessor setting, more than one task can

share a processor. When tasks are statically assigned to proces-

sors, our technique can be extended to analyze such a system

by reducing it to a maximally parallel system. This reduction

is accomplished by the parallel composition, in a process al-

gebraic sense, of the tasks that share a processor into a single

task that represents the actions of atl of the component tasks

on that processor. The system can then be regarded as a max-

imally parallel one in which each task has its own processor,

and the preceding techniques can be applied. From this stand-

point, a communication between tasks on the same processor,

which can be treated as a single event in the composite task

corresponding to that processor, is an internal event in one task

of the maximally parallel system. Since the composite repre-

sents all possible interleavings of the component tasks, its size

is, in general, exponential in the number of those tasks. We

believe this technique will often be feasible, however, for two

reasons. First, load-balancing the concurrent system will tend

to assign relatively few tasks to each processor. Second, tasks

on a single processor are likely to be scheduled (e.g., using

priorities) and this information can be used to reduce the size

of the composition.

7 Conclusion

We have presented a technique for automatically deriving an

upper bound on the time that can elapse between two events in

a concurrent real-time program run in a maximally parallel mul-

tiprocessor setting. Our technique uses necessary conditions in

the form of linear inequalities to obtain this bound and does not

require the enumeration of the system’s states, A prototype im-

plementation of the technique has demonstrated its feasibility

on several sample systems with over 2100 reachable states.

Acknowledgement

This research was partially supported by grants from the Office

of Naval Research and the National Science Foundation.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

G. S. Avrunin. Sharpening bounds on the time between

events in maximally parallel systems. Technical Report 92-

69, Department of Computer Science, University of Mas-

sachusetts at Amherst, 1992. Available for anonymous ftp

on ext.math.umass. edu.

G. S. Avrunin, U. A. Buy, J. C. Corbett, L. K. Dillon, and

J. C. Wileden. Automated analysis of concurrent systems

with the constrained expression toolset. IEEE Trans. Softw.

Eng., 17(11):1204-1222, Nov. 1991.

G. S. Avrunin, J. C. Corbett, L. K. Dillon, and J, C, Wile-

den. A method for deriving bounds on the time between

events in concurrent systems executing on a single proces-

sor. Submitted for publication, Available for anonymous

ftp on ext.math.umass. edu.

J. C. Corbett. Automated Formal Analysis Methods for Con-

current and Real-7ime Sofware. PhD thesis, University of

Massachusetts at Amherst, 1992.

C. Courcoubetis and M. Yannakakis. Minimum and maxi-

mum delay problems in real-time systems. In K. G. Larsen

and A. Skou, editors, Computer Aided Verification, 3rd

International Workshop Proceedings, volume 575 of Lec-

ture Notes in Computer Science, pages 399-409, AaJborg,

Denmark, July 1991. Springer-Verlag.

R. Gerber and I. Lee. A layered approach to automating the

verification of real-time systems. IEEE Trans. Soflw. Eng.,

18(9):768-784, Sept. 1992.

F. Jahanian and A. K.-L. Mok.

properties in real-time systems.

12(5):89&904, 1986.

Safety analysis of timing

IEEE Trans. Softw. Eng.,

116

