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Abstract. Defects in safety critical processes can lead to accidents that result in 
harm to people or damage to property. Therefore, it is important to find ways to 
detect and remove defects from such processes. Earlier work has shown that 
Fault Tree Analysis (FTA) [3] can be effective in detecting safety critical proc-
ess defects. Unfortunately, it is difficult to build a comprehensive set of Fault 
Trees for a complex process, especially if this process is not completely well-
defined. The Little-JIL process definition language has been shown to be effec-
tive for defining complex processes clearly and precisely at whatever level of 
granularity is desired [1]. In this work, we present an algorithm for generating 
Fault Trees from Little-JIL process definitions. We demonstrate the value of 
this work by showing how FTA can identify safety defects in the process from 
which the Fault Trees were automatically derived.  

1   Introduction 

A hazard in a safety critical system is “a state or set of conditions of the system that, 
together with certain other conditions in the environment, will lead inevitably to an 
accident” [2]. One fundamental requirement of developing a safety critical system, 
therefore, is to prevent or control the potential hazards. This requires an understand-
ing of what hazards could occur in the system and how they could happen. A variety 
of hazard analysis techniques have been developed to identify potential hazards, as-
sess their effect, and identify and evaluate the causal factors related to the hazards [2].   

Fault Tree Analysis (FTA) [3] is a hazard analysis technique used to systematically 
identify and evaluate all possible causes of a given hazard. It has been well accepted 
and applied in many industries such as the nuclear industry [3] and the aerospace in-
dustry [4] etc. Given a potential hazard in a system, FTA deductively identifies events 
(component failures, human errors, etc.) in the system that could lead to the hazard 
and produces a fault tree, which provides a graphical depiction of all possible parallel 
and sequential combinations of those events. Once a fault tree has been derived, quali-
tative and quantitative analysis can be applied to provide information, such as specific 
sequences and sets of events that are sufficient to cause a hazard and overall system 
vulnerability to a hazardous outcome resulting from the occurrence of a particular 
event. This information can then be used as guidance for improvement of the design 
or implementation of the system.   
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Many processes such as medical processes are also safety critical. In this paper, we 
discuss how FTA can help to identify the weaknesses in processes and provide guid-
ance on how to improve processes to reduce their vulnerability to hazards. Since 
manual fault tree derivation is time-consuming and error-prone, we propose an algo-
rithm that automatically derives fault trees from processes specified using the Little-
JIL process definition language [5]. 

The rest of this paper is organized as follows. Section 2 provides background on 
the Little-JIL process definition language. Section 3 gives a brief description of FTA 
and uses a simple process to demonstrate how FTA can facilitate process improve-
ment. Section 4 presents our automatic fault tree derivation algorithm. The final sec-
tion presents conclusions and suggests future work.  

2   Little-JIL Process Definition Language 

Little-JIL is a visual language for coordinating tasks that are to be executed by either 
computation or human agents. A process is defined in Little-JIL using hierarchically 
decomposed steps, where a step represents some specified task to be done by the as-
signed agent. We first give a brief overview of the semantics and notation of Little-
JIL. For a detailed description of Little-JIL, see the Little-JIL Language Report [5]. 

 

Fig. 1. Little-JIL step icon 

Steps: Steps are the basic elements of Little-JIL processes. As shown in Fig. 1, each 
step has a name and a set of badges to represent the control flow, the interface, excep-
tions handled, etc. A step having no substeps is called a leaf step, and represents an 
activity that is to be performed by an agent, without any guidance or control from the 
process itself. 

Step Sequencing: Every non-leaf step has a sequencing badge, which defines the order 
in which its substeps execute. For example, a sequential step indicates that its substeps 
are to be executed sequentially from left to right and is only completed after all of its 
substeps have completed. A parallel step indicates that its substeps can be executed in 
any (possibly arbitrarily interleaved) order. It, too, is only completed after all of its sub-
steps have completed. A try step also indicates that its substeps are to be executed from 
left to right and it is completed as soon as one of its substeps is completed. A choice 
step indicates that any one of its substeps can be selected in order to complete the step. 

