Property Inference from Program Executions *

Richard M. Chang
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003, USA

rchang@cs.umass.edu

ABSTRACT

Software verification techniques require properties that de-
fine the intended behavior of a system be specified. Gen-
erating such properties is often very difficult and serves as
an impediment to the adoption of verification techniques.
Techniques that leverage program executions to infer these
properties are a promising avenue for automatically gener-
ating these properties. In this paper, we propose a property
inference approach that leverages event traces derived from
program executions to efficiently infer properties that are
subtle variations of commonly occurring properties. We de-
fine inference templates that represent sets of these proper-
ties and describe our inference algorithm that refines these
templates based on event traces.

1. INTRODUCTION

Traditionally, verification has been done by first specifying
the properties to be proven and then using formal theorem
proving, finite-state verification, or other such approaches
to determine if the system is consistent with the specified
properties. Although all parts of the verification effort can
be quite demanding, it is often difficult to formulate the
properties correctly or to determine all the properties that
should be stated or proven about a system.

In this paper, we propose an approach that uses system
executions to automatically infer properties that can then
be used for verification, testing, or documentation. Our ap-
proach builds upon techniques for helping developers specify
properties [2, 6]. It relies on the assumption that, although

*This material is based upon work supported by the Na-
tional Science Foundation under Award No. CCF-0427071,
the U. S. Army Research Office under Award No. DAAD19-
01-1-0564, and the U. S. Department of Defense/Army Re-
search Office under Award No. DAAD19-03-1-0133. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this publication are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation, the U. S. Army Research Office or the U. S.
Department of Defense/Army Research Office.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

George S. Avrunin
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003, USA

avrunin@cs.umass.edu

Lori A. Clarke
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003, USA

clarke@cs.umass.edu

developers may not be adept at accurately specifying all the
details of a system, they have knowledge about its intended
behaviors that could be leveraged. Our goal is to develop a
property inference approach that is able to infer properties
representing these intended behaviors from program execu-
tions using limited initial guidance from developers. This
approach should be automatic, efficient, and able to infer a
wide variety of properties.

Previous approaches to infer properties about software
systems from their program executions have typically ei-
ther focused on learning arbitrary finite-state automata [1]
or on inferring properties that are derived from a relatively
small set of candidate property patterns [7]. While both of
these approaches have been shown to be useful for inferring
certain kinds of properties, they have some serious limita-
tions. Learning arbitrary automata can result in properties
containing a large number of states, making it difficult to
determine if the learned properties represent the intended
behavior of the system or not. On the other hand, focusing
on a small set of candidate property patterns can greatly re-
strict the types of properties that can be inferred. One of the
goals of this work is to develop an inference technique that
focuses on commonly occurring patterns, but allows many
variations of these patterns to be automatically inferred ef-
ficiently.

We propose an approach that builds upon the property
patterns work [2], which identified a set of commonly oc-
curring property patterns, and the Propel property pattern
templates [6], which explicitly describe the alternatives that
can be associated with each of these patterns. Our work
further extends the Propel property templates to define in-
ference templates that are then used by our inference algo-
rithm. This algorithm, called template refinement, works by
processing event traces gathered from program executions.
As these event traces are processed, the algorithm refines
these inference templates to restrict the set of properties
represented by these templates to only properties that are
satisfied by the set of currently processed event traces.

There are several expected benefits to this method of
property inference. First, the inference templates we define
are based on commonly occurring patterns, which means
our inference focuses on the most likely candidate proper-
ties. Second, by defining these templates such that each
one initially represents a large number of structurally sim-
ilar candidate properties, we are able to infer many subtle
variations of these patterns. Third, the refinements per-
formed by the inference algorithm are event trace driven,
which ensures that we return the strictest, or most refined,

templates that are consistent with the set of processed event
traces. Finally, the inference template representation allows
us to compactly represent a variety of similar properties.
This representation should allow our inference approach to
be efficient. We also expect that this representation to be
amenable to manual and automated analysis. In particular,
we plan to investigate how these inference templates can be
used to support an extension to invariant-based test data
selection [5] and verification.

The rest of this paper is organized as follows. The next
section gives a brief overview of the property inference ap-
proach. Section 3 presents the inference templates that are
used by our inference algorithm. Section 4 describes the
refinement algorithm that is used to infer properties from
event traces. Section 5 compares our inference approach
with related work. Finally, section 6 discusses the status of
this work and some interesting future directions.

