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Abstract—Human-intensive cyber-physical systems involve
software applications and hardware devices, but also depend
upon the expertise of human participants to achieve their goal.
In this paper. we describe a project we have started to improve
the effectiveness of such systems by providing Smart Checklists
to support and guide human participants in carrying out their
tasks, including their interactions with the devices and software
applications.
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I. INTRODUCTION

This paper describes an approach for increasing the
effectiveness of human-intensive cyber-physical systems,
systems involving people, devices, and software applications
in which the participation and expertise of humans play a
central role in achieving success. Such systems are extremely
difficult to understand, develop, and maintain, as they add
the complexity and variability of human participation to the
already complex interactions among the hardware devices
and software applications. To address these difficulties, we
are building on our previous work on formalizing and ana-
lyzing medical processes [1] to explore how the use of smart,
context-aware, dynamic checklists can help to make humans
more effective and improve outcomes in human-intensive
health care systems. The approaches and technologies we
plan to explore and develop will also be applicable to other
human-intensive cyber-physical systems such as air traffic
control and safety-critical plant management.

A central feature of our approach is the use of precisely
defined, carefully analyzed process models to support real-
time guidance in the form of checklists that change and
adapt as process execution events modify the contexts in
which humans perform their tasks. The use of checklists to
support human participation in processes in domains such
as aviation and space has been well established for decades.
More recently, checklists have also been used to support
human participation in medical processes (e.g., [2], [3]).
Usage in the medical domain, however, has highlighted a
variety of shortcomings (e.g., [4], [5]) that we will address
in this project.

We believe that Smart Checklists can address these short-
comings and be key contributors to a vision of much more

effective human participation in human-intensive cyber-
physical systems in general, and in health care systems in
particular. We are exploring this hypothesis by investigating,
developing, and evaluating process monitoring and analysis
technologies and an architectural framework for integrating
them to support the implementation of a Smart Checklist
System. This system will communicate process monitor-
ing and guidance information to human performers while
requiring performers to take few, if any, additional steps.
The system will draw upon both analyses of the process
model and process execution monitoring to communicate
to process performers historical context information and
future execution projections to help them make better-
informed decisions. The system will use context infor-
mation to adjust lists of pending actions dynamically to
reflect current circumstances, eliminating unnecessary steps
and highlighting approaching deadlines. Importantly, Smart
Checklist guidance will not assume normative sequential
process execution, which is rarely what happens in real-
world human-intensive cyber-physical systems. The system
will use process models that incorporate exception man-
agement and concurrency specifications to guide process
performers in identifying and responding to exceptional
or hectic circumstances, which have been shown to be
major sources of errors and confusion. Smart Checklists will
also be useful when execution deviates from the specified
process. Although following well-established procedures can
reduce errors (e.g., [6]), circumstances sometimes warrant
deviating even from previously established exception han-
dling procedures. In such situations, the Smart Checklist
System will continue to gather context information, but no
longer (aggressively) interject guidance until and unless the
human performer accepts a proposed plan for rejoining the
specified procedure. Behind the scenes, however, analyses
would continue to use process model and context informa-
tion to anticipate and warn of impending hazard violations.

Smart Checklists will also help assure that deadlines are
met. For example, in a hospital, blood must be transfused
shortly after it leaves the blood bank. Such a real-time
constraint will be specified in our process model, and our
analyzers will use it to statically determine potential timing
constraint violations and to optimize on-line timing moni-
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toring. Hopefully, warnings will be provided early enough
to assure that deadlines are met.

Our Smart Checklist system will also automatically de-
rive [7] a safety envelope [8] to be dynamically monitored
when it is not possible to prove definitely that activities are
compatible with process safety requirements. Such moni-
toring will complement monitoring for deviation from the
specified process, property monitoring, and real-time moni-
toring, providing added assurance that process executions are
adhering to their requirements. Moreover, the information
gathered from all these types of monitoring will also be
used to create retrospective profiles of process executions,
perhaps leading to new insights for process improvement.