Artifacts and Artifact Flows: Artifacts are entities that are used or produced by 
processes. Parameter declarations in the interface to a step specify artifacts read by 
the step as IN parameters and artifacts produced by the step as OUT parameters. Re-
sources are special kinds of artifacts for which there is contention for access. They are 
managed by an external resource manager and their acquisitions need to be explicitly 
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specified in step interfaces. After being acquired, resources can be passed as parame-
ters like the other artifacts.  

Exception Handling: A step in Little-JIL can throw exceptions when there are as-
pects of the step’s execution that fail. A thrown exception is handled by a matching 
exception handler associated with the parent step of the step that throws the excep-
tion. An exception handler has an associated control-flow badge that indicates how 
the step catching the exception executes after the handler finishes. For example, the 
continue badge indicates that the step catching the exception should continue as if the 
substep that throws the exception completed successfully. 

 

Fig. 2. Simple Blood Transfusion Process 

Fig. 2 shows a simple Blood Transfusion Process. The root step “Blood Transfu-
sion Process” is a sequential step, which means that its substeps, “Obtain Patient’s 
Blood Type”, “Pick up Blood from Blood Bank”, and “Perform Transfusion”, should 
be executed one by one, from left to right. Since “Obtain Patient’s Blood Type” is a 
try step, it tries to execute step “Contact Lab for Patient’s Blood Type” first. With the 
given patient ID passed as an argument, “Contact Lab for Patient’s Blood Type” at-
tempts to retrieve the patient’s blood type from the lab. If the patient’s blood type is 
available, it is returned as an argument to, and completes, step “Obtain Patient’s 
Blood Type”. Otherwise, an exception “Patient’s Blood Type Unavailable” is thrown. 
This exception will be handled by an exception handler at “Obtain Patient’s Blood 
Type”. Since this handler is a continue exception handler as indicated by the right 
arrow, the process continues to execute “Test Patient’s Blood Type” to get the pa-
tient’s blood type. Once “Obtain Patient’s Blood Type” is completed, the patient’s 
blood type is passed to “Pick up Blood from Blood Bank”, which acquires blood from 
the blood bank. Finally, blood is transfused at “Perform Transfusion”. 

3   Fault Tree Analysis for Processes 

Event and Gates: The basic elements of a fault tree are events and gates. Events are 
used to represent faults, such as component failures, human errors, or other pertinent 
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conditions in the system or environment. Fig. 3 shows symbols of several commonly 
used events and gates. Details about the others events and gates can be found in [3]. 

 

Fig. 3. Symbols of commonly used gates and events 

Basic events are basic initiating faults or conditions. Undeveloped events are events 
that are not developed any further, either because necessary information for deriving 
the fault tree leading to these events is unavailable or because these events are consid-
ered to have insignificant consequence. Basic events and undeveloped events are also 
called primary events because they require no further development. As opposed to 
primary events, intermediate events are events that need to be developed. 

Each gate connects one or more input events to a single output event. The output 
event of an AND gate occurs if all of the input events occur. While the output event 
of an OR gate occurs if any of the input events occurs. 

Fig. 4 shows a fault tree that represents combinations of faults in the simple Blood 
Transfusion Process that could lead to the hazard “The blood unit to be transfused is 
wrong”. 

 

Fig. 4. Fault tree for the simple Blood Transfusion Process 

Deriving Fault Trees: To derive a fault tree, the given hazard is represented as an 
intermediate event called the TOP event. Starting with this event, the fault tree deriva-
tion procedure proceeds to develop intermediate events until all leaf nodes in the fault 
tree are primary events. An intermediate event is developed by investigating the proc-
ess, identifying the immediate, necessary, and sufficient events that cause this event, 
and connecting those events to it via a proper gate.   
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Analyzing Fault Trees: Once a fault tree has been derived, minimal cut sets (MCSs) 
for this fault tree can be computed automatically using Boolean algebra. A cut set is a 
set of primary events that ensure the TOP event to occur. A minimal cut set is a cut 
set that cannot be further reduced. For example, MCSs of the fault tree in Fig. 4 are: 
{E1, E3} {E2, E3} {E1, E4} {E5} {E6}. These MCSs indicate that the process is 
exposed to the single point of failure - the hazard will definitely occur if either E5 or 
E6 occurs. Therefore subsequent changes need to be made to the process to remove 
these weaknesses. 

