
Modal Abstraction View of Requirements for
Medical Devices Used in Healthcare Processes

Heather M. Conboy
School of Computer Science
University of Massachusetts

Amherst, Massachusetts 01003
Email: hconboy@cs.umass.edu

George S. Avrunin
School of Computer Science
University of Massachusetts

Amherst, Massachusetts 01003
Email: avrunin@cs.umass.edu

Lori A. Clarke
School of Computer Science
University of Massachusetts

Amherst, Massachusetts 01003
Email: clarke@cs.umass.edu

Abstract—Medical device requirements often depend on the
healthcare processes in which the device is to be used. Since such
processes may be complex, critical requirements may be specified
inaccurately, or even missed altogether. We are investigating
an automated requirement derivation approach that takes as
input a model of the healthcare process along with a model of
the device and tries to derive the requirements for that device.
Our initial experience with this approach has shown that when
the process and device involve complex behaviors, the derived
requirements are also often complex and difficult to understand.
In this paper, we describe an approach for creating a modal
abstraction view of the derived requirements that decomposes
each requirement based on its modes, and thus appears to
improve understandability.

Index Terms—Requirement specifications, medical devices,
healthcare processes, model checking, learning algorithms,
modes.

I. INTRODUCTION

Medical devices may be used in complex healthcare pro-
cesses, which often involve concurrent activities and excep-
tional situations. Because of this complexity, it may be chal-
lenging to determine the device requirements accurately. Since
healthcare processes may be life critical, such inaccuracies can
have devastating consequences.

To address this problem, we are investigating an approach
that automatically derives the device requirements from a
model of the overall healthcare process along with the re-
quirements for that process. The overall process model is
a combination of a simple model of the device’s behaviors
and a model of how that device is used in the process. The
derived requirements for the medical device, when adhered to,
are sufficient to prevent any violations of the overall process
requirements.1 The derived requirements could then be used
to suggest modifications to the behavior of the device, the
process, or both to ensure that the overall process satisfies its
requirements.

To automate the reasoning about an overall process model’s
behaviors and its requirements, our requirement derivation
approach builds on interface synthesis methods (e.g., [1]),
that were originally developed for software systems. This

1Although in this paper the approach is described from the perspective of
deriving requirements for the device, this approach could also be applied from
the perspective of deriving requirements for the process.

approach iteratively derives the requirements using model
checking (e.g., [2]) and learning algorithms (e.g., [3]). Our
initial work implemented a toolset to support this approach
and evaluated it on two small case studies from the healthcare
domain [4]. We observed that although the derived require-
ments provided useful insights about the devices, as the overall
processes increased in complexity the requirements became
less understandable. We also observed, however, that medical
devices are often modal, meaning the device enables different
behaviors depending on a few input settings. Thus, we are
currently investigating the creation of a modal abstraction
view of the derived requirements. This view decomposes the
derived requirements based on the modes and, thus, seems
to improve their understandability. This paper presents a high-
level overview of our requirement derivation approach and the
modal abstraction view.

The example shown throughout this paper is an infusion
pump used to administer intravenous fluids and medications.
A “smart” infusion pump would be programmed with a set
of drug libraries giving the concentrations, dosing units, and
dosing limits for the drugs in use in each particular area of
the hospital. For instance, the drug library for an operating
room typically allows a wider range of dosing limits than
an intensive care unit. The clinician using the pump selects
the drug, concentration, etc. and the pump alerts the clinician
if the dose exceeds the limits in the library. One important
requirement for any process in which an infusion pump is
used is that a patient never be administered a drug overdose.
This might be reflected as a requirement on the pump that if
the selected dosage is outside the range, the pump must not
administer that dosage to the patient. If the pump developers
do not consider that a patient connected to a pump could
be moved from one area in the hospital to another, then the
device requirement that the pump must be reconfigured when
it is moved might be overlooked. Or, perhaps more likely,
even after carefully considering such alternative usages, the
device requirement might contain some subtle errors. Note
that an infusion pump is modal since the current drug library
determines when the pump will issue alerts.

The remainder of this paper is organized as follows. The
process-based requirement derivation approach and toolset are
discussed in Section II, and the modal abstraction view is

978-1-4673-6282-5/13 c© 2013 IEEE SEHC 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

24



discussed in Section III. Section IV provides an overview
of previous work on the derivation and visualization of re-
quirements, and Section V summarizes our contributions and
discusses some possible directions for future work.