To see how Smart Checklists could be applied in the
health care domain, consider a patient who is undergoing
coronary artery bypass graft (CABG) surgery in the operat-
ing room (OR), and who will subsequently be moved to the
intensive care unit (ICU). Anticipating this move, ICU per-
sonnel (nurses, technicians, respiratory therapists, assistants)
will have to prepare appropriate equipment (e.g. multiple
intravenous medication infusion pumps, multiple blood pres-
sure monitors, lung ventilator), supplies, and medications.
While the patient is undergoing surgery, a decision support
system will be accessing the hospital network for context
information such as medication infusions, allergies, lung
ventilator settings, and atypical medical devices/therapies
being used. This information will comprise a key part of
the context provided through Smart Checklists to guide ICU
staff to prepare medication for the patient, set or recheck
auto-set medical device settings, and identify missing steps,
data, or devices.

To achieve this vision we are developing:
• Systems Architectures and Infrastructures to support

collaboration among system components and process
performers;

• Process Monitoring, Deviation Detection and Explana-
tion, and Recovery capabilities to warn process per-
formers when a process execution has departed from
the expected procedures, to help explain the reasons
for such departures, to suggest possible recovery ac-
tions, and to propose how performers might rejoin a
normative process path;

• Context Awareness facilities to capture, synthesize, and
present relevant process execution state and history
information and to project future consequences (e.g.,
resource utilization contention) of alternative decisions;

• Profile-Based and Timing-Based Analysis for analyzing
process timing constraints, identifying looming dead-
lines, and using previously-gathered profile information
to suggest early actions to increase the likelihood of
meeting these deadlines;

• Safety Envelopes to determine if system component be-
haviors are consistent with overall system and process
requirements, and to devise restrictive safety envelopes

when they are not.
We are optimistic that systems that implement Smart

Checklists will gain acceptance because they will reduce
workloads such as process documentation (which will be au-
tomatically generated) for process performers, reduce errors,
and improve outcomes. For instance, in the CABG scenario
described above, the actions of the nurses, technicians,
respiratory therapists, and assistants will be automatically
recorded, annotated with the times, dosages, and device
readings. While medical professionals will review and add
insightful comments to this documentation, the overall time
to create this documentation will be reduced and its accuracy
improved, providing a firmer foundation for evidence-based
process improvement.

II. APPROACH

In earlier work (see [1] for summaries of this work and
detailed references), we developed and evaluated technolo-
gies to support the continuous improvement of health care
processes. Specifically we developed a modeling language,
called Little-JIL [9], and a suite of analysis tools for
evaluating Little-JIL process models. A recent evaluation
undertaken by the D’Amour Cancer Center attributes, in
large part, a roughly 70% drop in errors to our work on
representing and analyzing chemotherapy processes [6].

We are now building SmartCheck, a prototype system
that will build on this earlier work to create and manage
smart, context-aware, dynamic checklists. These checklists
will include lists of impending tasks to be performed and
conditions to be checked. The checklists will also incor-
porate context information, where our notion of context is
quite broad, including the history of the process execution,
summaries of past executions, and projections of possible
future execution of the current process. Some checklist
items will be inferred statically using analyses of process
models to determine which steps are needed to ensure
that a process execution satisfies stated correctness and
safety requirements. But some checklist items will change
dynamically as execution proceeds, driven by changes to
context caused by actions of other performers, new infor-
mation generated by analysis components, and other system
execution events. The components we are building (e.g.
our context generators and analyzers), embedded hardware
devices, software applications, and process performers will
all be viewed as system components that generate events
and both produce and consume context information. Appro-
priate summaries of these events, combined with historical,
prospective and current process execution information, will
then be synthesized and presented as context information to
human performers.

The scenario presented in Section I illustrates the use
of a system like SmartCheck, suggesting that up-to-the-
minute patient information and individual OR actions could
be communicated as appropriate to OR personnel and to ICU
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Figure 1. Conceptual Architecture

personnel. As these contexts change the Smart Checklists
will be modified in response, to assure that OR and ICU
personnel and devices receive suitably modified guidance.

Figure 1 shows the abstract conceptual architecture of
this system. Components on the left were developed in our
earlier work and support formalizing and analyzing medical
processes, with the smaller arrow at the bottom of the figure
indicating that offline static analysis is used to improve the
process whose execution is being aided by SmartCheck.
The larger arrow at the bottom of the figure indicates
that results of previous process executions will continually
update summaries to provide increasingly comprehensive
historical context information. Components on the right will
both generate and react to events, some of which will be
picked up automatically from hardware devices and from
querying of software systems (such as EHRs). Other events
will be originated by process performers and analysis tools
executing at runtime. Analysis tools will support each other
by exchanging their results in ways indicated below. The
outputs of these components will, as shown, be funneled
through an Event Interaction Manager that will ensure the
right tasks and context information are communicated to the
right performer checklists in a clear and timely way.

