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Abstract- The constrained expression approach to analysis 
of concurrent software systems has several attractive features, 
including the facts that it can be used with a variety of de- 
sign and programming languages and that it does not require 
a complete enumeration of the set of reachable states of the 
concurrent system. This paper reports on the construction of 
a toolset automating the main constrained expression analysis 
techniques and the results of experiments with that toolset. The 
toolset is capable of carrying out completely automated analyses 
of a variety of concurrent systems, starting from source code 
in an Ada-like design language and producing system traces 
displaying the properties represented by the analyst’s queries. 
It has been successfully used with designs that involve hundreds 
of concurrent processes. 

Index Terms- Concurrent systems, automated analysis, anal- 
ysis tools, experimental evaluation, toolset performance, con- 
strained expressions, formal methods, event-based model. 

I. INTRODUCTION 
ITH increasing frequency, large software systems are W organized as collections of cooperating asynchronous 

processes. Their size alone makes these systems hard to under- 
stand, but the difficulty is vastly increased by the introduction 
of nondeterminacy. Nondeterminacy in such systems can arise 
when the computations carried out by some components 
of the system depend on the unpredictable order of events 
occurring in other components. and can also result from 
the deliberate use of nondeterministic program constructs. 
Software developers use nondeterminacy to cope with lack 
of knowledge about the environment, as in navigation and 
process control systems. to make efficient use of resources, as 
in operating systems, and for other reasons. Nondeterminacy 
is ubiquitous in both logically concurrent and truly parallel 
systems, but confidence in the reliability of such a system 
requires that its developers understand a potentially enormous 
number of subtle and often unexpected interactions among its 
components. 

Developers of concurrent systems therefore need rigorous 
analysis methods. The analysis of concurrent software systems 
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should begin at the design stage, so that errors can be detected 
early in the development process when the cost of correcting 
them is smallest, and continue through evaluation of the 
completed code. Of course, different analysis methods may 
be appropriate at different stages of development. 

A number of analysis methods for concurrent systems have 
been proposed, based on a variety of models of concurrent 
computation and intended for answering different questions at 
different stages of development. The methods include those 
based on constructing the set of possible states of the con- 
current system (e.g., [1]-[3]), on proving theorems in some 
logical structure associated with the system (e.g., [4], [5 ] ) ,  and 
on examining the execution of a completed system or some 
simulation of it (e.g., [6], [7]). 

It is unlikely that any one approach will meet all the 
needs of developers of concurrent systems, so developers 
who might use these methods will need to know such things 
as the types and sizes of systems to which each of the 
methods can be usefully applied, and the sorts of questions 
about those systems the methods can most effectively answer. 
Unfortunately, we simply do not have this information for 
most of the proposed methods. For example, measures of 
the computational complexity of an analysis technique tell us 
something about limits on the size of the systems to which it 
can profitably be applied, but the complexity of many methods 
is not well understood. Furthermore, even a method that is 
known to be, say, exponential in the number of processes in the 
concurrent system may be able to provide useful information 
if the systems of interest are small enough that the method 
can be feasibly applied. 

Further complicating the task of assessing the practical 
value of these methods is the fact that it is unlikely that 
any of them can be of much use to developers of concurrent 
software systems without automated support. Even high-level 
designs for real concurrent systems are large enough to make 
manual application of rigorous analysis methods impractical, 
and the difficulty of the analysis usually increases as the 
designs are elaborated into completed code. This means that 
assessments of the value of analysis methods to developers 
of concurrent systems depend in part on the availability of 
implementations of those methods, and therefore on the details 
of those implementations. 

The value of research in software engineering, however, 
depends on its utility as well as its elegance or intellectual 
fruitfulness. We therefore believe that evaluation of the poten- 
tial significance of a method €or analyzing concurrent software 
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systems must include the application of an implementation 
of that method to a variety of types and sizes of concurrent 
systems, in addition to more formal and theoretical assess- 
ments. Conducting such an empirical assessment requires an 
implementation of the method and introduces a number of 
variables related more to details of the implementation and its 
hardware and software platforms than to the analysis method 
itself. But it is not possible to understand the value of the 
method to software developers without this sort of experience 
with its application. 

For several years, we have been developing analysis meth- 
ods based on the constrained expression formalism [8]-[ 111. 
The constrained expression approach to analysis has a number 
of attractive features. It is based on a formal model of 
concurrent computation that is well-suited to answering some 
of the natural and fundamental questions about occurrences 
of events that arise in the analysis of concurrent systems. It 
can be used with a variety of standard design or program- 
ming languages based on different views of the semantics 
of concurrent computation and applied at different stages of 
the development process [lo], thereby allowing developers to 
work in congenial and appropriate notations while retaining the 
ability to apply rigorous analysis methods. Furthermore, the 
analysis techniques limit some of the effects of combinatorial 
explosion, since they do not require enumeration of the set of 
reachable states of the system. 

As we have just argued, however, an assessment of the value 
of the constrained expression approach for software developers 
requires an empirical evaluation of the methods. We have 
recently completed the construction of a toolset automating 
some of these methods and have applied it to a number of 
examples of concurrent systems. The purpose of this paper is to 
describe the toolset and the analysis methods it implements, the 
results of our experiments with it, and our current assessment 
of the strengths and weaknesses of our approach. 

The paper is organized as follows. The next section gives 
some background on the constrained expression formalism, 
including a somewhat more general formulation than in our 
previous papers. Section 111 describes the tools and analysis 
methods they implement. Section IV discusses the results of 
our experiments with the application of the toolset. In Section 
V we assess the strengths and weaknesses of the toolset and 
our approach, on both theoretical and empirical grounds. In 
the last section we discuss our conclusions and some of our 
future research plans. 

11. THE CONSTRAINED EXPRESSION FORMALISM 

In the constrained expression approach to analysis of con- 
current systems, the system descriptions produced during 
software development (e.g., designs given in some design 
notation) are translated into formal representations called 
constrained expression representations, to which a variety of 
analysis methods are then applied. This section contains a 
brief description of the central features of the constrained 
expression formalism. A detailed and rigorous presentation 
of the formalism is given in [lo, appendix], and a less 
formal treatment presenting the motivation for many of the 

features of the formalism appears in [9]. The description 
of the constrained expression formalism presented in this 
section generalizes aspects of these previous presentations. 
This more general treatment of the formalism does not affect 
the semantics of the constrained expressions which appear in 
the earlier presentations, but it may be easier to understand and 
it facilitates methods for composing constrained expressions 
and for modularizing their analysis. 

Constrained expressions provide a very general model of 
system behaviors and have been used with a variety of 
descriptive notations, including a design language providing 
asynchronous message passing primitives, a subset of CSP 
(which provides synchronous message passing primitives), 
and Petri net languages [lo]. The front-end of the con- 
strained expression toolset described in this paper implements 
a particular constrained expression formulation of an Ada- 
like design language, called CEDL (Constrained Expression 
- Design Language), which we use for the examples below. 
A reader with some familiarity with Ada should have no 
difficulty understanding these CEDL examples; the limitations 
of CEDL are discussed in Section 111-A. 

The constrained expression formalism assumes an event- 
based model of computation. An execution of a concurrent 
system is modeled by a (totally or partially) ordered set 
of event occurrences, representing the activities the system 
engages in and the order in which the activities occur. The 
complexity and duration of events depends on the level of 
detail at which the system is regarded. Example events might 
include the synchronous exchange of messages involving two 
processes, a process asynchronously sending (or receiving) 
a message to (or from) another process, a process entering 
its critical section, a process incrementing the value of some 
variable, etc. 

Event-based models of concurrent computation can be clas- 
sified according to whether they assume the event occurrences 
in an execution of a concurrent system are partially or totally 
ordered in time. Constrained expressions have a natural inter- 
pretation in terms of a model of computation based on total 
ordering of event occurrences. We represent a totally ordered 
execution (sequence of event occurrences) by a string over an 
alphabet of event symbols, with each appearance of an event 
symbol representing a distinct occurrence of the associated 
event. A string representing a totally ordered execution of a 
system is called a system truce. In this context the constrained 
expression representation of a concurrent system provides a 
closed-form representation for the set of system traces. That 
is, the constrained expression determines a language, and this 
language describes the possible sequences of event symbols 
that can occur as system traces. This is the interpretation of 
constrained expressions described in our earlier work [9], [lo]. 