2. OVERVIEW OF OUR APPROACH

Each inference template used in our approach represents
a set of finite-state automata. The basic idea behind our ap-
proach is to iteratively refine each inference template such
that each refinement removes automata from the set repre-
sented by that template. These refinements are constructed
to ensure that the set of automata removed by each re-
finement consists of those automata that cannot accept the
event trace currently being processed. In subsequent sec-
tions, we describe these refinements and how we can gen-
erate the set of automata, called concrete properties, repre-
sented by a template.

Our approach defines a single inference template for each
type of property to be inferred. These property types are
derived from the property patterns work [2]. For example,
the property patterns identified a commonly occurring prop-
erty pattern called Response, which is parameterized by two
events called action and response. A Response property
states that whenever an instance of the action event occurs,
it is subsequently followed by an instance of the response
event. There are many variations of this property type. In
addition to allowing the action and response events to be
bound to many different event pairs, there are several allow-
able variations regarding the sequences of action and re-
sponse events, as described by [6]. For instance, the initial
state may or may not be accepting and multiple instances
of the action event may or may not be allowed to happen
before the response event occurs. The Response inference
template we define represents a set of concrete properties
that are variations of the Response property pattern.

3. INFERENCE TEMPLATES

Inference templates used in our approach build upon the
property templates defined in [6]. Inference templates are
similar to finite-state automata but, to allow the representa-
tion of sets of automata, have the following extensions: ab-
stract events, concrete events, optionally accepting states,
optional transitions, abstract labels, and multi-labels.

Rather than having a single event alphabet, inference tem-
plates have two event alphabets, a concrete alphabet, which
consists of concrete events, and an abstract alphabet, which
consists of abstract events. Concrete events correspond to
events from program executions, such as method calls or
variable accesses. An inference template’s concrete alpha-

bet determines the alphabet of the concrete properties the
inference template represents. Abstract events parameterize
an inference template and each is associated with a set of
elements in the template’s concrete alphabet. We refer to
this set of concrete events as an abstract event’s potential
bindings. An abstract event’s potential bindings set is mu-
table and can be modified by removing concrete events from
the set. These two alphabets and potential bindings enable
a single inference template to represent many concrete prop-
erties. As noted above, a Response inference template has
two abstract events called action and response.

States of an inference template may be accepting, non-
accepting, or optionally accepting. Optionally accepting
states are states that may be treated as either accepting
or non-accepting. Similarly, inference templates are also de-
fined to have optional transitions, which are transitions that
may be treated as regular transitions or completely removed
from the template.

Transitions in inference templates may be labeled with ei-
ther abstract labels or multi-labels. Each multi-label consists
of a set of alternative abstract labels. There are three types
of abstract labels: simple labels denoted by a single abstract
event, complement labels which are denoted by a comple-
ment operator, -, followed by a comma-separated list of
abstract events enclosed in parentheses, and universal la-
bels which are denoted by .. We say that a simple abstract
label is a matching label for a given concrete event if and
only if, the potential bindings of the label’s abstract event
is a singleton set containing only the given concrete event.
We say that a complement label is a matching label for a
given concrete event if and only if the concrete event is not
contained in the potential bindings of any abstract events
in the list following the complement operator. We also say
that an universal label is a matching label for any concrete
event. A similar definition exists for multi-labels. We say
that a multi-label is a matching label for a given concrete
event if and only if all abstract labels the multi-label’s set
are matching labels for the concrete event.

3.1 Example Response Inference Template

Figure 1 displays an example of a Response inference tem-
plate. We use this inference template as a running example
to illustrate different aspects of our property inference ap-
proach.

action = {stopAtFloor, openDoor} action

response = {stopAtFloor, openDoor} PN

action

{—(response), {—(response),
—(action),
—(action, response),

4

{—(action),
—(action, response)} action,
—(action, response)}

Figure 1: Response Inference Template

In this example figure, optionally accepting states are de-
noted by states with dashed inner concentric circles. The

start state of this inference template is an example of an
optionally accepting state. Optional transitions, such as
the self-loop transition on state 2, are denoted by dashed
lines. Multi-labels are denoted by braces enclosing a comma-
separated list of abstract labels. Abstract labels are denoted
as described in the previous section. The abstract alphabet
of this inference template consists of action and response.
The rectangular box above the inference template displays
the potential bindings for the abstract event action and the
abstract event response. The concrete alphabet of this in-
ference template is not explicitly given here, but we know
that it must contain the concrete events stopAtFloor and
openDoor because these are the potential bindings for ac-
tion and response.