The key components of our expanded vision of this sys-
tem are: the Retrospector, which will provide information
about process execution history; the Prospector, which will
provide possible future process execution information such
as tasks to be performed, resources to be required, and
upcoming decisions to be made; the Deviation Detector,
which will monitor event streams to determine when pro-
cess execution has deviated from the process model, rank
the most likely causes of deviations, suggest what might
have been done incorrectly, and indicate possible ways to
recover; the Constraint Evaluator, which will notify human
performers when process execution has, or will imminently,
violate a specified constraint; the Real-Time Analyzers,
which will keep performers apprised of looming deadlines,

increasing the urgency of warnings as deadlines approach;
the Profile-Based Analyzers, which will use accumulated
historical data to determine probabilities of unwanted events
and suggest ways to avoid them; and the Event Interaction
Manager (EIM), which will manage the flow of events and
information between the analysis components and process
performers to assure that the right events and information
are delivered to the right performers [10].

III. RESEARCH CHALLENGES

In this section we describe a few of the many research
challenges we anticipate in developing the SmartCheck
prototype.

A. System Architecture and Infrastructure

SmartCheck will support the activities of agents, ranging
from doctors and nurses to infusion pumps and medical
record systems, who are both providers and consumers of
this information. The components of SmartCheck itself will
both use and create information needed by other components
and by those process agents. Different instances and different
types of agents will require and provide different kinds of
information at different times. The necessity to create, share,
and use large amounts of diverse and complex information
about the execution of the process, its history and possible
future paths, is a key challenge of human-intensive systems,
and is being studied as a key activity of this project, using
the example of complex health care processes such as the
OR-ICU handoff process described above. We now focus on
two particularly central aspects of this research.

Specification of state information requirements: Our
Little-JIL process language interpreter manages a lot of cur-
rent state information, but, as noted in Section II, the context
information that SmartCheck will provide will be much more
comprehensive. For example, historical information will be
an important component of the context information needed
especially by decision-makers such as doctors. Analysis of
actual process models will help us to understand the needs
for these different kinds of information, thereby offering
important insights into desirable strategies for meeting these
needs. Ultimately this research will suggest desiderata for
languages to be used as the basis for specifying the integra-
tion of components to implement human-intensive cyber-
physical systems.

The SmartCheck Architecture: While Figure 1 presents
an abstract view of the system that we are building, it
leaves unanswered many questions about how this will be
implemented as a concrete system architecture. For example,
the various analysis components that we are developing will
be both consumers and producers of context information,
and the various agents in the system will also be both
consumers and producers. Various offline static analyzers
will be producers of information used to augment process
context, but new process executions will also create data of



value as input for augmenting the historical archive. All of
this raises questions about where various kinds of context
information will reside, what entities will collect it and how
they will maintain it.

We are building upon existing technologies, namely the
Janus message-passing system, developed at the University
of Massachusetts, and the DocBox technology, developed
by DocBox, Inc. and based upon years of collaborative
work by the Medical Device Plug-and-Play (MD PnP)
Interoperability program. Janus translates agent activities
into events that are recognizable as Little-JIL process events
(and vice versa), using an event translation table that will
be dynamically modifiable so that the information exchanged
will vary over time as needed. Janus has been used primarily
for supporting communication with human agents, but in
SmartCheck it will also communicate with devices and
hospital software systems through the DocBox platform.
DocBox’s platform utilizes the Object Management Group’s
Data Distribution Service specification as a messaging ser-
vice. This, paired with a JBoss Drools multi-event process-
ing engine, creates a link between the process performers,
devices at the patient’s bedside, and the hospital network that
we will use to communicate process performers’ actions to
the EIM, which will then pass them on to the SmartCheck
components via Janus and the event translation specification.
The DocBox platform is compliant with the ASTM F2761-
2009 Device Integrated Clinical Environment Standard for
safely engineering medical device integration for patient-
centric care and the platform’s nomenclature and information
model is based on the IEEE 11073-10102 standard for
point-of-care medical device communication and SNOMED
CT. Initially, we will use the specification of the DocBox
platform as an interface for SmartCheck’s communication
with the clinical environment, but, eventually, SmartCheck
may run as an application on the DocBox platform. Our
experience with these key components will help define
requirements for the information that devices will need to
provide to support implementation of the Smart Checklist
vision.