This interpretation of constrained expressions suffices for 
most purposes (and, in particular, for the purpose of un- 
derstanding the constrained expression analysis techniques 
described in this paper). To explain how a constrained expres- 
sion describes partial orders among system events, we show 
in the next subsection how the constrained expression can be 
used to group the system traces into interleaving sets [12]. 
Informally, an interleaving set represents a partial order on 
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task EO is 
entry UO; 
entry DO; 

-- pick up fork 0 
-- put down fork 0 

end FO; 

task body FO is 
begin 

loop 
accept UO; -- pick up 
accept DO; -- put down 

end loop; 
end FO; 

task PO; 

task body PO is 
begin 

while ... loop 
... , -- Think 
F1 .U1 ; 
FO.UO; 
... , -- Eat 
F1.M; 
FO.DO; 

end loop: 
end PO; 

Fig. 1.  Fork and philosopher tasks from dining philosophers in CEDL. 

event occurrences by the full set of total orders that extend 
the partial order. A constrained expression can be viewed as 
determining a set of interleaving sets, where each interleaving 
set consists of those system traces that are consistent with 
some partially ordered execution of the system as determined 
by process logs and communication events. (A process log 
corresponding to a trace is obtained by projecting the trace 
on the event symbols representing the events that the process 
participates in.) The representation of an execution as an 
interleaving set makes it possible to express the partial order 
which underlies the execution: event a occurs before event 
6 if and only if the a-symbol precedes the 6-symbol in every 
trace in the interleaving set. We present an example below that 
illustrates this interpretation. The analysis techniques described 
below are fully compatible with an interpretation of executions 
as partial orders on events. 

A.  Constrained Expression Representations 

The constrained expression representation of a concurrent 
system consists of an alphabet A of event symbols and a 
finite collection of expressions e,, each having an associated 
expression alphabet A, C: A,  1 5 7 5 n. The traditional 
regular expression operators (concatenation, disjunction, and 
Kleene star), the interleave operator (which is regular), and 
the transitive closure of the unary interleave operator (which 
is not regular and is also called the dagger operator) are used 
for forming the component expressions. Intuitively, A defines 
the alphabet used for describing system traces (as strings), 
and each component expression e, specifies the patterns of 
symbols from A,  that appear in system traces. More precisely, 
we say a string satisfies an expression if projecting the string 
on the expression alphabet produces a string in the language of 
the expression, and violates the expression otherwise. We then 
consider any string that satisfies all the component expressions 
in the constrained expression representation of a system to 
represent a system trace. In other words, those strings s over 
the alphabet A for which the projection of s on A,  lies in the 
language of e,, for i = 1 . . . n, represent system traces. 

In the case of a design written in CEDL, our Ada-like design 
language, each component sequential process T ,  called a task 
in the Ada terminology, gives rise to a task expression e r  and 
corresponding task alphabet AT. The task expression describes 
the activities in which the task engages. However, because a 

task expression is derived from the code for a single task, it 
does not reflect the activities of other tasks, and so it does 
not express restrictions imposed on a task’s activities by the 
environment in which it executes. Moreover, certain aspects of 
the semantics of a design or programming notation are more 
easily expressed in separate expressions. For these reasons, 
the constrained expression representation for a system usually 
contains some additional expressions e, and corresponding 
expression alphabets A,. We call these expressions constraints, 
since they further restrict the patterns of symbols appearing in 
system traces. Constraints are typically derived from the full 
system description and may relate symbols from different task 
alphabets. 

We consider a CEDL version of the dining philosophers 
problem with three philosophers to illustrate these ideas. Fig. 1 
shows the CEDL code for one fork task and one philosopher 
task from this system. The fork task loops repeatedly, accept- 
ing calls to its U0 and DO entries. The philosopher task loops 
an indeterminate number of times (as indicated by the elided 
test in the w h i l e  statement), calling the U entries of the fork 
tasks on its “left” and “right” and then calling the D entries 
of those tasks. There are two more fork tasks and two more 
philosopher tasks in the system, with similar designs. Fig. 2 
gives the task expressions produced by the toolset for these two 
tasks, and Fig. 3 shows some of the constraints produced by the 
toolset for this system. We give the expressions in the LISP- 
like prefix notation used as input to several of the tools, which 
uses “NIL” to denote the empty string, “SEQUENCE” for the 
concatenation operator, “OR” for disjunction, and “STAR” for 
the Kleene star. (The task expressions and constraints required 
for CEDL are all regular, so the dagger operator does not 
appear.) For the example, we assume that the set of symbols 
appearing in an expression determines its alphabet. The table in 
Fig. 4 summarizes the interpretation of event symbols. We note 
that the permanent blocking of a task indicated by the hang 
symbols does not presuppose any particular cause for this 
blocking, which could be due to circular deadlock, termination 
of other tasks, or other reasons. The synchronization constraint 
in Fig. 3 enforces proper synchronization of rendezvous for 
one of the entries of a fork task. Similar synchronization 
constraints are required for all entries. The blocking constraint 
in Fig. 3 ensures that a fork task does not wait forever for 
a rendezvous with one of the philosophers if the philosopher 
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(deftask fO 
("SEQUEECE" "beg-loop (fOO)" 

("STAR" 
("SEQUEUCE" 

("OR" 
("SEQUEUCE" "beg-rend(p1 ;fO. u0) " "end-rend(p1 ;f 0 .uO)" ) 
( "SEQUENCE" "beg-rend(p0; f 0. u0) " "end-rend(p0 ;f 0. u0)" ) ) 

("SEQUEBCE" "beg-rend(p1 ;fO. do) " "end-rend(p1 ;fO. do)" ) 
("SEQUEBCE" "beg-rend(p0; fO. do) " "end-rend(p0; fO .do)" 1 ) ) 

("OR" 

("OR" 
("SEQUENCE" "hang-a(f0. u0) " "stop(f 0) " ) 
( "SEQUEICE" 

("OR" 
("SEQUEUCE" "beg-rend(p1; fO.uO) " "end-rend(p1 ;f 0 .uO) " ) 
("SEQUENCE" "beg-rend(p0; fO.uO) " "end-rend(p0;fO .uO)" ) ) 

"hang-a(f0. do) " "stop(f0) " ) ) ) )  

(deftask PO 
("SEQUEECE" "beg-loop(pO0) " 

("STAR" 
("SEQUENCE" "call (p0 ;f 1 .ul)" "resume (p0 ; f 1. ul) " "call (p0;fO .uO)" 

"resume (PO; fO.uO) " "call(p0;f 1. dl) " "resume (p0;f 1. dl) " 
"call(p0;fO. do)" "resume (PO; f 0. do)" ) ) 

("OR" 
("SEQUENCE" "end-loop(p00)" "tem(p0) " 
("SEQUENCE" "hang-c (p0;fl .ul) " "stop(p0)" 
("SEQUENCE" "call(p0;f 1 .uI)" "resume (p0;fl .ul)" "hang-c (p0;fO .uO)" 

("SEQUEECE" "call(p0 ;f I .ul)" "resume (PO ;fl . u l ) "  "call(p0 ;fO.uO)" 

("SEQUEICE" "call (p0 ;f 1 .u l )  ' I  "resume (p0 ; f 1 . ul)" "call (PO; fO .uO)" 

"stop (PO) " 

"resume (PO; fO. u0) " "hang-c (p0;f 1. dl) " "st op(p0) " 

"resume(pO;fO.uO) " "call(p0;f 1 .dl) " "resume (p0;fl .dl)" 
"hang-c (p0;fO. do) " "stop(p0)" 

Fig. 2. Two task expressions derived from the dining philosophers problem 

task is also waiting for the same rendezvous. The queueing 
constraint in that figure ensures that the order in which two 
philosopher tasks call the same entry of a fork task determines 
the order in which the fork task accepts the calls. Other types 
of constraints that do not occur in this example enforce the 
correct dependence of control flow on the values of variables 
and handle the failure of nested rendezvous. A n  example of 
the former type is presented in Section I11 (see Fig. 7). 