The self-loop transition on the start state is labeled with
an example of a multi-label. This multi-label consists of two
abstract labels, —~(action) and —(action, response). If we
assume that the inference template’s concrete alphabet con-
tains a concrete event called closeDoor, then the multi-label
on the self-loop transition is a matching label for closeDoor
because that concrete event is not contained in the potential
bindings of action or response.

The transition from the start state to state 2 is labeled
with an abstract label denoted by action. This abstract
label is not a matching label for any of the elements of the
inference template’s concrete alphabet because its set of po-
tential bindings is not a singleton. If we were to modify
the potential bindings for action by removing openDoor,
then the abstract label action would be a matching label
for stopAtFloor because action’s potential bindings would
now be a singleton containing only stopAtFloor.

3.2 Concrete Property Instantiation

As stated eariler, each inference template represents a set
of concrete property finite-state automata. These concrete
properties can be generated from an inference template by
systematically making choices with respect the extensions to
finite-state machines defined by inference templates. Next,
we use our example inference template in Figure 1 to illus-
trate this process.

In our example inference template, we can see that ac-
tion and response each have two potential bindings. We
disallow concrete properties where multiple abstract events
are bound to the same concrete event. This means for our
inference template that there are two valid bindings possi-
ble: one where action is bound to openDoor and response
is bound to stopAtFloor, and another where action is bound
to stopAtFloor and response is bound to openDoor.

For each of these bindings, there are many concrete prop-
erties that can be generated by making decisions with re-
spect to optionally accepting states, optional transitions,
and multi-labels. These decisions include whether or not the
start start is accepting, whether or not the transition from
state 3 to state 2 exists, and choosing an abstract label from
the multi-label on the start state. Notice that if we want to
generate only deterministic finite state automata, there are
local dependencies among some of these decisions. An ex-
ample of such a dependency is if the optional transition from
state 3 to state 2 exists, then the self loop transition on state
3’s multi-label cannot include the all abstract label or the
complement of response abstract label. As shown later,
our refinement algorithm handles such local dependencies
using a post-processing step for each refinement. If we apply

this concrete property instantiation to the Response infer-
ence template in Figure 1 with the given potential bindings
for action and response, then the total number of con-
crete properties instantiated is 192. This means that this
single inference template compactly represents 192 concrete
properties.

4. TEMPLATE REFINEMENT

Our template refinement algorithm begins with a set of
event traces gathered from program executions and an ini-
tial set of inference templates. Each event trace consists
of a sequence of concrete events. Our approach allows for
user guidance with respect to the initial set of inference tem-
plates. Users may specify the type of properties to be in-
ferred and may also specify the initial potential bindings for
each abstract event associated with a template.

We call the current set of inference templates to be refined
the candidate inference template set. As illustrated below,
this set can grow, when multiple possible refinements for a
transition and event are possible, or shrink, as new events
make some inference templates invalid. An invalid inference
template is a template that does not represent any concrete
properties that are consistent with the set of traces currently
processed.

Our template refinement algorithm proceeds by process-
ing each event trace in the input set of traces once and per-
forming refinements on each inference template in the can-
didate inference template set as we go. For each inference
template in our candidate set, we keep track of its current
state. When we begin to process a trace, each inference
template’s current state is set to its start state. For each
concrete event e in the current event trace, we refine each
inference template 7" in our candidate set based on e.

The process of refining an inference template based on its
current state and the event e proceeds as follows. First, we
examine all outgoing transitions from the current state of
T. For each transition, we check if it is a potentially match-
ing transition of e. A potentially matching transition is a
transition whose label either currently matches e, called a
matching transition, or it is a transition for which there ex-
ists a refinement of 7T such that the transition matches e
after such a refinement. If there are no potentially match-
ing outgoing transitions, we simply mark this template as
invalid and remove it from the candidate inference template
set. If there is a single potentially matching transition we re-
fine the inference template based on this transition and the
concrete event e. For each potentially matching transition
beyond the first, we generate a new copy of the inference
template, add it to our candidate set, and refine this copy
based on the concrete event e and the potentially matching
transition. When there are multiple possible refinements to
convert a potentially matching transition into a matching
one, we also generate new copies of the inference template.
Each of these copies is added to our candidate set, and we
perform a unique refinement from set of the possible refine-
ments on each copy.