B. Process Monitoring, Deviation Detection and Explana-
tion, and Recovery

SmartCheck will attempt to determine whether a sequence
of events coming from a process execution is consistent
with at least one trace through a process model and, if
not, attempt to explain why and attempt to suggest remedial
action. Essentially, SmartCheck will compare the incoming
sequence of events with all possible executions described
by the process model, and determine whether this sequence
occurs on a prefix of any possible execution. SmartCheck
will do this by defining the sequence of events to be a prop-
erty, and then using model checking to determine whether
any execution satisfying the process model also satisfies the
property. If not, SmartCheck will report a deviation and will

also provide indications of how and why the deviation might
have occurred and will attempt to suggest how to recover
from the deviation. But finding good explanations is not
straightforward

For example, suppose a process model specifies two
possible step sequences, a, b, c, d, g, h, and a, c, d, e, f , h,
and the event sequence a, c, d, g has been observed. Either
step b has been omitted from the first path, or step g has
been incorrectly performed after step d in the second, but
we cannot definitively determine which is the case. Making
matters worse, even detection of a deviation (such as the
omission of b) can require observing an arbitrarily large
number of steps after the deviation has occurred in cases
where the process paths are sufficiently similar.

We are exploring the use of string matching to address this
problem. We select a set of edit operations (e.g. insertion
and deletion) to modify a sequence and assign a cost to
each operation. We then use a search procedure (e.g., a stan-
dard dynamic programming algorithm) to identify low-cost
sequences of edit operations that convert event sequences
satisfying the process model into the observed sequence.
Each sequence of edit operations then provides a possible
explanation of how the observed execution deviated from
the process model. The costs of these explanations are used
to rank them and suggest which to show to the process
performers. We are also exploring whether more accurate
explanations might be derived from treating complicated
edits as single operations with lower cost than equivalent
sequences of insertions and deletions (e.g., [11], [12]).

We will also explore providing performers with guidance
about corrective actions that they might take. Although there
are many difficulties in doing this well, the safety literature
(e.g., [11]) makes it clear that very serious problems often
result from misguided attempts to recover from erroneous
situations.

In health care in particular, we do not expect to find easy
algorithms for guiding performers back to safe conditions
after a deviation has occurred. But we are asking domain
experts to identify deviations that are especially common
and to construct appropriate repertoires of recovery actions
for them. We are also asking domain experts to select the
constraints they consider especially critical during recovery
from deviation. These constraints are being chosen from
those defining the safety envelope, those used in real-time
analysis, and those used in model checking. The Constraint
Evaluator component shown in Figure 1 will monitor actions
taken during recovery to check that violations of these
constraints are not imminent.

C. Context Awareness

SmartCheck will provide process performers with infor-
mation they can use to build confidence in the appropri-
ateness of requests to perform a tasks. This information is
likely to be of special value in scenarios like the OR-ICU



handoff, where some process performers enter the process
with little knowledge of the history of the particular process
execution. The answers to queries will be derived from
process execution context information that SmartCheck will
gather and maintain.

A process defined in a language such as Little-JIL is
the synthesis of information about activities, resources, and
artifacts. The SmartCheck Prototype will maintain these, but
we are developing new technologies to gather additional
kinds of information such as what steps, performed by which
entities, used which inputs in what ways to derive which
outputs.

Initially SmartCheck will use Data Derivation Graphs
(DDGs) [13], [14] to manage such process information. A
DDG is a DAG-like structure that records the steps per-
formed, what entity performed them, and (usually pointers
to) the artifacts used as inputs and outputs. The history of
how an artifact was developed is provided as a trace through
the DDG, and complements the current values of artifacts.
Query languages and summarizers are being developed to
extract needed information and represent the results. Some
summarization may be done proactively. Controlling the size
of a DDG will be a challenge, as DDGs become very large
very quickly, especially if they record fine-scale details of the
execution of long-running processes. We are studying such
questions as which details are worth capturing and recording,
and whether automated or semi-automated techniques might
be used to change the kinds of details recorded. We will
also address the problem of expediting the extraction of
information that is to be presented, as well as historical
information and summaries of that information.