Lnder a partial order interpretation for the semantics of 
constrained expressions, two system traces produced from the 
constrained expression representation of a CEDL design can 
be regarded as describing the same partially ordered execution 
if they have identical projections on each of the task alphabets 
(i.e., identical task logs). In the set of interleaving sets model, 
this means that the traces belong to the same interleaving set. 
Consider, for example, an execution of the dining philosophers 
system in which PO and P1 each think and eat once and P2 
never does anything. In any such execution, PO attempts to 
pick up fork F1 and then fork FO, while P1 first attempts to 
pick up F2 and then F1. The system admits two such partially 
ordered executions in which PO and P1 each eat once and 
P2 does nothing, corresponding to the two possible orders in 
which PO and P1 can pick up their common fork F1. This 
is reflected in the fact that traces describing such executions 
may produce one of two possible projections on the alphabet 

of F1. If P1 picks up F1 first, then PO must wait for P1 to put 
F1 down before picking it up, and so the interleaving set that 
corresponds to this execution contains a single system trace. 
However, if PO picks up F1 first, then the CEDL code does 
not serialize the philosophers' use of their other forks, and 
there are traces in the interleaving set that describe different 
orderings in the use of these forks. 

The descriptions of the constrained expression formalism 
in our previous papers provide a more operational, but also 
less general, characterization of the set of system traces 
defined by the constrained expression representation of a 
distributed system. That characterization of a system trace is 
consistent with the characterization above, provided that the 
alphabets of the task expressions are disjoint. The more general 
characterization of constrained expressions described in this 
paper treats task expressions and constraints more uniformly, 
making it easier to compose constrained expressions in a 
manner that is appropriate for modularizing the representation 
and analysis of systems. 

B. Constrained Expression Analysis 
Our main constrained expression analysis techniques require 

that questions about the behavior of a concurrent system be 
formulated in terms of whether a particular event symbol, or 
pattern of event symbols, occurs in a system trace. In the 
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end-rend(T,E) 
hang-a (E 1 
hang-c (T, E) 
resume(T,E) 
stop(T) 
term(T) 
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- -r - 
End rendezvous with task T on entry E 
Task is permanently blocked waiting to accept a call on entry E 
Task T is permanently blocked calling entry E 
Resume T, after rendezvous on entry E 
Task T stops execution (abnormal termination) 
Task T terminates (normally) 

(defconstraint SYBCHROBIZATIOU-1 
("SEQUEECE" 

("STAR" 
("SEQUEUCE" "call (p0 ; f 1 . ul) " "beg-rend(p0; f 1. ul) " "end-rend (p0 ; f 1 .ul)" 

"resume (PO; f 1.~1)" ) 
("OR" 

"EIL" 
("SEQUEBCE" "call(p0;f 1 .ul)" "beg-rend(p0;f 1 .ul)" ) ) ) ) 

(def constraint BLOCKIPGl 

"hangA(fO.uO) " 
("STAR" 

("OR" 

("OR" "hang-c (pl ;fO.uO) " "hang-c(pO;fO.uO)" ) )  ) ) 

(defconstraint QUEUEIUG-1 
("STAR" 

("OR" 
( "SEQUEUCE" "call (pl  ;f 0. u0) " 

("STAR" "call(p0;fO. u0)" "beg-rend(p1 ;f 0 .uO) " "call(p1; f 0. u0)" 

"beg-rend(p1 ;fO.uO) ") 

("SEQUEECE" "call(p1 ;f 0 .uO)" 
("STAR" "call(p0;fO .uO) " "beg-rend(p1 ;fO .uO) ' I  "call(p1; fO. u0) " 

"call (p0 ;fO. u0)" "beg-rend(p1 ;f 0.110) " "beg-rend(pO;fO . ~0)") 
("STAR" "call(p1; fO .uO) " "beg-rend(p0 ;fO .uO) " "call (PO; fO. u0) " 

"beg-rend(p0;fO .uO) "1 
("SEQUEECE" "call(p0 ;fO .uO) " 

("STAR" "call(p1; fO .uO) " "beg-rend(pO;f 0 .uO) ' I  "call(p0 ; fO.uO) " 

"call(p1 ;fO .uO)" "beg-rend(pO;fO.uO)" "beg-rend(p1 ;fO .uO)") 1) ) 

"beg-rend(p0;f 0. u0) ") 

"beg-rend (p0 ; f 0. u0) " ) 

("SEQUEUCE" "call(p0 ;f 0 .uO)" 

"beg-rend(p1 ;fO.uO)") 

"beg-rend(pl;fO.uO)") 

Fig. 3 .  Some constraints generated by the toolset from the dining philosophers system. 

I Symbol I Aaaociated Event  I 

,- ~ ~~- ...._ 

I end-looD(L) I End execution of loon L 

Fig. 4. Interpretation of event symbols 

dining philosophers, for example, the question of whether a 
philosopher who has finished thinking can be blocked indefi- 
nitely from eating can be phrased in terms of the occurrence 
of hang-c symbols representing the permanent blocking of 
the philosopher task on a call to one of the appropriate entries 
of the fork tasks. The relevant questions to ask about a system, 
of course, depend on the particular system being analyzed and 
the correctness criteria for that system. 

From the task expressions and constraints, we generate a 
system of inequalities involving the numbers of occurrences of 
the various symbols in a system trace. Additional inequalities 
can then be added to express the assumption that a specified 
symbol or pattern of symbols also occurs in a trace. If the 

resulting system of inequalities thus generated is inconsistent, 
the original assumption is incorrect and the specified symbol 
or pattern of symbols does not occur in a legal system trace. 
If the inequalities are consistent, we use them in attempting to 
construct a system trace containing the specified pattern. The 
next section describes this very general approach to analysis in 
more detail and explains how it is automated in the constrained 
expression toolset. 

111. THE TOOLS 

There are five major components of the constrained expres- 
sion toolset (see Fig. 5). In normal use, an analyst would first 
use the deriver to produce a constrained expression represen- 
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CEDL design "no trace" U 
inequalities Generator 

constrained 
expression solution L d  

Fig. 5.  Diagram of constrained expression toolset. 

tation from a concurrent system design written in the CEDL 
design language. This constrained expression would then be 
used as input to the constraint eliminator, which intersects 
some of the task expressions and constraints, producing an 
equivalent constrained expression with fewer constraints. The 
reasons for this procedure are explained below. The inequality 
generator takes the constrained expression produced by the 
eliminator as its input, together with a query formulated by the 
analyst, and produces a system of linear inequalities capturing 
certain features of the constrained expression and the query. 
These inequalities involve variables representing the structure 
of the task expressions and the numbers of occurrences of 
particular events in the traces or behaviors of the concurrent 
system being analyzed. The IMINOS integer programming 
package would then be used to determine whether this system 
has any integer solutions and, if it does, to find one with appro- 
priate properties. The inequality generator provides facilities 
to assist the analyst in interpreting the system of inequalities 
and the solution, if any, found by IMINOS. When a solution is 
found, the behavior generator uses heuristic search techniques 
to determine whether this solution corresponds to an actual 
system trace, and to produce such a trace if i t  does. The 
behavior generator can also be used with information about 
a candidate trace provided by the analyst. The constraint 
eliminator, inequality generator, and behavior generator are 
written in Common LISP. The deriver is written in Ada and 
the integer programming package is written in FORTRAN. 

In the remainder of this section we discuss each of the 
components of the toolset in more detail. Technical reports 
describing the implementation of the tools are available from 
the authors. 

A. The Deriver 

The deriver provides a front-end for the constrained ex- 
pression toolset. It translates system designs into constrained 
expressions, which are then manipulated and analyzed by 
various other tools. 