After each refinement has occurred, we must check if the
event most recently processed is the last event in a trace. If
this is true, we must examine the updated current state of
the inference template. If this state is optionally accepting,
we convert it into an accepting one. If this state is accept-
ing then we do nothing because this indicates that all the
concrete properties represented by the template accept the

event trace we have just finished processing. If this state is
non-accepting, this means that all concrete properties rep-
resented by this inference template reject the event trace we
have just finished processing. This implies that the inference
template is invalid and must be removed from the candidate
set.

When we start to process a new trace, every inference tem-
plate in our candidate set has its current state updated to
its start state and this refinement algorithm begins process-
ing events in the new trace. This iterative process continues
until our candidate set become empty, which means that all
inference templates in our initial candidate set have become
invalid, or until we have processed all traces in our set. If
we have finished processing all traces and our candidate set
is non-empty, then our candidate set can be returned to a
user. These inference templates can be either shown to a
user or the set of concrete properties represented by these
templates can be explicitly generated.

4.1 A Refinement Example

In this section, we present an example that illustrates
the refinements that our algorithm performs when poten-
tially matching transitions are identified. There are two ba-
sic kinds of refinements, potential binding refinements and
multi-label refinements. Potential binding refinements re-
duce the number of concrete properties represented by an
inference template by removing concrete events from an ab-
stract event’s potential bindings set. Multi-label refinements
reduce the number of possible different transitions that may
be generated from a multi-label by removing abstract labels
from a multi-label. Both types of refinements update an in-
ference template’s current state to the destination state of
the refinement’s transition.

If the potentially matching transition that our algorithm
has identified is already a matching transition, we do not
perform any refinements on the inference template. We sim-
ply update the current state of this inference template to be
the destination of the matching transition, and the inference
template remains in our candidate set to be refined when the
next trace event is processed. If the multi-label or abstract
label on the transition is not a matching label, then we must
perform a refinement to convert the transition’s label into
a matching label. Our refinement strategy is dependent on
the type of label.

We now consider refining our example Response inference
template in Figure 1. We assume that the inference tem-
plate’s current state is its start state. Furthermore, we
assume that the current concrete event being processed is
stopAtFloor. There are two potentially matching transitions
for this state and concrete event. The transition from the
start state to state 2 and the self-loop transition on the
start state are potentially matching transitions for stopAt-
Floor. Neither of these transitions is a matching transi-
tion for stopAtFloor, therefore, we must refine this inference
template based on each of these transitions and the concrete
event stopAtFloor. Because there are two potentially match-
ing transitions, we create two copies of our inference tem-
plate, each corresponding to a different potentially matching
transition. In the figures that illustrate performing refine-
ments, each current state and potentially matching tran-
sition that is focus of the refinement are denoted by bold
lines.

First, we consider performing a refinement on this ex-

ample inference template based on the transition from the
start start to state 2 and the concrete event stopAtFloor.
This transition is labeled with a simple abstract event ac-
tion. Because the transition’s label is an abstract label, we
cannot attempt to perform a multi-label refinement, and we
must perform a potential binding refinement.

Potential binding refinements are defined in the follow-
ing way. If the abstract label is a simple label, then we
remove every event other than given concrete event from
the potential bindings of the label’s abstract event. If the
abstract label is a complement label, then we remove the
given concrete event from the potential bindings of each ab-
stract event associated with the complement label. This
refinement is not necessary for universal labels because by
definition they are matching labels for any concrete event. It
is clear that this refinement converts potentially matching
abstract labels into matching ones. If an abstract event’s
potential bindings is a singleton set and a potential binding
refinement removes the label from this set, then the infer-
ence template becomes invalid, and it is removed from our
candidate inference template set.

action = {stopAtFloor, openDoor} action

response = {stopAtFloor, openDoor} - ~.

action

{—(action), {—(response),
[(action, response)} action,
—(action, response)}

{—(response),
—(action),
—(action, response),

4

Inference Template Before Potential Binding Refinement

action = {stopAtFloor} action

response = {openDoor} PR

action

{—(action), {—(response), {—(response),
M(action, response)} action, —(action),
—(action, response)} —(action, response),
4

Inference Template After Potential Binding Refinement

Figure 2: Example Potential Binding Refinement

Figure 2 shows the result of performing a potential bind-
ing refinement based on the given transition and the con-
crete event stopAtFloor. The result of this refinement is
a new inference template whose abstract event action has
had the concrete event openDoor removed. Note that the
abstract label denoted by action is now a matching label
for the event stopAtFloor. The other result of this refine-
ment is that the inference template’s current state has been

updated to state 2. We have also removed stopAtFloor from
the potential bindings of response. This is basically an op-
timization we can perform because we are disallowing con-
crete property instantiations generated by having more than
one abstract event bound to the same concrete event. If a
refinement ever returns an inference template containing an
abstract event with a singleton set for its potential bind-
ings, then we can safely remove the concrete event in that
set from the potential bindings of all other abstract events.