SmartCheck will provide information about expected fu-
ture paths through the process, including information about
the consequences of decisions that a process performer may
be about to make. The Prospector will use algorithms from
model checking to trace paths through the Little-JIL activity
diagram forward from the step(s) currently being executed.
While tracing paths forward, the Prospector will accumu-
late information about resource utilization levels, potential
resource contention, estimated elapsed time, and projections
of what other process performers will be doing at what future
times. The Prospector will rely upon appropriate estimates of
time, cost, resource requirements, and accumulated historical
records of past process executions.

D. Profile-based and Timing-based Analysis

We will use process execution monitoring results to accu-
mulate historical information summarizing multiple process
executions. This historical information will include, for
example, the probabilities of various events occurring in
different process contexts. Such information will be used
to refine prospective analyses as well as the process models
themselves. We use such information, for example, to try to
determine when a particular check is wasteful because the

circumstances under which it detects errors rarely arise or
to suggest when inserting an additional check at a particular
point should be expected to catch a large number of errors
before they cause harm. Doing this effectively requires
knowing the probabilities of all the ways the process could
arrive at that point. We are exploring probabilistic model
checking techniques for deriving this information.

Real-time constraints are clearly an important part of
many health care processes. For instance, in surgery in
which the patient is placed on a ventilator, it is sometimes
necessary to stop the ventilator before taking an x-ray. It
is, of course, crucial that the ventilator be turned back on
quickly, and patients have died when exceptional events
diverted the attention of the medical staff who then failed to
restart the ventilator in time. Soft real-time constraints are
also common, as in nursing checks on patient condition or
laboratory tests to adjust medication dosages.

Little-JIL currently includes a primitive timer construct,
but this is cumbersome to use at best and may not be
powerful enough to express some of the important kinds
of timing constraints needed for human-intensive systems.
We are investigating additional specification techniques for
adding real-time information to process models and ways
to use this information to efficiently implement appropriate
warnings of impending deadlines. We are also exploring
static analysis approaches, such as real-time model checking,
to detect potential timing vulnerabilities and guide process
performers’ decisions about meeting upcoming deadlines.

IV. EVALUATION

The smart SmartCheck prototype will be used to explore
several important research questions such as:

1) Does the architecture of our prototype system ade-
quately support communication and interaction among
the prototype components and with the agents (includ-
ing humans, devices, and software systems) executing
the process?

2) How well do our technologies assess and represent
current, past, and future context and accumulated
historical data? How well do they respond to queries
about process context from process performers?

3) What kind of detail in the event stream is required
for our system to determine the progress of process
execution?

4) How well do our technologies detect process devi-
ations and identify likely causes, and how is this
affected by the quality of the event stream?

5) How can profiles of past executions be used to improve
process models, monitoring and guidance?

We will explore these questions using simulated event
streams gathered from a variety of sources, and will ex-
periment with degrading these event streams by eliminat-
ing events, seeding errors, etc., and determining how such
changes affect the ability of our tools to derive context



and detect deviations. We will also ask experts on the
medical processes to evaluate such things as the quality of
the explanations suggested. For instance, we will present
these experts with information about an execution of one
of the processes and output from SmartCheck at that stage
of execution and ask them how they would use the output
and whether it is helpful, what other information they would
want, what queries they might make for additional context
information. The execution scenarios considered will include
nominal ones as well as ones in which exceptional conditions
have arisen. As the prototype develops, we hope to carry out
observations in simulated clinical settings to see whether
the guidance offered by SmartCheck can actually improve
performance.

V. CONCLUDING REMARKS

We believe that the proposed approach has the potential
to transform health care. As argued earlier, experience with
less flexible and less comprehensive approaches, such as
checklists and simplistic process models, have resulted in a
significant reduction in errors. We believe that our proposed
approach addresses many of the adoption issues associated
with these other approaches and provides better support
for process performers. Although our proposed approach
will not be applicable to all medical processes, there are
clearly a large number of medical processes where it might
prove applicable. Also, although clinical practices vary from
hospital to hospital, there appear to be some core processes
that are followed nearly universally. Support for these pro-
cesses, along with specialization that would allow these
processes to be tailored for specific locations, would make
an important contribution to improving the performance of
these processes. In addition, our process-based approach
should be applicable to other human-intensive systems that
have serious safety concerns.
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