
Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 150 – 158, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Automatic Fault Tree Derivation from Little-JIL
Process Definitions

Bin Chen, George S. Avrunin, Lori A. Clarke, and Leon J. Osterweil

Department of Computer Science, University of Massachusetts,
Amherst, MA 01003, USA

{chenbin, avrunin, clarke, ljo}@cs.umass.edu

Abstract. Defects in safety critical processes can lead to accidents that result in
harm to people or damage to property. Therefore, it is important to find ways to
detect and remove defects from such processes. Earlier work has shown that
Fault Tree Analysis (FTA) [3] can be effective in detecting safety critical proc-
ess defects. Unfortunately, it is difficult to build a comprehensive set of Fault
Trees for a complex process, especially if this process is not completely well-
defined. The Little-JIL process definition language has been shown to be effec-
tive for defining complex processes clearly and precisely at whatever level of
granularity is desired [1]. In this work, we present an algorithm for generating
Fault Trees from Little-JIL process definitions. We demonstrate the value of
this work by showing how FTA can identify safety defects in the process from
which the Fault Trees were automatically derived.

1 Introduction

A hazard in a safety critical system is “a state or set of conditions of the system that,
together with certain other conditions in the environment, will lead inevitably to an
accident” [2]. One fundamental requirement of developing a safety critical system,
therefore, is to prevent or control the potential hazards. This requires an understand-
ing of what hazards could occur in the system and how they could happen. A variety
of hazard analysis techniques have been developed to identify potential hazards, as-
sess their effect, and identify and evaluate the causal factors related to the hazards [2].

Fault Tree Analysis (FTA) [3] is a hazard analysis technique used to systematically
identify and evaluate all possible causes of a given hazard. It has been well accepted
and applied in many industries such as the nuclear industry [3] and the aerospace in-
dustry [4] etc. Given a potential hazard in a system, FTA deductively identifies events
(component failures, human errors, etc.) in the system that could lead to the hazard
and produces a fault tree, which provides a graphical depiction of all possible parallel
and sequential combinations of those events. Once a fault tree has been derived, quali-
tative and quantitative analysis can be applied to provide information, such as specific
sequences and sets of events that are sufficient to cause a hazard and overall system
vulnerability to a hazardous outcome resulting from the occurrence of a particular
event. This information can then be used as guidance for improvement of the design
or implementation of the system.

 Automatic Fault Tree Derivation from Little-JIL Process Definitions 151

Many processes such as medical processes are also safety critical. In this paper, we
discuss how FTA can help to identify the weaknesses in processes and provide guid-
ance on how to improve processes to reduce their vulnerability to hazards. Since
manual fault tree derivation is time-consuming and error-prone, we propose an algo-
rithm that automatically derives fault trees from processes specified using the Little-
JIL process definition language [5].

The rest of this paper is organized as follows. Section 2 provides background on
the Little-JIL process definition language. Section 3 gives a brief description of FTA
and uses a simple process to demonstrate how FTA can facilitate process improve-
ment. Section 4 presents our automatic fault tree derivation algorithm. The final sec-
tion presents conclusions and suggests future work.

2 Little-JIL Process Definition Language

Little-JIL is a visual language for coordinating tasks that are to be executed by either
computation or human agents. A process is defined in Little-JIL using hierarchically
decomposed steps, where a step represents some specified task to be done by the as-
signed agent. We first give a brief overview of the semantics and notation of Little-
JIL. For a detailed description of Little-JIL, see the Little-JIL Language Report [5].

Fig. 1. Little-JIL step icon

Steps: Steps are the basic elements of Little-JIL processes. As shown in Fig. 1, each
step has a name and a set of badges to represent the control flow, the interface, excep-
tions handled, etc. A step having no substeps is called a leaf step, and represents an
activity that is to be performed by an agent, without any guidance or control from the
process itself.

Step Sequencing: Every non-leaf step has a sequencing badge, which defines the order
in which its substeps execute. For example, a sequential step indicates that its substeps
are to be executed sequentially from left to right and is only completed after all of its
substeps have completed. A parallel step indicates that its substeps can be executed in
any (possibly arbitrarily interleaved) order. It, too, is only completed after all of its sub-
steps have completed. A try step also indicates that its substeps are to be executed from
left to right and it is completed as soon as one of its substeps is completed. A choice
step indicates that any one of its substeps can be selected in order to complete the step.

Artifacts and Artifact Flows: Artifacts are entities that are used or produced by
processes. Parameter declarations in the interface to a step specify artifacts read by
the step as IN parameters and artifacts produced by the step as OUT parameters. Re-
sources are special kinds of artifacts for which there is contention for access. They are
managed by an external resource manager and their acquisitions need to be explicitly

152 B. Chen et al.

specified in step interfaces. After being acquired, resources can be passed as parame-
ters like the other artifacts.