There are usually several options that could be applied to control or eliminate a haz-
ard in a process, For instance, a failure-resistant agent could be assigned to some steps 
where major faults could occur. Additionally, consistency check steps could be added 
to well-chosen places in the process to stop the propagation of faults. Usually only a 
few of the most effective options can be applied because of resource limitations or 
other constraints. The effectiveness of an option can be decided by the reduction in the 
probability of the hazard, if the probabilities of primary events are available. More 
details about analyzing fault trees can be found in [3]. 

4   Automatic Fault Tree Derivation  

Fault trees are usually derived manually based on a deep understanding of the proc-
ess. Due to complicated interleavings of events and inter-process communication, 
manual fault tree derivation can be time-consuming and error-prone. Analysts might 
fail to identify some events or include events that could not lead to the given event. 
These errors directly affect the analysis results that decide the validity of decisions 
made to improve the system.  

Two main difficulties in manual fault tree derivation are: 1) how to be sure that one 
has found all possible events that could occur in the various steps of the process and 
2) how to be sure that one has accurately and completely identified all cause-
consequence relationships among events. In Little-JIL process definitions, steps have 
simple uniform interfaces. Therefore we only need to consider a few kinds of events 
that could possibly occur in these steps. Moreover, cause-consequence relationships 
among Little-JIL steps follow several patterns, which can be captured using tem-
plates. With these events and templates, a simple algorithm can be applied to auto-
matically derive fault trees from Little-JIL process definitions. 

Events: Several kinds of events can be defined based on Little-JIL step interfaces. 
Four of them represent faults that might occur at that particular step. 1 

− Resource r acquired at step S is wrong. When a step is started, resources needed by 
that step are acquired from an external resource manager. Resources acquired 
might be wrong because of errors in the resource manager, which is not captured in 
the process. Therefore these kinds of events are defined as undeveloped events. 

− Artifact o to step S is wrong. These kinds of events can be either undeveloped 
events or intermediate events. They are intermediate events if the wrong artifacts 

                                                           
1 Without losing generality, we assume that no faults could occur during artifact passing. Unre-

liable artifact passing can be explicitly modeled using additional steps. 
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are passed from some step in the process. If wrong artifacts are passed directly 
from the environment, they are defined as undeveloped events, 

− Artifact o from step S is wrong. Since these kinds of events are always directly 
caused by other events that occur in the process, they are defined as intermediate 
events that need to be developed further. 

− All inputs and resources are correct, but step S produces wrong output o. These 
kinds of events can only occur at leaf steps and represent the possibility that desig-
nated agents fail to execute those steps as required. They are defined as basic 
events. 

Two additional kinds of events are used to indicate conditions that decide where 
faults of a step could be propagated to. They are defined as undeveloped events. 

− No exceptions are thrown by S. Faults of a step could be propagated to its immedi-
ate successors only if no exceptions are thrown by this step. 

− Exception e is thrown by S. If a step throws an exception, its faults can only be 
propagated to the corresponding exception handling step.  

According to [3], direct connections between gates should be avoided. Therefore 
temporary events are introduced to connect gates if necessary. They are intermediate 
events and do not change the semantics of fault trees. In the rest of this paper, tempo-
rary events are shown as rectangles drawn with dashed lines.  

Templates: As noted above, Artifact o to step S is wrong and Artifact o from step S is 
wrong could be intermediate events that need to be further developed. To identify 
immediate events that could cause these events, several templates are defined based 
on Little-JIL semantics. 