We now consider performing refinements on our example
inference template based on the second potentially match-
ing transition previously identified. This transition is la-
beled with a multi-label consisting of two abstract labels,
—(action) and —(action, response). When we are refining
a template based on a multi-label, we may have to perform
combinations of both potential binding and multi-label re-
finements. First, we create a copy of the inference template
and attempt to perform a multi-label refinement. A multi-
label refinement removes from a multi-label each abstract
label that is not a matching label for the given concrete
event. If all abstract labels are removed, then the inference
template become invalid. After performing a multi-label
refinement on our example inference template, we will con-
sider performing a combinations of potential binding and
multi-label refinements.

action = {stopAtFloor, openDoor} action

response = {stopAtFloor, openDoor} - ~o

action

{—(response), {—(response),
action, —(action),
—(action, response)} —(action, response),|

¥

Inference Template Before Multi-label Refinement

{—(action),
(action, response)}

action = {stopAtFloor, openDoor} action

response = {stopAtFloor, openDoor} Lt T TS

action

{~(response), {—(response),
0 action, —(action),
—(action, response)} —(action, response),)
4

Invalid Inference Template After Multi-label Refinement

Figure 3: Example Multi-label Refinement

Figure 3 shows the result of performing a simple multi-
label refinement on a copy of our example inference tem-
plate based on the self-loop transition on its start state
and the concrete event stopAtFloor. Because stopAtFloor

is contained in the potential bindings for both abstract la-
bels associated with the complement labels that comprise
the multi-label on this transition, neither of these abstract
labels are matching labels for the concrete event, and both
are removed from the multi-label by this multi-label refine-
ment. This results in an invalid inference template.

Next, we consider performing refinements on copies of our
example inference template that perform a potential bind-
ing refinement followed by a multi-label refinement. We call
refinements of this type multi-stage refinements. Figure 4
shows the result of performing multi-stage refinements on
our example Response inference template. Because there are
two possible multi-stage refinements based on this transition
and concrete event, our algorithm generates two copies of
the original inference template. The first inference template
in this figure corresponds to a multi-stage refinement that
first performed a potential binding refinement that removed
stopAtFloor from action’s potential bindings followed by
a multi-label refinement that removed the —(action, re-
sponse) abstract label from the multi-label. The second
inference template in this figure is corresponds to a multi-
stage refinement that first performed a potential binding re-
finement that removed stopAtFloor from both action’s and
response’s potential bindings. The refinement stops at this
point because this inference template is invalid. As stated
earlier, we are disallowing concrete properties derived from
binding multiple abstract events to the same concrete event.
Because of this restriction, this inference template does not
represent any valid concrete properties is invalid.

action = {openDoor} action

response = {stopAtFloor} PN

action

. {—(response), {—(response),
~(action) action, —(action),
—(action, response)} —(action, response),
-}
action = {openDoor} action
response = {openDoor} PR

{—(action), {—(response), {—(response),
M(action, response)} action, —(action),
—(action, response)} —(action, response),
4

Figure 4: Results of Multi-stage Refinements

There is a final processing step that must be performed
before a refinement completes. If the refinement’s transition
is optional, we make the transition a normal transition. We

then modify the multi-labels on all other outgoing transi-
tions from the transition’s source state to remove all abstract
labels that are matching labels for our concrete event. If an
optional outgoing transition’s multi-label becomes empty,
we remove it. If a normal transition’s multi-label becomes
empty, the inference template becomes invalid. Finally, we
remove any outgoing optional transition that whose label is
a matching label for the concrete event the refinement was
based on. This ensures that our inference template repre-
sents only deterministic finite-state properties.

The example refinements performed on our example in-
ference template based on the concrete event stopAtFloor
have reduced the number of concrete properties represented
by our candidate inference template set from the 192 the
example inference template in Figure 1 represented. The
candidate set consists of the first inference template in Fig-
ure 4 and the inference template after the refinement from
Figure 2. These refinements have eliminated 48 possible
concrete properties.