Our current deriver requires that designs be written in 
CEDL, our Ada-like design language. CEDL focuses on the 

expression of communication and synchronization in a concur- 
rent system, and language features not related to concurrency 
are kept to a minimum. The most important limitations of 
CEDL designs can be summarized as follows: 

Boolean is the only predefined type; all other types are 
specified using enumeration types 
There are no global variables 
There are no primitives for data encapsulation. Packages 
simply group together type and variable declarations, all 
of which are exported 
Design units may not be generic 
There are no exception-handling features 
Design units may not be nested 
There are no input (get)  or output (put) statements. 

The restriction against nesting, besides simplifying the con- 
strained expression representations for CEDL designs, reflects 
our belief that nesting is a poor design (and programming) 
practice [ 131. Other restrictions limit the complexity of CEDL 
designs and their constrained expression representations. Most 
of the Ada control-flow constructs have correspondents in 
CEDL. CEDL also provides an ellipsis notation (written 
" . . . ") for expressing incompleteness in designs. The use 
of this construct was illustrated in the dining philosophers 
example of Section 11-A. The incompleteness construct can be 
used to elide statements, expressions, declarations, and types 
that will be elaborated in later system descriptions. 

The deriver produces task expressions for each of the tasks 
in a CEDL design from the code for the task bodies, using an 
attribute grammar approach. Fig. 2 shows two task expressions 
produced by the deriver from the CEDL code of Fig. 1. The 
deriver produces the constraints for the constrained expression 
representation of a CEDL design by instantiating a fixed set of 
constraint templates. Fig. 3 gives examples of the constraints 
produced by the deriver. 

The deriver is, of course, specific to CEDL. In principle, 
the other tools could be constructed in a CEDL-independent 
fashion and used with constrained expressions produced from 
any design notation. In fact, as discussed below, the inequality 
generator and behavior generator rely on certain features of 
CEDL in order to improve efficiency. 

B. The Constraint Eliminator 

As discussed in the next subsection, the inequalities we 
generate do not express the full semantics of constrained 
expressions, with the result that there may be solutions to 
the inequalities that do not correspond to system traces. In 
particular, the inequalities do not express certain restrictions 
on system traces which involve only the order in which certain 
events occur, rather than the numbers of such events in the 
traces. In practice, the most significant of these restrictions 
are those imposed by the constraints which ensure the con- 
sistent use of variables in CEDL programs. Without taking 
such restrictions into account, we would get solutions to our 
inequalities corresponding to "traces" in which, for example, 
the else branch of an i f  statement is taken even though 
the Boolean condition of the i f  statement evaluates to t r u e .  
We use the constraint eliminator to modify the constrained 
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("SEQUEPCE" ("OR" "def (flag; true)" 
"def (flag; f alse)") 

"use (f lag; false) " ) 

"use (flag; true) ") 

("OR" ("SEQUEICE" "use (f lag; true)" "call(T ; S. A)'' "resume (T; S .  A)") 

("OR" ("SEQUEICE" "use (f1ag;f alse) " "call(T; S .  B) " "resume (T; S. B)") 

Fig. 6. Part of the task expression for task T. 

(defconstraint DATAFLOU-I 
("STAR" ("OR" ("SEQUEPCE" "def (flag; true)" ("STAR" "use(f1ag;true)")) 

("SEQUEICE" "def (f1ag;false)" ("STAR" "use(f1ag;false)") 1) 1) 

Fig. 7. Dataflow constraint for local variable flag 

("OR" ("SEQUEPCE" "def (f lag; true)" "use (flag; true)" "call (T; S. A) " 
"resume (T ; S .  A) " "use (flag; true) ") 

"call (T j S .  B) " "resume (T ; S .  B) " ) 
("SEQUEICE" "def (f 1ag;f alse) " "use (f 1ag;f alse) " "use (f 1ag;f alse)" 

Fig. 8. Part of task expression after elimination of dataflow constraint. 

expression representations in such a way that the inequalities 
generated from them exclude such solutions. 

To see how the constraint eliminator is used, consider the 
following segment of a task T: 

f l a g  := ...; 
i f  f l a g t h e n  

S .A; 
end i f ;  
i f  n o t  f l a g t h e n  

end  i f ;  
S . B ;  

Fig. 6 shows the portion of the task expression for task T 
corresponding to this fragment. This segment should always 
call exactly one of entries A or B of task S; however, the 
task expression produced by the deriver permits system traces 
in which both calls are made and traces in which neither 
call is made. In the full constrained expression represen- 
tation, the dataflow constraint shown in Fig. 7 filters out 
these erroneous strings. The constraint allows any number 
of def  ( f l a g ;  V a l )  symbols, each of which represents the 
assignment of the value val to the variable f l a g .  It also 
allows each de f  ( flag; Val) symbol to be followed by any 
number of use ( f l a g ;  Val) symbols with that particular 
value, each representing a use of the variable, before the next 
def  ( f l a g ;  Val) symbol. Any string satisfying both the task 
expression and the constraint will involve exactly one of the 
entry calls. 

The constraint eliminator modifies the constrained expres- 
sion so that each of the resulting task expressions already 
incorporates any constraints involving only symbols from that 
task (Le., any string satisfying the new task expression satisfies 
both the old task expression and the constraints). Fig. 8 shows 
the result of incorporating the dataflow constraint for the 
variable f l a g  into the task expression for task T shown in Fig. 
6. The inequalities generated from the resulting task expression 
then reflect the restrictions imposed by the constraint, and 

do not admit solutions corresponding to violations of that 
constraint. 

The constraint eliminator takes a set of task expressions and 
constraints as input. Each constraint whose alphabet involves 
only symbols from a single task alphabet (an intra-task con- 
straint) is incorporated into the task expression it constrains 
and is then removed. The resulting set of task expressions 
and constraints is output. The task expressions incorporating 
their intratask constraints may be output either as regular 
expressions (RE's), deterministic finite automata (DFA's), or 
in a hybrid form we call regular-expression deterministic-finite 
automata (REDFA's). REDFA's are DFA's whose arcs are 
labeled with regular expressions satisfying certain conditions 
that preserve determinacy. We have found that it is easier to 
generate "efficient" inequality systems from RE's, but that, 
after constraint elimination, the RE's for some tasks are very 
much larger than their corresponding DFA's. The efficiency of 
an inequality system is, roughly speaking, the size of the task 
representation (RE, DFA, or REDFA) divided by the size of 
the inequality system (variables x inequalities). Unlike RE's, 
REDFA's are never significantly larger than the DFA's from 
which they are generated. Unlike DFA's, REDFA's allow easy 
generation of very efficient inequality systems. 

To incorporate a set of intratask constraints into a task 
expression, all the regular expressions involved are converted 
to DFA's, which are then intersected pairwise. The intersection 
differs from standard DFA intersection in the following way: 
at each state of a DFA, we assume implicit self-loops on 
all symbols not appearing in the alphabet of that DFA. This 
allows the DFA representing a constraint to accept symbols 
not in its alphabet without changing state. Assuming that 
the constraint alphabet is a subset of the task alphabet, the 
result of the intersection is a DFA which accepts exactly 
those strings accepted by the original task DFA in which the 
symbols contained in the intratask constraints appear in the 
order required by those constraints. In the case of a dataflow 
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constraint for a local variable, this essentially encodes the SEQUENCE (1) 

A 
a(2) A 
A A  

I 

value of the variable into the DFA state (where before the state 
encoded only the syntactic location within the task design), 
usually increasing the number of states in the task DFA, 
but guaranteeing consistent use of the variable. In CEDL the 
intratask constraints are exactly the dataflow constraints, since 
there are no global variables and all other constraints involve 
more than one task expression. 

Using the intersection procedure described above, the con- 
straint eliminator could, theoretically, intersect all the tasks and 

set of legal traces of the concurrent system. While this would 
prevent violation of all the constraints (not just the intratask 
ones), the resulting DFA would be similar to a reachability 

worst-case exponential in the number of tasks. It is exactly 

separately and ignoring some of the dependencies among them. 