II. BACKGROUND

Our process-based requirement derivation approach takes
as input an overall process model and one or more of its
requirements. The overall process model is composed of a
device model and a process model in which that device
is used. The simple device model, however, allows a wide
range of device behaviors, perhaps even some behaviors that
violate the overall process requirements. Thus, this approach
tries to produce a derived device requirement that restricts
the behaviors of the device to prevent any violations of the
overall process requirements. The ensuing paragraphs describe
how we specify requirements, model processes, and derive
requirements with an interface synthesis method that employs
model checking and learning algorithms.

Requirements are commonly specified in natural language.
To be used as the basis for formal reasoning, however, they
need to be expressed in a mathematical formalism such as tem-
poral logic or finite state automata (FSAs). Such formalisms
are expressive enough to capture the interactions between
a device and healthcare process. We chose to specify the
requirements as FSAs because device developers are often
familiar with FSAs and the derivation could be automated with
a regular language learning algorithm such as the L∗ algorithm
[3], [5].

In the healthcare domain, special purpose notations have
been developed to model medical guidelines and protocols
(e.g., [6]). These healthcare process models are usually expres-
sive enough to easily capture the normal behaviors but can be
cumbersome when expressing aspects such as exceptional sit-
uations and intercomponent communications. Moreover, many
of these healthcare process models do not have precisely
defined semantics so they cannot be formally analyzed. For
our requirement derivation work, we model the healthcare
processes in the Little-JIL process modeling language [7]
because it is both expressive and precisely defined.

Our process-based requirement derivation approach builds
on interface synthesis methods. Such methods take as input
a software component and a requirement of that component.
These methods output an interface that captures the most
general way to use that component without violating the
given requirement. While some interface synthesis methods
use a combination of learning and model checking (e.g.,
[1], [8]), as does our approach, other interface synthesis
methods have been developed that are based on game theory
or counterexample guided abstraction refinement (e.g., [1]).
In theory, such methods have the same worst case complexity.
But in practice, these methods vary widely with regard to the
performance (in terms of space and time) and the requirements
they derive (in terms of complexity). Our approach extends
Beyer et al.’s interface synthesis method [1], which iteratively
derives a requirement using the L∗ learning algorithm and

model checking. This method was selected because we have
some expertise with this learning algorithm and could use the
existing translation from Little-JIL to the FLAVERS model
checker [2]. Our extension is similar to Giannakopoulou and
Păsăreanu’s extension [8] but differs in terms of the modeling
language and model checker used. More details of the require-
ment derivation algorithm can be found in [4].

To illustrate the requirement derivation approach, consider
the smart infusion pump described in the introduction. An
important overall process requirement for any process that
uses the infusion pump is to “never overdose” a patient. For
this paper to clearly illustrate the proposed view, we describe
a simplified pump example that involves only three modes,
which will be enumerated in the next section. Our overall
process model is composed of a pump model and an in-
patient surgery process model in which the pump is used.
The pump model allows a medical clinician to set the drug
library for either the intensive care unit (ICU) or operating
room (OR). Based on the current drug library, the pump will
then issue alerts. The surgery process model first uses the
pump in the OR and then may use the pump in the ICU.
To use the pump, the clinician sets the drug library for the
care area, enters a dose, and tries to start the pump. For
the above “never overdose” requirement and overall process
model, figure 1 shows the derived requirement as an FSA.
This requirement informally states that the pump must be
configured with the ICU drug library before that pump is
used to administer infusions in the ICU, and similarly for
the OR. We show this simple derived requirement to make
the idea clear and for space considerations. When deriving
requirements for examples larger than the example given here,
we found that the resulting FSAs were often more difficult to
understand.

To improve readability, the FSAs shown in the figures elide
the violation state and all the transitions to that state. The
violation state is a sink state, a non-accepting state with only
self-loop transitions. Each derived FSA is total, meaning that
every state has a transition for every event in the alphabet.
Thus, whenever a state does not show a transition for a
particular event, there is implicitly a transition on that event
to the violation state. These violation transitions mean that the
requirement disallows the occurrence of such an event.

Even with the elisions, the derived FSA can still be chal-
lenging to understand because the FSA provides a low-level
representation of the interactions between the device and the
healthcare process. Thus, we propose creating views of the
derived requirements that incorporate high-level features such
as abstraction or decomposition. This paper describes a modal
abstraction view that decomposes the requirement based on
its modes to improve understandability.

III. MODAL ABSTRACTION VIEW

The modal abstraction view hierarchically decomposes a
derived FSA into pieces based on the modes. Each piece
describes a given mode’s behaviors and the mode changes
are represented as transitions among the pieces. For instance,

25



Fig. 1: Example derived requirement represented as an FSA

the pump behaviors can be decomposed into three modes:
the pump not set for any drug library, one for the ICU drug
library, and another for the OR drug library. Since viewers can
now consider each piece separately, the cognitive load should
be reduced. We developed a modal abstraction view tool to
automatically create such a view.