If we continue this process with subsequent events “stopAt-
Floor, openDoor, closeDoor, move, stopAtFloor, openDoor”
from a sample trace, we get the candidate inference template
set shown in Figure 5. The candidate inference template
set, which now includes 3 templates, represents 56 concrete
properties, reduced from 192 when we began processing the
trace.

4.2 Prototype Implementation

A prototype of our approach has been implemented using
Java. A representation of inference templates and the re-
finement algorithm described above have been implemented.
This prototype can successfully infer properties from traces
gathered from simple Java programs, including an eleva-
tor control system similar to the one used in the examples
throughout this paper. The current implementation sup-
ports a limited number of property types, but the framework
that has been implemented is very flexible and other prop-
erty types can easily be added because the core representa-
tion and algorithm remain the same for different property
types.

5. RELATED WORK

As stated previously, the approach described in this paper
builds upon the the property patterns [2] and Propel prop-
erty pattern templates [6]. Both the Propel property pat-
tern templates and inference templates capture many vari-
ations of the property patterns. In fact, the Response infer-
ence template used throughout the paper was derived from
the Propel Response property pattern template. A key dif-
ference between our approach and the Propel approach for
property specification is that the Propel approach for prop-
erty generation is user driven while our approach is event
trace driven. The Propel property pattern templates assist
users manually specifying properties, while inference tem-
plates are automatically refined based on event traces from
program executions.

Several other approaches for inferring properties using
data from program executions have been proposed. Ernst et
al. proposed automatically inferring likely invariants from
dynamic traces containing variable value data [3]. This ap-
proach focused on learning invariants over these variables
that hold at specific program points. Our approach is in-
tended to infer more general properties involving the allow-

action = {openDoor}
response = {stopAtFloor}

action response
>

{—(response),
—(action, response)}

{—(response),

-4

—(action)

action = {stopAtFloor} action

response = {openDoor}
‘ response @
‘ \
/ \
! \
A} 4

! 1
{—(action), {~(response),
F(action, response)} action {—(action),
—(action, response)} —(action, response)}

action

action = {stopAtFloor}
response = {openDoor}

action response

{—(action), {~(response),
[(action, response)} action,
—(action, response)}

Figure 5: Resulting Candidate Inference Template
Set

able orderings of event over entire program executions.

Two other approaches closely related to ours have been
proposed, each focusing on inferring properties that should
be true over entire program executions. Ammons et al. pro-
posed an approach based on machine learning called specifi-
cation mining (1], and Yang and Evans proposed a property
inference approach that, much like our approach, focuses on
inferring variations of the property patterns [7].

Specification mining differs from our approach in several
ways. The properties that this approach attempts to in-
fer can be arbitrary finite-state properties. The finite state
machines returned by this approach may have many states
which can make manual validation of these properties dif-
ficult. Also, the properties that are inferred may not be
consist with the set of traces used as the training set. Our
approach on the other hand focuses on commonly occurring
patterns with very few states and is guaranteed to return
properties that are consistent with all traces that have been
processed.

Yang and Evan’s approach defines several variations of
the property patterns and a partial order over these vari-
ations so that the strictest of these variations can be in-
ferred by generating a subset of the variations. Event traces

are then processed eliminating properties that would reject
these event traces.

Our approach is able to infer many more variations of
property pattern types through its use of inference tem-
plates. For the Response property pattern, Yang and Evans
identify 8 variations of this pattern for each ordered pair of
events. Our approach can infer 96 different concrete prop-
erties that are variations of Response for each ordered pair
of events.

Also, rather than explicitly generating all of these con-
crete properties and eliminating the ones that would reject
event traces, the refinements we have defined remove invalid
concrete properties from the set represented by an inference
template by modifying the inference template and generat-
ing new copies only when there are multiple way to refine a
given template. Yang and Evans define a partial order over
their Response variations to reduce the number of them that
are explicitly generated. They are able to infer which of the
8 variations of Response for a given ordered pair of events
would accept a trace by explicitly generating 3 variations. If
we were to apply their technique to the Response property
example above with two possible ordered pairs of events,
(openDoor, stopAtFloor) and (stopAtFloor, openDoor), we
would have explicitly generated 6 properties to infer which
of the 16 properties held. Our approach was able to infer
which of the 192 candidate concrete properties were consis-
tent with the trace above by generating 3 valid inference
templates.