OR (3 )  

SEQUENCE (41 SEQUENCE (51 

constraints, producing one large DFA whose language is the a (6)  b (7) C STAR (9) 

graph of the concurrent system, and equally large-in the 

this state explosion we seek to avoid by considering the tasks 

d (10) 

Fig. 9. Parse tree for the regular expression n ( n b  V c d * ) .  

C. The Inequality Generator 

The analysis implemented by the constrained expression 
toolset involves the generation of a system of linear inequal- 
ities expressing features of both the constrained expression 
representation of the concurrent system being analyzed and a 
query posed by the analyst. We now describe the inequality 
generator component of the toolset. 

The input to the inequality generator consists of a list of 
tasks. The tasks may be represented as regular expressions, 
or, following constraint elimination, as DFA’s or REDFA’s. 
For each task, the inequality generator produces a collection 
of equations. It then generates additional inequalities reflecting 
part of the semantics of certain of the constraints. The gen- 
eration of equations for the tasks depends only on the basic 
structure of regular expressions and finite-state automata, but 
the generation of inequalities from constraints depends on fea- 
tures of CEDL. In principle, since the CEDL constraints are all 
regular expressions, the generation of inequalities from tasks 
and constraints could be accomplished in a uniform manner. 
While this would be more consistent with the interpretation of 
the semantics of constrained expressions given in Section 11, 
the separate procedure we have adopted in the inequality gen- 
erator improves the efficiency of the tool and reduces the size 
of the systems of inequalities it produces, as discussed below. 

We begin by describing the generation of equations from 
the tasks, first from regular expressions and then from DFA’s 
and REDFA’s, and then discuss the generation of inequalities 
reflecting constraints. 

The basic idea behind the generation of inequalities reflect- 
ing the constrained expression is as follows. The semantics of 
regular expressions implies that each operand of a SEQUENCE 
operator must occur the same number of times, that the sum of 
the number of occurrences of the operands of an OR operator 
must equal the number of “occurrences” of the operator itself, 
and that, if the operand of a Kleene star operator occurs at all, 
the number of its occurrences is unrestricted. Of course, this 
interpretation does not fully capture the information contained 
in the regular expression about the order in which the operands 

occur. Given a regular expression, we build a parse tree in 
which each nonterminal node is an operator, and each terminal 
node is an event symbol. Assigning a variable in the integer 
programming problem to each node to represent the number 
of times we pass through that node in generating a string from 
the regular expression, the observations above give a linear 
equation at each SEQUENCE or OR node, and a quadratic 
inequality at each STAR node. (The quadratic inequality is of 
the form r5 . .ro - s, 2 0, where rs is the variable associated 
to the STAR node, and .c, is the variable associated to the 
operand of the STAR; since all our variables are constrained 
to be non-negative, this inequality says that 2,  must be zero 
if x 9  is.) We also generate an equation setting the value of 
the variable associated with the root node of the parse tree 
to one, representing the fact that the task begins execution 
exactly once. 

This approach is illustrated with the example in Fig. 9, 
which gives a parse tree for the regular expression a(abVcd*) .  
(The letters a, b, e, and d stand for event symbols in a task 
expression.) The number in parentheses at each node gives the 
index of the variable corresponding to that node. The following 
inequalities would be generated from this parse tree: 

In general, quadratic integer programming problems are 
much harder to solve than linear ones, and we have there- 
fore chosen simply to ignore the inequalities that should be 
generated at STAR nodes. (In fact, if the variables are all 
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bounded above by B,  we can achieve the effect of the quadratic 
inequalities with linear ones of the form x, 5 B ’ 2,.  We do 
not use this technique routinely. We have used it in certain 
special cases, as described in Section IV.) 

In this fashion we generate a system of linear inequal- 
ities from the task expressions. Our first prototype of the 
inequality generator used exactly this approach. The current 
inequality generator makes use of several optimizations which 
significantly reduce the number of inequalities and variables 
required. For example, all the operands of a SEQUENCE 
operator occur the same number of times, so it is not necessary 
to generate separate variables for each of them, together with 
equations stating that these variables take values equal to 
that of the SEQUENCE node. Our experience is that such 
optimizations reduce the numbers of both inequalities and 
variables generated from a regular expression by a factor of 
about six. 

To generate inequalities from a DFA or REDFA representa- 
tion of a task expression, we can assign a variable to each 
arc, rather than each node, and an extra variable to each 
accepting state. We then generate a “flow” equation for each 
state, requiring that the sum of the variables corresponding 
to arcs into that state must equal the sum of the variables 
corresponding to arcs leaving the state, except that at the initial 
state we require the sum of the variables on incoming arcs to 
be equal to the sum of the variables on outgoing arcs minus 
one, and we count the extra variables for the accepting states 
as if they corresponded to outgoing arcs. For REDFA’s, some 
arcs are labeled by regular expressions rather than single- 
event symbols. For each such arc, we generate additional 
equations corresponding to the regular expression labeling that 
arc, using the method described above, but associating the 
variable corresponding to the arc with the root node of the 
parse tree of the regular expression. Fig. 10 shows a DFA 
accepting the language of the regular expression of Fig. 9. The 
numbers in parentheses next to the arcs and accepting states 
give the indices of the corresponding variables. The equations 
generated from this DFA are: 

5 1  = I 
5 1  - 2 2  - x3 = 0 

2 2  - 2 4  = 0 

2 3  + 2 5  - 5 5  - z7 = 0. 
2 4  - .%6 = 0 

Note that the variable 25 is unconstrained, since it appears 
only in the last equation and cancels out there. This is due 
to the fact that the corresponding arc, being a loop, is both 
incoming and outgoing. Essentially, the same phenomenon 
occurs with any cycle in the DFA and can lead to spurious 
solutions to the system of inequalities. This problem is related 
to the difficulty with Kleene stars noted above, and can be 
eliminated by introducing quadratic inequalities that ensure 
that no variable corresponding to an arc in the cycle can 
be nonzero unless the variable corresponding to some arc 
connecting a state outside the cycle to one in the cycle has 
a nonzero value. (As in the regular expression case, when 

START 

6 

Fig. 10. DFA accepting the language of n ( a b  V cd ’ ) .  

all variables are bounded above, the effect of such quadratic 
inequalities can be achieved with linear ones.) 

Having produced equations for each task, the inequality 
generator then begins to generate linear inequalities reflecting 
some of the constraints. The constraints impose restrictions 
on the order and number of occurrences of event symbols in 
traces of the system. The integer programming variables we 
use only involve the total number of occurrences of symbols 
(or, more precisely, of traversals of nodes in the parse trees or 
arcs in the finite-state automata), and do not reflect the order 
in which those symbols occur. We therefore wish to extract 
the information about total numbers of occurrences of event 
symbols from the constraints. 

Note first that the total number of occurrences of a particular 
event symbol is given by the sum of certain variables in the 
equations generated from the tasks. If the symbol occurs in 
a task represented by a regular expression, the number of 
occurrences of the symbol is equal to the sum of the variables 
corresponding to the terminal nodes at which that symbol 
appears. Thus in the example of Fig. 9, the number of occur- 
rences of the event symbol represented by n is x2 + 5 6 .  If the 
symbol occurs in a task represented by a DFA, the number of 
occurrences is given by the sum of the variables corresponding 
to those arcs labeled by the symbol, while in the case of a task 
represented by an REDFA, the number of occurrences may 
involve variables associated with both arcs and nodes in the 
parse trees of the regular expressions labeling arcs. 