Exception Handling: A step in Little-JIL can throw exceptions when there are as-
pects of the step’s execution that fail. A thrown exception is handled by a matching
exception handler associated with the parent step of the step that throws the excep-
tion. An exception handler has an associated control-flow badge that indicates how
the step catching the exception executes after the handler finishes. For example, the
continue badge indicates that the step catching the exception should continue as if the
substep that throws the exception completed successfully.

Fig. 2. Simple Blood Transfusion Process

Fig. 2 shows a simple Blood Transfusion Process. The root step “Blood Transfu-
sion Process” is a sequential step, which means that its substeps, “Obtain Patient’s
Blood Type”, “Pick up Blood from Blood Bank”, and “Perform Transfusion”, should
be executed one by one, from left to right. Since “Obtain Patient’s Blood Type” is a
try step, it tries to execute step “Contact Lab for Patient’s Blood Type” first. With the
given patient ID passed as an argument, “Contact Lab for Patient’s Blood Type” at-
tempts to retrieve the patient’s blood type from the lab. If the patient’s blood type is
available, it is returned as an argument to, and completes, step “Obtain Patient’s
Blood Type”. Otherwise, an exception “Patient’s Blood Type Unavailable” is thrown.
This exception will be handled by an exception handler at “Obtain Patient’s Blood
Type”. Since this handler is a continue exception handler as indicated by the right
arrow, the process continues to execute “Test Patient’s Blood Type” to get the pa-
tient’s blood type. Once “Obtain Patient’s Blood Type” is completed, the patient’s
blood type is passed to “Pick up Blood from Blood Bank”, which acquires blood from
the blood bank. Finally, blood is transfused at “Perform Transfusion”.

3 Fault Tree Analysis for Processes

Event and Gates: The basic elements of a fault tree are events and gates. Events are
used to represent faults, such as component failures, human errors, or other pertinent

 Automatic Fault Tree Derivation from Little-JIL Process Definitions 153

conditions in the system or environment. Fig. 3 shows symbols of several commonly
used events and gates. Details about the others events and gates can be found in [3].

Fig. 3. Symbols of commonly used gates and events

Basic events are basic initiating faults or conditions. Undeveloped events are events
that are not developed any further, either because necessary information for deriving
the fault tree leading to these events is unavailable or because these events are consid-
ered to have insignificant consequence. Basic events and undeveloped events are also
called primary events because they require no further development. As opposed to
primary events, intermediate events are events that need to be developed.

Each gate connects one or more input events to a single output event. The output
event of an AND gate occurs if all of the input events occur. While the output event
of an OR gate occurs if any of the input events occurs.

Fig. 4 shows a fault tree that represents combinations of faults in the simple Blood
Transfusion Process that could lead to the hazard “The blood unit to be transfused is
wrong”.

Fig. 4. Fault tree for the simple Blood Transfusion Process

Deriving Fault Trees: To derive a fault tree, the given hazard is represented as an
intermediate event called the TOP event. Starting with this event, the fault tree deriva-
tion procedure proceeds to develop intermediate events until all leaf nodes in the fault
tree are primary events. An intermediate event is developed by investigating the proc-
ess, identifying the immediate, necessary, and sufficient events that cause this event,
and connecting those events to it via a proper gate.

154 B. Chen et al.

Analyzing Fault Trees: Once a fault tree has been derived, minimal cut sets (MCSs)
for this fault tree can be computed automatically using Boolean algebra. A cut set is a
set of primary events that ensure the TOP event to occur. A minimal cut set is a cut
set that cannot be further reduced. For example, MCSs of the fault tree in Fig. 4 are:
{E1, E3} {E2, E3} {E1, E4} {E5} {E6}. These MCSs indicate that the process is
exposed to the single point of failure - the hazard will definitely occur if either E5 or
E6 occurs. Therefore subsequent changes need to be made to the process to remove
these weaknesses.

There are usually several options that could be applied to control or eliminate a haz-
ard in a process, For instance, a failure-resistant agent could be assigned to some steps
where major faults could occur. Additionally, consistency check steps could be added
to well-chosen places in the process to stop the propagation of faults. Usually only a
few of the most effective options can be applied because of resource limitations or
other constraints. The effectiveness of an option can be decided by the reduction in the
probability of the hazard, if the probabilities of primary events are available. More
details about analyzing fault trees can be found in [3].

4 Automatic Fault Tree Derivation

Fault trees are usually derived manually based on a deep understanding of the proc-
ess. Due to complicated interleavings of events and inter-process communication,
manual fault tree derivation can be time-consuming and error-prone. Analysts might
fail to identify some events or include events that could not lead to the given event.
These errors directly affect the analysis results that decide the validity of decisions
made to improve the system.