6. CONCLUSIONS AND FUTURE WORK

This paper describes an approach for inferring properties
from event traces gathered from program executions. We de-
scribed how inference templates are used to represent many
variations of similar properties compactly and presented our
template refinement algorithm. We also presented an exam-
ple of this algorithm processing an event trace and refining a
candidate inference template set consisting of Response in-
ference templates. This example was able to quickly remove
many properties from the set represented by our candidate
template set while generating very few new inference tem-
plates. This approach appears promising, but more exper-
imental validation is required. In particular, we intend to
improve our prototype implementation and apply our tech-
nique to event traces gathered from the execution of realistic
programs.

This approach lends itself to several applications and fu-
ture directions. During our discussion of the approach we
did not discuss explicitly from what types of program exe-
cutions will be deriving event traces. This approach could
be applied to event traces gathered from test suites. In
this context, the candidate inference templates returned to
a user could be manually analyzed to assess the quality of the
test suite for concrete property coverage. A candidate infer-
ence template set with many templates containing optional
transitions, multi-labels, etc. could be used to manually
or automatically generate test cases to refine these infer-
ence templates. The goal of generating these new test cases
would be to produce test cases whose event traces would
eliminate concrete properties from the set represented by
our candidate inference template set.

Our approach could also leverage program executions of
deployed software. The event traces used by our approach
could correspond to event traces gathered from program ex-

ecutions of deployed software. Aside from using field data to
infer properties of deployed software, we may be able to use
a technique similar to the one used in [4] to distribute our
inference approach to instances of deployed software. Each
instance would start with a candidate inference template
set, which would be refined locally based on that instance’s
event traces. A central location could gather each deployed
instance’s candidate inference template set and compute the
intersection of all these sets. Each deployed instance would
then receive an updated candidate inference template set
representing concrete properties that are consistent with all
event traces processed by any deployed instance. The po-
tential benefit of such an approach would be the reduced
data transmission overhead achieved by our compact repre-
sentation. Rather than sending event traces to a central lo-
cation, deployed instances could send a candidate inference
template set derived from those traces. This representation
could potentially result in much less data being transferred
when compared with sending event traces.

Another important area that we intend to explore is the
use of context information in our inference approach. In
object-oriented programming languages, such as Java, the
properties of a program often involve more than just an
ordering of simple events, such as method calls. Context
information like the calling thread, object instance, and pa-
rameters to a method call may be an important part of a
property. In recent work [7], Yang and Evans address this is-
sue by proposing slicing an event trace into multiple traces
based on context information. We intend to modify our
approach to allow abstract and concrete events with vary-
ing amounts of visible context information. Our template
refinement algorithm could then be modified to support re-
finements based on this context information.

7. REFERENCES
[1] G. Ammons, R. Bodik, and J. R. Larus. Mining

specifications. In Proc. Symp. Princ. Prog. Lang., pages
4-16, New York, NY, USA, 2002. ACM Press.

[2] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett.
Patterns in property specifications for finite-state
verification. In Proc. Int. Conf. Softw. Eng., pages
411-420, Los Alamitos, CA, USA, 1999. IEEE
Computer Society Press.

[3] M. D. Ernst, J. Cockrell, W. G. Griswold, and
D. Notkin. Dynamically discovering likely program
invariants to support program evolution. In Proc. Int.
Conf. Softw. Eng., pages 213-224, 1999.

[4] A. Orso, D. Liang, M. J. Harrold, and R. Lipton.
Gamma system: continuous evolution of software after
deployment. In Proc. Int. Symp. Softw. Testing Anal.,
pages 65—69, New York, NY, USA, 2002. ACM Press.

[5] C. Pacheco and M. D. Ernst. Eclat: Automatic
generation and classification of test inputs. In
Object-Oriented Programming, 19th Furopean Conf.,
pages 504-527, Glasgow, Scotland, July 27-29, 2005.

[6] R. L. Smith, G. S. Avrunin, L. A. Clarke, and L. J.
Osterweil. Propel: an approach supporting property
elucidation. In Proc. Int. Conf. Softw. Eng., pages
1121, New York, NY, USA, 2002. ACM Press.

[7] J. Yang and D. Evans. Automatically discovering
temporal properties for program verification. Technical
report, Department of Computer Science, University of
Virginia, 2005.