To see how the constraints justify additional inequalities, 
consider first the synchronization constraint shown in Fig. 
3. In any string satisfying this constraint, the number 
of call(p0;fl.ul) symbols must equal the number 
of beg-rend ( PO : f 1 . ul ) symbols, and the number of 
end-rend ( PO ; f 1. ul ) symbols must equal the number 
of resume ( PO ; f 1. ul ) symbols. The inequality generator 
therefore produces equations involving the sums of variables 
corresponding to the numbers of occurrences of these symbols. 
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The constraint further requires that the various symbols occur 
in a specified order, but this fact cannot be expressed in terms 
of the integer programming variables associated with the tasks. 
Similarly, from the blocking constraint of Fig. 3 and the fact 
that task expressions produced by the deriver have the property 
that each task contributes at most one h a n g  symbol to a trace, 
we conclude that the sum of the number of hang-a  ( f 0 .  u0 ) 
symbols and the number of h a n g - c  ( pi ; f 0 .  u0 ) symbols 
cannot exceed one, for i = 0.1. Other inequalities are 
obtained from the constraints that deal with the failure of 
nested rendezvous. (The constraints that enforce the queueing 
of entry calls and the dependence of control flow on data 
involve only the order in which event symbols occur and 
not the total number of their occurrences, and are ignored 
in this part of the analysis. The constraint eliminator takes 
those constraints involving intratask dataflow into account 
before inequalities are generated.) As noted above, it would 
be possible to generate inequalities from a constraint by first 
generating equations from the regular expression, as we do for 
task expressions, and then generating equations stating that the 
number of occurrences of an event symbol coming from the 
task in which it appears must equal the number coming from 
each constraint in which it appears. This approach, though 
pleasingly uniform and language-independent, would lead to 
the introduction of many additional variables and equations 
coming from the constraints. We have therefore chosen to 
sacrifice some of the language-independence and generate 
inequalities involving the variables from the tasks directly 
from the CEDL constraint templates. 

We thus generate a system of inequalities reflecting a large 
part, but not all, of the semantics of the constrained expression 
representation. Queries about the behaviors of the concurrent 
system are also expressed in terms of the integer program- 
ming variables. For example, an analyst could formulate the 
statement that a philosopher is permanently prevented from 
eating as an equality stating that at least one of certain h a n g - c  
symbols occurs (i.e., that the sum of certain variables is one). 
Adding this to the system of inequalities obtained from the 
constrained expression, we would obtain a system reflecting 
both the constrained expression and the query. If this system 
has no integral solution, then the CEDL system has no trace in 
which a philosopher task waits indefinitely for a rendezvous 
with a fork task. If there is an integral solution, this does 
not guarantee that a behavior of the CEDL system exists 
in which the philosopher task waits indefinitely-we have 
ignored information about order in generating our inequalities, 
so the solution may be “spurious” in the sense that it does not 
correspond to an actual behavior. But we can use the event 
counts obtained from the solution as a guide in searching for 
a real behavior with the property expressed in the query. 

The inequality generator provides a menu-driven interface, 
allowing the analyst to formulate queries using event symbols 
rather than only integer programming variables, and it allows 
the analyst to specify one of several objective functions for 
integer linear programming. It also provides facilities that 
assist the analyst in interpreting the systems of inequalities 
and solutions found by the integer programming tool in terms 
of the task expressions and constraints. 

D. IMINOS 

We solve the inequality systems produced by our inequal- 
ity generator using a branch-and-bound algorithm employing 
the variable dichotomy scheme first introduced by Dakin 
[14]. Our implementation of this algorithm makes use of the 
MINOS [ 151 optimization package to solve LP-relaxations 
of the integer programming problems. We refer to the tool 
that incorporates our code and MINOS as IMINOS (Integer 
MINOS). The IMINOS tool takes an inequality system and 
associated objective function in the standard MPS file format 
as input. This input file is produced by the inequality generator. 

We chose to base the integer programming component of 
our toolset on MINOS for several reasons, including the 
availability and robustness of the MINOS system and the 
relative ease of adding the branch-and-bound mechanism to 
it. Disadvantages, for our purposes, are that MINOS imple- 
ments only a primal algorithm, requiring simplex iterations to 
reattain feasibility when additional inequalities are added in 
the branch-and-bound process, and that it is a general-purpose 
package which does not take advantage of the special structure 
of our systems. Although the performance of IMINOS has 
generally been very satisfactory despite these disadvantages, 
as indicated by the results discussed in Section IV, some 
problems have arisen with large systems of inequalities. We 
are therefore investigating approaches to integer programming 
which take advantage of the fact that our systems of inequali- 
ties can be regarded as network problems with side constraints. 

E. The Behavior Generator 

If IMINOS has produced a solution to the system of 
inequalities, the next step is to determine whether that solution 
corresponds to a trace of the concurrent system being analyzed. 
This is the principal function of the behavior generator. Given 
the solution and the constrained expression (a set of task 
RE’S, DFA’s, or REDFA’s along with constraints) as input, 
the behavior generator will attempt to construct a system 
trace using the information in the solution as a guide. This 
information consists of total event counts for every event 
symbol, and also includes counts for each arc in the DFA 
representation of the task-provided that the inequalities for 
that task were generated from either the DFA or REDFA form 
of the task, rather than from a regular expression. 

The behavior generator performs a highly constrained reach- 
ability search on the global state space of the concurrent 
system. The global state space is, in general, exponential in 
the number of tasks, but the information in the solution found 
by IMINOS severely limits the possible actions of each task, 
frequently allowing no choices whatsoever, and in practice we 
have found the search to be quite fast. A global state contains 
the states of the DFA’s for all the tasks and constraints (the 
behavior generator uses the DFA representation for all tasks 
and constraints, converting regular expressions to DFA’s as 
necessary) as well as the symbol and arc counts being used to 
guide the search. These counts represent the remaining number 
of times a symbol or arc may occur; they are started at the 
values given by the solution and decremented to zero. Once 
at zero, a count prohibits its symbol or arc from being taken 

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:49:25 UTC from IEEE Xplore.  Restrictions apply. 



1214 

name tasks 

dp20 40 
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Fig. 11. Toolset performance on several 

in any successor of that global state, pruning the search tree. 
The search starts at the global state in which all task and 
constraint DFA’s are in their start state, and all counts to be 
used are set to the value found by the solution. The global state 
space is searched depth-first until a final global state is found 
in which all task and constraint DFA’s are in accepting states 
and all counts are zero or until all paths to a user-specified 
depth bound have been explored. Heuristics, some of which 
are specific to CEDL, control the order in which successor 
states are generated and can eliminate some states that cannot 
lead to a final global state. 

If a final global state is found, the list of event symbols 
allowing the global state transitions to the final global state is 
a trace of the concurrent system. This string of symbols and a 
list of each task’s actions are written to a file, and the analyst 
may then stop or continue the search for other behaviors. If 
no behavior is found within the given depth bound, then the 
analyst may extend the depth bound and continue the search 
from the states along the “frontier” of the space (states at 
the depth bound). If a solution to the system of inequalities 
is provided, the state space will be finite (there can be no 
more symbols than those given by the solution), and so failure 
to find a behavior string within the depth bound given by the 
number of events in the solution proves no string satisfying the 
solution exists. The behavior generator also has facilities which 
allow the analyst to use the tool more interactively by using 
only a part (possibly none) of the solution, and by modifying 
the solution to require or prohibit certain event symbols from 
occurring in the behavior string. Note, however, that the size of 
the state space increases rapidly as the amount of information 
given to the behavior generator decreases. 

IV. EXPERIMENTAL RESULTS 

As noted above, we believe that an assessment of the 
significance of the analysis methods implemented by this 
toolset must include the application of the tools to a variety 
of types and sizes of concurrent systems. We have therefore 
used the toolset to analyze a number of examples, and we 
report the results of several of these experiments here. We 
have tried to discuss the examples and our results in enough 

variations of dining philosophers problem 

detail to show the effect of various factors on the performance 
of the constrained expression tools, although we do not claim 
to be able to assess the import of these factors independently. 
These factors include the number of tasks in the system, the 
complexity of dataflow in the tasks, and what seem to be 
superficial differences in coding style. Many of the examples 
have also been analyzed by other researchers using other 
analysis methods. The next section includes some comparisons 
between our results and theirs. 

All the experiments reported in this paper were run on a 
DEC station 3100 with 24 megabytes of memory; times given 
are in CPU seconds on that machine and include both user 
and system time. The CEDL code for the examples discussed 
here is too long to include in this paper, but is available from 
the authors. 

A. Dining Philosophers 

Perhaps the most widely known example in the concurrent 
systems literature is Dijkstra’s dining philosophers. The system 
is interesting because of the possibility of deadlock. Various 
approaches can be used to prevent the deadlock. 