Two main difficulties in manual fault tree derivation are: 1) how to be sure that one
has found all possible events that could occur in the various steps of the process and
2) how to be sure that one has accurately and completely identified all cause-
consequence relationships among events. In Little-JIL process definitions, steps have
simple uniform interfaces. Therefore we only need to consider a few kinds of events
that could possibly occur in these steps. Moreover, cause-consequence relationships
among Little-JIL steps follow several patterns, which can be captured using tem-
plates. With these events and templates, a simple algorithm can be applied to auto-
matically derive fault trees from Little-JIL process definitions.

Events: Several kinds of events can be defined based on Little-JIL step interfaces.
Four of them represent faults that might occur at that particular step. 1

− Resource r acquired at step S is wrong. When a step is started, resources needed by
that step are acquired from an external resource manager. Resources acquired
might be wrong because of errors in the resource manager, which is not captured in
the process. Therefore these kinds of events are defined as undeveloped events.

− Artifact o to step S is wrong. These kinds of events can be either undeveloped
events or intermediate events. They are intermediate events if the wrong artifacts

1 Without losing generality, we assume that no faults could occur during artifact passing. Unre-

liable artifact passing can be explicitly modeled using additional steps.

 Automatic Fault Tree Derivation from Little-JIL Process Definitions 155

are passed from some step in the process. If wrong artifacts are passed directly
from the environment, they are defined as undeveloped events,

− Artifact o from step S is wrong. Since these kinds of events are always directly
caused by other events that occur in the process, they are defined as intermediate
events that need to be developed further.

− All inputs and resources are correct, but step S produces wrong output o. These
kinds of events can only occur at leaf steps and represent the possibility that desig-
nated agents fail to execute those steps as required. They are defined as basic
events.

Two additional kinds of events are used to indicate conditions that decide where
faults of a step could be propagated to. They are defined as undeveloped events.

− No exceptions are thrown by S. Faults of a step could be propagated to its immedi-
ate successors only if no exceptions are thrown by this step.

− Exception e is thrown by S. If a step throws an exception, its faults can only be
propagated to the corresponding exception handling step.

According to [3], direct connections between gates should be avoided. Therefore
temporary events are introduced to connect gates if necessary. They are intermediate
events and do not change the semantics of fault trees. In the rest of this paper, tempo-
rary events are shown as rectangles drawn with dashed lines.

Templates: As noted above, Artifact o to step S is wrong and Artifact o from step S is
wrong could be intermediate events that need to be further developed. To identify
immediate events that could cause these events, several templates are defined based
on Little-JIL semantics.

 Templates for Artifact o from S is wrong

Fig. 5. Templates for Artifact o from S is wrong

If S is a leaf step, its OUT parameters are produced by S from IN parameters and
resources. Therefore if o is an OUT parameter of S, it might be wrong if any input to
S is wrong, any resource acquired at S is wrong, or S produces the wrong output al-
though all required artifacts are correct, as shown in Fig. 5 (a). On the other hand, if o
is not an OUT parameter of S, it cannot be changed by S. In this case, o from S is
wrong only if the same wrong o is passed to S, as shown in Fig. 5 (b).

If S is a non-leaf step, S itself does not change artifacts that are passed through it.
Any artifact that comes out of S is passed from its substeps. Therefore an artifact o
from S is wrong only if o coming from one or more of the substeps of S is wrong, as
shown in Fig. 5 (c). Since the template is defined to capture the immediate causes, Si

156 B. Chen et al.

in the figure should be a substep that could be the last substep of S to be executed.
Such substeps can be decided according to the control badge of S.

 Templates for Artifact o to S is wrong

Fig. 6. Templates for Artifact o to S is wrong

As shown in Fig. 6 (a), if S is not an exception handling step, wrong artifacts to S
might be propagated from a step Si that might immediately precede S. Moreover, if Si
could throw exceptions, wrong artifacts can only be propagated to S if Si does not
throw exceptions. Steps that might immediately precede S can easily be calculated
from the Little-JIL process definition.

For an exception handing step, it is executed only if the corresponding exception is
thrown by some steps. Therefore, one step could propagate wrong artifacts to the ex-
ception handling step only if it throws the exception handled by the handler step, as
shown in Fig. 6 (b).

Algorithm: With a given TOP event, the automated fault tree derivation algorithm
keeps expanding the fault tree by applying proper templates to intermediate events
that are leaf nodes until all leaf nodes are primary events. Applying this algorithm to
the simple Blood Transfusion Process, we can get a fault tree semantically equivalent
to the one shown in Fig. 4.

Limitations: The completeness a fault tree derived from a Little-JIL process by the
algorithm depends on the completeness of the process. Thus, in cases where the Lit-
tle-JIL process definition fails to completely represent steps in a real-world process
that have an effect upon critical artifact flows, our algorithm will, accordingly, pro-
duce an incomplete fault tree.