To create the modal abstraction view, the user must spec-
ify the derived FSA and the mode change events. For the
pump example, the mode change events are to configure the
pump with either of the two drug libraries: setLib ICU or
setLib OR. Based on the mode change events, the derived
FSA is automatically decomposed into a set of abstracted
FSAs. Conceptually, there is one abstracted FSA to show the
mode changes and one abstracted FSA for each mode to show
that mode’s enabled behaviors.

To illustrate, figure 2 shows the modal abstraction view of
the derived requirement that was shown in figure 1. (This
example is easy to understand without the modal abstraction,
but space limitations prevent us from showing a larger ex-
ample.) The figure shows the abstracted FSAs for each mode
(designated as boxes for the subgraphs). In this figure, the
no library mode is shown on the top and the ICU and OR
modes are shown on the bottom. The abstracted FSA for the
mode changes has three states corresponding to the subgraphs
and the transitions among these three states annotated with the
mode change events (designated as dashed lines). This view
benefits from taking the modes in account because the larger
FSA can be decomposed into smaller subgraphs and the mode
changes can be highlighted.

Our modal abstraction view tool takes as input a derived
FSA and a mapping from each mode change event to its corre-
sponding mode. This tool essentially produces a mapping from
each mode to the subgraph for that mode. The subgraph is
represented by the set of states where the device is configured
for that mode. This tool iterates through each state s in the
FSA. If state s is the violation state or already contained in a
subgraph, then the tool continues to the next state. When state
s has an incoming transition labeled with a mode change event
e, the tool looks up the corresponding mode m for event e and
then creates a new subgraph gm for mode m. First, subgraph
gm is created by finding all states reachable from state s by

Fig. 2: Modal abstraction view of derived requirement

following outgoing transitions labeled with an event not in the
set of mode change events. The tool next updates the output
mapping to associate mode m with subgraph gm. There is also
special processing done for the start state of the FSA.

The resulting modal abstraction view seems promising. For
the simplified pump example shown here, this view improves
understandability in a small way. For the more complex
examples mentioned in the background section, this view had
a larger impact on understandability. To further investigate
the modal abstraction view, the view could be extended
to decompose each mode into sub-modes. Additionally, the
modal abstraction view tool could highlight the states and
transitions based on particular sub-processes (e.g., ‘Administer
ICU care’ sub-process) or specific human participants (e.g.,
Nurse). The modal abstraction view currently builds on FSAs.
We may be able to build on other requirement specifications
such as modecharts [9], which provide support for transitions
among subgraphs in addition to transitions among states.

IV. RELATED WORK

Human factors research has long recognized the common
problem of mode errors, where a user, believing that a modal
system component is in one mode when the component is
actually in another mode, uses the component inappropriately.
For instance, the pump example described in the introduc-
tion illustrates a mode error. Crow et al. [10] apply model

26



checking techniques to aeronautics system models to generate
counterexamples that demonstrate mode errors. The counterex-
amples can then be used to modify the behavior of the system.
In our work, if an overall process model may violate the
requirements being considered, then a derived requirement is
produced. The derived requirement can then be used to suggest
modifications to the behavior of the healthcare process, the
device, or both.

Some automated requirement derivation approaches (e.g.,
[11]) take modes into account. Combefis et al. [11] investigate
a requirement derivation approach that can track the modes to
help identify mode errors. They do not create views that take
advantage of the modes as our modal abstraction view does.

Previous research has investigated different visualizations
of the component models or requirements to improve their
understandability. Jahanian and Mok [9] developed modecharts
to specify modal component models at a high-level of abstrac-
tion. They also describe how to automatically translate the
component models into low-level source code. In a dual way,
we take the low-level derived FSA and, based on the modes,
automatically create the modal abstraction view represented as
a set of high-level abstracted FSAs. Some of the automated re-
quirement derivation approaches (e.g., [12]) take into account
high-level abstractions such as interaction overview diagrams
to decompose the derived component requirements to improve
their understandability. We similarly take advantage of the
modes to create the modal abstraction view.