Fig. 11 shows the performance of the constrained expression 
toolset on several variations of this system. In all cases, 
analysis is intended to detect the possibility of deadlock. 
The columns give, respectively, the name of the system, the 
number of tasks in the system, the time in seconds used by the 
deriver, the eliminator, the inequality generator, IMINOS, and 
the behavior generator, the size of the system of inequalities 
(number of inequalities x number of variables), and the total 
time used by the toolset. 

The first five rows of the figure give statistics for several 
sizes of the basic dining philosophers system. We model each 
fork and each philosopher by separate tasks, as illustrated in 
Section 11-A. A system dpn with n philosophers thus has 
2n, tasks. For all of these systems, the toolset automatically 
produces a trace exhibiting deadlock. 

One of the standard ways to prevent deadlock in the dining 
philosophers system is to introduce a “host” or “butler” who 
ensures that all the philosophers do not attempt to eat at the 
same time. We have modeled this in the systems dp20-h, 
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dp30-h, and dp40-h by introducing an additional host task and 
modifying the philosopher tasks. Control flow in the system 
with host depends on the value of a variable maintained 
by the host task which counts the number of philosophers 
in the dining room. The constraint eliminator intersects the 
task expression for the host and the constraint involving this 
variable, so that the system of inequalities properly reflects 
the dependence of control flow on the number of philosophers 
in the dining room. This process, however, together with 
the additional entry calls in the philosopher tasks, leads to 
significantly bigger systems of inequalities. Rows six through 
eight of the figure summarize the results of analyzing these 
systems with the toolset. In each case, IMINOS reports that 
there is no integral solution to the system of inequalities, 
implying that no deadlock is possible. It is therefore not 
necessary to run the behavior generator in these cases. 

For comparison, we also analyzed systems of the same sizes 
in which the host erroneously allows all the philosophers to 
enter the dining room at once. The performance of the toolset 
on these problems is shown in the rows for the systems dp20- 
eh, dp30-eh, and dp40-eh. In each case, the toolset produced 
a behavior exhibiting the deadlock. 

Several other versions of the dining philosophers prob- 
lem have been considered by other authors. For comparison 
with their published reports of automated analyses, we report 
briefly on the analysis of three of these with the constrained 
expression toolset. 

The first of these systems, dp5-u, is a five-philosopher 
“unrolled” version of the dining philosophers with host, like 
that analyzed by Young et al. [16] using their CATS system. 
In this version, the host task does not use a variable to keep 
track of the number of philosophers in the dining room, but 
instead uses nested select statements. The CATS system 
was used to verify a temporal logic assertion (that, under the 
assumption of a fair scheduler, each philosopher can get into 
the dining room). We used the constrained expression toolset to 
analyze the system for deadlock. The design published in [16] 
is not equivalent to the one in which the host uses a variable 
to keep track of the number of philosophers in the room 
(as was pointed out to us by S. Shatz), and the constrained 
expression toolset produces a trace displaying the deadlock in 
the “unrolled” system. 

The final two rows of the figure give results for dining 
philosophers systems similar to ones analyzed by Karam and 
Buhr [ l ]  for deadlock and starvation. These systems use a 
single fork manager task to model the forks, rather than 
individual tasks. Deadlock is possible in the system dp5-efm7 
and the toolset produces a system trace that displays deadlock. 
The fork manager prevents deadlock in the system dp5-fm by 
requiring the philosophers to pick up both forks at the same 
time. In this case, IMINOS reports that no deadlock is possible, 
and it is not necessary to run the behavior generator. 

All the IMINOS runs in Fig. 11 used the sum of the variables 
corresponding to the operands of STAR operators in the task 
expressions as the objective function. We note that the per- 
formance of IMINOS on these examples is quite sensitive to 
the particular objective function used. When we used the sum 
of all the variables or a constant objective function, IMINOS 

reported that the system of inequalities for the 30-philosopher 
system dp30 (and all bigger ones) was inconsistent. The 
difficulty appears to be due to stability problems related to 
the bandedness of the system of inequalities. We discuss these 
issues further in Section V. 

B. Gas Station 

The automated gas station example introduced by Helmbold 
and Luckham [6] has been studied by a number of authors 
(e.g., [l], [17]). This system models an automated gas station 
with an operator, a number of pumps, and a collection of cus- 
tomers. We have analyzed several versions of the system which 
correspond to some of the refinements used by Helmbold and 
Luckham. The performance of the toolset on these examples is 
reported in Fig. 12. The columns of the figure have the same 
significance as in Fig. 11. 

In the first of our systems, gas2-e, there are two customer 
tasks, one pump task, and one operator task. In this version, 
a race condition can lead to deadlock, and our analysis 
detects this. Our second version, gas2, eliminates the race 
condition and the toolset correctly reports that the system 
cannot deadlock. (Note that, even though deadlock is avoided, 
it is still possible for a customer to receive another customer’s 
change. Karam and Buhr’s [ l ]  critical race assistant points up 
this possibility.) 

When the deadlock-free two-customer design is scaled up to 
three customers, however, a more complicated race condition 
arises, again leading to the possibility of deadlock. (This was 
first noticed by K. C. Tai [18], who used a graphical analysis 
method to detect the error.) We analyzed two versions of 
the three-customer extension of this problem. The first, gas3, 
is a straightforward extension. In this case, the constraint 
eliminator produces an REDFA for the operator task that has a 
very large number of states due to the possible states of a queue 
of waiting customers. The large number of states (5239 in the 
DFA produced by the eliminator, 433 in the corresponding 
REDFA) is responsible for the fact that the eliminator takes 
more than 30 min in this case. The number of states can be 
reduced by setting the variables corresponding to slots in the 
queue to some fixed value when that slot is not occupied by a 
customer waiting for service. (Since that practice would allow 
standard dataflow techniques to detect certain errors, it might 
be good programming style in general.) The toolset finds the 
deadlock in both of these versions of the gas station. 

Results for the first three-customer extension are shown in 
the third line of Fig. 12, and those for the version that reduces 
the number of states, gas3-res, are given in the fourth line. We 
note that these systems have many fewer tasks than the dining 
philosophers examples, but the systems of inequalities and the 
tool execution times are relatively large. This chiefly reflects 
the more complicated dataflow. 

One way to avoid deadlock and ensure that customers 
receive their own change is to have separate entries in the 
operator and pump tasks to distinguish the customers. In 
such systems, the number of states in the REDFA for the 
task representing the operator is much smaller than that in 
the versions discussed earlier. Results for these examples 
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name tasks deriv elim ineq IMINOS behav size 
rw-d 6 40 6 6 3 3 82 x 137 

rw-D 6 41 7 7 4 90 x 148 
rw 6 40 5 2 

I name tasks I deriv I elim [ ineq I IMINOS I behav I size 1 total 
5 I 8 I 120 x 200 1 86 1 

total 
58 
47 
59 

Fig. 12. Toolset performance on the gas station. 

Fig. 13. Toolset performance on readers and writers problem. 

also appear in Fig. 12. Our analysis was again intended 
to determine whether a customer who has prepaid can be 
permanently blocked before pumping gas. The toolset correctly 
determines that this cannot occur in the versions with two and 
three customers, gas2-s and gas3-s. (The sum of all variables 
was used as the objective function in these cases; performance 
with this objective function was much better than when the 
sum of variables corresponding to STAR operands was used.) 

For comparison, we also analyzed a two-customer version 
of this example containing an error (similar to that in the two- 
customer version discussed previously) that permits deadlock 
to occur. Results for this system, gas2-se, are given in the last 
line of the figure. 

C. Readers and Writers 

Another standard example from the concurrent systems 
literature is the readers and writers problem. In this problem, 
readers and writers attempt to gain access to a shared resource. 
We analyzed some CEDL versions of the problem for deadlock 
and to determine whether a writer and one or more readers 
could gain access to the resource at the same time. 

These systems consist of a number of tasks representing 
readers and writers, and a controller task that the others call 
in order to gain and relinquish access to the resource. The 
analysis for deadlock is similar to the analyses described 
above. The analysis for simultaneous access by readers and 
writers is quite different and requires some discussion. 