Moreover, since Little-JIL processes do not specify how a leaf step produces its
OUT parameters from its IN parameters and resources, our algorithm has to assume
that any OUT parameter of a leaf step depends on all its IN parameters and resources.
Thus, leaf steps that do not satisfy this assumption may cause the derived fault tree to
contain superfluous subtrees.

Related Works: There exist several approaches for automatic fault derivation. Leveson
et al. proposed a partially automated technique that derives fault trees from Ada pro-
grams based on templates [6]. We prefer the advantages of a fully automated approach.
Another approach by Leveson et al. is a fully automatic fault tree derivation, but from
the Requirements State Machine Language (RSML) specifications [7]. The approach by
Pai et al. automatically derives fault trees from UML models [8]. This approach requires
the dependency relationships to be explicitly specified. McKelvin et al. designed an

 Automatic Fault Tree Derivation from Little-JIL Process Definitions 157

algorithm that derives fault trees from Fault Tolerant Data Flow (FTDF) models [9].
These other automated approaches seem to us to suffer from their dependence upon
modeling formalisms that lack semantics that are sufficient to represent complex proc-
esses clearly, completely, and precisely. Different from these approaches, some ap-
proaches, such as [10] and [11], use model checking to generate fault trees. They require
explicit state machine models to represent the faults that can occur within components.

5 Conclusion

Fault Tree Analysis is a hazard analysis technique that is well accepted and applied to
complex systems in various industries. FTA can also help to improve processes. To
improve the efficiency and accuracy of FTA, fault trees can be automatically derived
if processes are specified by languages that have precise enough semantics. In this
paper, we present an automated fault tree derivation algorithm based upon Little-JIL
process definitions. The superior clarity and precision of Little-JIL should result in
more complete and definitive fault trees which should then subsequently lead to fault-
tree analysis that should help us improve the Little-JIL processes.

Acknowledgements

We would like to thank Zongfang Lin and Sandy Wise for their many helpful sugges-
tions with this work. This research was supported by the National Science Foundation
under Award Nos. CCR-0204321 and CCR-0205575. The U.S. Government is au-
thorized to reproduce and distribute reprints for Governmental purposes notwithstand-
ing any copyright annotation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied of The National Science
Foundation, or the U.S. Government.

References

1. Clarke, L.A., Chen, Y., Avrunin, G.S., Chen, B., Cobleigh R.L., Frederick K., Henneman,
E.A., Osterweil, L.J.: Process Programming to Support Medical Safety: A Case Study on
Blood Transfusion. Proceedings of the Software Process Workshop (SPW2005), Beijing,
China. (2005)

2. Leveson N.G.: Safeware: System Safety and Computers. Addison-Wesley. (1995)
3. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault-Tree Handbook, Reg.

0492. US Nuclear Regulatory Comm., Washington, D.C. (1981)
4. Vesely, W.E. et al.: Fault Tree Handbook with Aerospace Applications. NASA (2002)
5. Wise, A.: Little-JIL 1.0 Language Report. Technical report (UM-CS-1998-024), Depart-

ment of Computer Science, University of Massachusetts, Amherst, MA (1998)
6. Cha, S.S., Leveson, N.G., Shimeall, T.J.: Safety Verification in Murphy Using Fault Tree

Analysis. ICSE '88: Proceedings of the 10th International Conference on Software Engi-
neering, Singapore (1988) 377-386

158 B. Chen et al.

7. Ratan, V., Partridge, K., Reese, J., Leveson N.G.: Safety Analysis Tools for Requirements
Specifications. http://www.safeware-eng.com/index.php/publications/SafAnTooReq

8. Pai, G.J., Dugan, J.B.: Automatic Synthesis of Dynamic Fault Trees from UML System
Models.13th International Symposium on Software Reliability Engineering (ISSRE'02) 243

9. McKelvin M.L.Jr., Eirea, G., Pinello, C., Kanajan, S., Sangiovanni-Vincentelli,A.: A Formal
Approach to Fault Tree Synthesis for the Analysis of Distributed Fault Tolerant Systems.
Procs. of the 5th ACM International Conference on Embedded Software (2005) 237-246

10. Liggesmeyer, P., Rothfelder, M.: Improving System Reliability with Automatic Fault Tree
Generation. FTCS '98: Proceedings of the The Twenty-Eighth Annual International Sym-
posium on Fault-Tolerant Computing (1998) 90

11. Bozzano, M., Villafiorita, A.: Improving System Reliability via Model Checking: the
FSAP / NuSMV-SA Safety Analysis Platform. In Proceedings of SAFECOMP 2003,
LNCS 2788, Edimburgh, Scotland, United Kingdom (2003) 49-62

	Introduction
	Little-JIL Process Definition Language
	Fault Tree Analysis for Processes
	Automatic Fault Tree Derivation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