 Templates for Artifact o from S is wrong 

 
 

Fig. 5. Templates for Artifact o from S is wrong 

If S is a leaf step, its OUT parameters are produced by S from IN parameters and 
resources. Therefore if o is an OUT parameter of S, it might be wrong if any input to 
S is wrong, any resource acquired at S is wrong, or S produces the wrong output al-
though all required artifacts are correct, as shown in Fig. 5 (a). On the other hand, if o 
is not an OUT parameter of S, it cannot be changed by S. In this case, o from S is 
wrong only if the same wrong o is passed to S, as shown in Fig. 5 (b).  

If S is a non-leaf step, S itself does not change artifacts that are passed through it. 
Any artifact that comes out of S is passed from its substeps. Therefore an artifact o 
from S is wrong only if o coming from one or more of the substeps of S is wrong, as 
shown in Fig. 5 (c). Since the template is defined to capture the immediate causes, Si 
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in the figure should be a substep that could be the last substep of S to be executed. 
Such substeps can be decided according to the control badge of S.  

 Templates for Artifact o to S is wrong 

 
 

Fig. 6. Templates for Artifact o to S is wrong 

As shown in Fig. 6 (a), if S is not an exception handling step, wrong artifacts to S 
might be propagated from a step Si that might immediately precede S. Moreover, if Si 
could throw exceptions, wrong artifacts can only be propagated to S if Si does not 
throw exceptions. Steps that might immediately precede S can easily be calculated 
from the Little-JIL process definition.  

For an exception handing step, it is executed only if the corresponding exception is 
thrown by some steps. Therefore, one step could propagate wrong artifacts to the ex-
ception handling step only if it throws the exception handled by the handler step, as 
shown in Fig. 6 (b).     

 

Algorithm: With a given TOP event, the automated fault tree derivation algorithm 
keeps expanding the fault tree by applying proper templates to intermediate events 
that are leaf nodes until all leaf nodes are primary events. Applying this algorithm to 
the simple Blood Transfusion Process, we can get a fault tree semantically equivalent 
to the one shown in Fig. 4.  

Limitations: The completeness a fault tree derived from a Little-JIL process by the 
algorithm depends on the completeness of the process. Thus, in cases where the Lit-
tle-JIL process definition fails to completely represent steps in a real-world process 
that have an effect upon critical artifact flows, our algorithm will, accordingly, pro-
duce an incomplete fault tree.  

Moreover, since Little-JIL processes do not specify how a leaf step produces its 
OUT parameters from its IN parameters and resources, our algorithm has to assume 
that any OUT parameter of a leaf step depends on all its IN parameters and resources. 
Thus, leaf steps that do not satisfy this assumption may cause the derived fault tree to 
contain superfluous subtrees.  

Related Works: There exist several approaches for automatic fault derivation. Leveson 
et al. proposed a partially automated technique that derives fault trees from Ada pro-
grams based on templates [6]. We prefer the advantages of a fully automated approach. 
Another approach by Leveson et al. is a fully automatic fault tree derivation, but from 
the Requirements State Machine Language (RSML) specifications [7]. The approach by 
Pai et al. automatically derives fault trees from UML models [8]. This approach requires 
the dependency relationships to be explicitly specified. McKelvin et al. designed an 
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algorithm that derives fault trees from Fault Tolerant Data Flow (FTDF) models [9]. 
These other automated approaches seem to us to suffer from their dependence upon 
modeling formalisms that lack semantics that are sufficient to represent complex proc-
esses clearly, completely, and precisely. Different from these approaches, some ap-
proaches, such as [10] and [11], use model checking to generate fault trees. They require 
explicit state machine models to represent the faults that can occur within components. 

5   Conclusion 

Fault Tree Analysis is a hazard analysis technique that is well accepted and applied to 
complex systems in various industries. FTA can also help to improve processes. To 
improve the efficiency and accuracy of FTA, fault trees can be automatically derived 
if processes are specified by languages that have precise enough semantics. In this 
paper, we present an automated fault tree derivation algorithm based upon Little-JIL 
process definitions. The superior clarity and precision of Little-JIL should result in 
more complete and definitive fault trees which should then subsequently lead to fault-
tree analysis that should help us improve the Little-JIL processes.  
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