V. CONCLUSIONS AND FUTURE WORK

Our initial investigation of this process-based requirement
derivation approach produced useful derived requirements.
The investigation, however, identified limitations, most notably
the understandability of the derived requirements and the
scalability of the derivation approach. To try to improve the un-
derstandability of the derived requirements, this paper explores
a modal abstraction view, a decomposition of the derived
requirements based on the modes. To evaluate this view, we
implemented a modal abstraction view tool and are explor-
ing its impact on the understandability of the requirements
generated by our derivation approach. The modal abstraction
view seems to improve understandability and should be further
evaluated.

One possible direction for future research is to explore
creating alternative views of the derived requirements that
abstract away or highlight certain aspects of the derived
requirements to improve their understandability. For instance,
a process-based view of a derived requirement could highlight
the portions that correspond to specific sub-processes or to
the activities performed by specific medical clinicians. The
different views of the derived requirements would ideally
complement each other to further improve understandability
of the derived requirements.

To try to improve scalability, we plan to explore various
optimizations of our derivation approach. Additionally, we
plan to investigate incremental refinement of the healthcare
process models based on previous derivations.

To better understand this derivation approach, more exten-
sive evaluation is needed. Such an evaluation should consider
a larger range of overall process requirements and healthcare
processes. The devices we considered in our case studies are
relatively small units, but the approach could also be applied
to more complex devices or to larger software systems such
as computerized order entry systems.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation under Award(s) IIS-1239334 and
CNS-1258588. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES

[1] D. Beyer, T. A. Henzinger, and V. Singh, “Algorithms for interface
synthesis,” in CAV, ser. Lecture Notes in Computer Science, W. Damm
and H. Hermanns, Eds., vol. 4590. Springer, 2007, pp. 4–19.

[2] M. B. Dwyer, L. A. Clarke, J. M. Cobleigh, and G. Naumovich, “Flow
analysis for verifying properties of concurrent software systems,” ACM
Trans. on Softw. Eng. Method., vol. 13, no. 4, pp. 359–430, 2004.

[3] D. Angluin, “Learning regular sets from queries and counterexamples,”
Inf. Comput., vol. 75, no. 2, pp. 87–106, 1987.

[4] H. M. Conboy, G. S. Avrunin, and L. A. Clarke, “Process-based
derivation of requirements for medical devices,” in IHI, T. C. Veinot,
Ü. V. Çatalyürek, G. Luo, H. Andrade, and N. R. Smalheiser, Eds.
ACM, 2010, pp. 656–665.

[5] R. L. Rivest and R. E. Schapire, “Inference of finite automata using
homing sequences (extended abstract),” in STOC, D. S. Johnson, Ed.
ACM, 1989, pp. 411–420.

[6] M. Peleg, S. W. Tu, J. Bury, P. Ciccarese, J. Fox, R. A. Greenes, R. Hall,
P. D. Johnson, N. Jones, A. Kumar, S. Miksch, S. Quaglini, A. Seyfang,
E. H. Shortliffe, and M. Stefanelli, “Comparing computer-interpretable
guideline models: A case-study approach,” JAMIA, vol. 10, p. 2003,
2002.

[7] A. G. Cass, B. S. Lerner, S. M. S. Jr., E. K. McCall, A. E. Wise, and
L. J. Osterweil, “Little-JIL/Juliette: a process definition language and
interpreter,” in ICSE, C. Ghezzi, M. Jazayeri, and A. L. Wolf, Eds.
ACM, 2000, pp. 754–757.

[8] D. Giannakopoulou and C. S. Pasareanu, “Interface generation and
compositional verification in JavaPathfinder,” in FASE, ser. Lecture
Notes in Computer Science, M. Chechik and M. Wirsing, Eds., vol.
5503. Springer, 2009, pp. 94–108.

[9] F. Jahanian and A. K. Mok, “Modechart: A specification language for
real-time systems,” IEEE Trans. Softw. Eng., vol. 20, no. 12, pp. 933–
947, Dec. 1994.

[10] J. Crow, D. Javaux (University of Liege), and J. Rushby, “Models
and mechanized methods that integrate human factors into automation
design,” in HCI-AERO ’00: Int. Conf. on Human-Computer Interaction
in Aeronaut., K. Abbott, J.-J. Speyer, and G. Boy, Eds., Toulouse, France,
September 27 - 29 2000, pp. 163–168.

[11] S. Combéfis, D. Giannakopoulou, C. Pecheur, and M. Feary, “A formal
framework for design and analysis of human-machine interaction,” in
SMC. IEEE, 2011, pp. 1801–1808.

[12] J. Whittle and P. K. Jayaraman, “Synthesizing hierarchical state ma-
chines from expressive scenario descriptions,” ACM Trans. Softw. Eng.
Method., vol. 19, no. 3, pp. 8:1–8:45, Feb. 2010.

27