Simultaneous access by a reader and a writer would be 
represented in a system trace by an occurrence of a symbol 
representing a writer gaining access between symbols rep- 
resenting a reader gaining and relinquishing access, or by 
the occurrence of a symbol representing a reader gaining 
access between symbols representing a writer gaining and 
relinquishing access. Detecting such simultaneous access in 
a system trace depends on determining that symbols occur in 
that trace in a particular order, and the inequalities we generate 
do not reflect the order of symbol occurrences. For this reason, 
our toolset cannot directly address this question. We therefore 
modified the controller task so that each time a reader or writer 
gains access to the resource, it checks to determine whether a 

reader and a writer both have access, and sets a flag if this is the 
case. Our analysis then asks whether the symbol representing 
the setting of this flag occurs in any trace of the system. 

Results for a few versions of these readers and writers 
systems with four readers and one writer are shown in Fig. 13. 
The first line gives times for an incorrect system in which 
an error in the controller task allows a deadlock. The second 
line gives results for a correct system which is analyzed for 
undesirable simultaneous access to the resource. In this case, 
the constraint eliminator removes that part of the controller 
task expression containing the symbol representing the setting 
of the flag, and it is not even necessary to generate a system 
of inequalities to determine that the flag is never set. The time 
shown for the inequality generator in the figure is just the time 
required to determine that the symbol does not occur in the 
constrained expression produced by the constraint eliminator. 
The third line gives results for a system in which the controller 
gives the writer priority by refusing read requests while a 
writer is waiting to gain access to the resource. This system, 
which is correct, was analyzed to detect deadlock. The toolset 
correctly reports that deadlock is impossible. 

D. Distributed Mutual Exclusion 

We now describe some experiments with a system for 
achieving mutually exclusive use of a resource in a distributed 
system. 

The system analyzed is a CEDL version of a design that 
implements part of an algorithm for mutual exclusion due 
to Ricart and Agrawala [19]. In it, a node wishing to obtain 
exclusive use of the resource sends a request to each of the 
other nodes in the system, and then waits for a reply from each 
node before proceeding to use the resource. A node receiving a 
request decides whether to reply immediately, thereby granting 
its permission to use the resource, or to defer its reply until 
it has used the resource itself. This decision is determined 
in part by a sequence number sent as one portion of the 
request message, and in part by a fixed priority ordering on 
the nodes that is used in case two sequence numbers are equal. 
The sequence numbers are generated by the individual nodes 
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name tasks deriv 
ral 6 46 

ra3-e 7 87 
ra3 7 85 

1217 

elim ineq IMINOS behav size total 
11 4 3 129 x 186 70 
30 8 71 35 216 x 247 238 
30 8 72 60 216 x 247 262 

~ 

Fig. 14. Toolset performance on the distributed mutual exclusion examples. 

and are similar to the numbers used in Lamport’s “bakery 
algorithm” [20]. 

The constrained expression approach was applied in [21] to 
detect an error in a partial design for a system implementing 
the Ricart-Agrawala algorithm, and then to show that the error 
was eliminated in a modified version of the design. In that 
paper, the design was written in DYMOL, a language with 
asynchronous message passing, and the analysis was carried 
out by hand. We have used the toolset to examine a similar 
design written in CEDL. Fig. 14 summarizes the results of 
these experiments. 

We began by considering a design for a single-node system, 
ral, in which the details of the Ricart-Agrawala algorithm 
had not yet been elaborated. The analysis was intended to 
determine whether a request received at the node may be per- 
manently deferred. The toolset showed that this cannot happen. 
This is essentially equivalent to the analysis performed by 
hand in [21], although the different communication primitives 
in CEDL and DYMOL make the details of the designs quite 
different. 

We next considered two versions of a system with three 
elaborated nodes and an additional task simulating the re- 
source. In this case, we wanted to detect possible violation 
of mutually exclusive use of the resource. As in the readers 
and writers examples discussed above, the resource task sets 
a flag if two nodes use the resource simultaneously, and the 
query the toolset attempts to answer is whether that flag is 
ever set in a behavior of the system. Note that deadlock is 
possible in this system, because the full algorithm used by 
the nodes to determine when to defer requests has not yet 
been implemented at this stage of the design process, and all 
the nodes could decide to defer each other’s requests. But a 
correct design at this stage should enforce mutually exclusive 
use of the resource. 

In the first of these systems, ra3-e, we introduced a race 
condition which would allow simultaneous access to the 
resource by two nodes. IMINOS found a solution to the system 
of inequalities, but due to the problem with cycles in the 
REDFA discussed in Section 111-C, this solution is spurious. 
We then manually added the linear inequalities necessary 
to exclude solutions which incorrectly give nonzero values 
for arcs in those cycles, as described in that section, and 
ran IMINOS again. (We believe that automating this process 
should be straightforward and expect to add this feature to the 
toolset in the near future.) IMINOS found another solution, 
and the behavior generator reported that this solution was also 
spurious. Examination of the output of the behavior generator 
showed that, in the course of trying to construct a system trace 
corresponding to the solution, the behavior generator reached 
a global state in which all the tasks are blocked, but no replies 
have been deferred. We thus detected a possible deadlock of 

the three-node system due to the error, rather than the deferral 
of requests. The time shown in the table for the performance 
of IMINOS on ra3-e is for the second run, which is somewhat 
longer than for the run without the additional inequalities. 

In the second version of this three-node system, ra3, the 
race condition is eliminated so that the resource is used in a 
mutually exclusive fashion. In this case as well, the problem 
with cycles leads to a solution which does not correspond 
to a behavior, and we manually added inequalities as before. 
IMINOS found a solution to the new system of inequalities 
(as above, the time shown for IMINOS is for the second, 
longer run). Again, the behavior generator correctly reported 
that this solution is also spurious. The solution found by 
IMINOS reflects a “behavior” in which the events occur out 
of order-each of two nodes behaves as if a request from 
the other node was received before it decided to request 
the resource itself. The problem here is that the system of 
inequalities produced by the inequality generator does not fully 
reflect the order in which the corresponding events occur. At 
this time, we do not know of a general method for solving this 
problem, which, as in this case, can lead to spurious solutions. 
The behavior generator can tell us that this particular solution 
does not correspond to a behavior, but in cases like this one, 
the toolset does not give a definitive answer to the question 
of whether there is a behavior with the property the analyst 
is interested in. 

E. Counters and Systems with Many Identical Tasks 

With a very slight modification, the toolset can be used to 
analyze systems that include an extremely large number of 
identical tasks. If there are n identical tasks in the system, 
we can simply set the variable corresponding to the root 
node of the parse-tree of the task expression (or to the flow 
into the initial state of a task DFA or REDFA) to n, rather 
than one. This corresponds to starting n identical copies of 
the task with that task expression. In conjunction with this 
technique, we have also experimented with the use of an 
integer programming variable to represent a CEDL variable 
used by a task in the system to maintain a count of some sort. 
At this time, the latter technique can only be used with certain 
types of systems, and the behavior generator will need some 
modification for use with these two techniques, but we present 
in Fig. 15 some results of applying the other components of the 
toolset to a system involving two coupled resource managers 
controlling equal amounts of two resources and a large number 
of identical customers who require both resources. 

The figure shows the number of customer tasks, the amount 
of the first resource originally available, the amount of the 
second resource originally available, the number of tasks in 
the systems, and the times used by the components of the 
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CUE 11 12 tasks deriv ineq IMINOS sise 
500 490 490 502 25 3 2 36 x 39 
500 490 489 502 25 3 2 36 x 39 

1000 990 990 1002 25 3 2 36 x 39 
1000 990 989 1002 25 3 2 36 x 39 

total 
30 
30 
30 
30 

Fig. 15. Toolset performance with many identical tasks 

toolset. The analysis is intended to detect the possibility that 
the controller of the second resource grants more requests 
for access to the resource than can be accommodated by 
the available amount. The first two lines give the results for 
systems with 500 customers; the first line shows a correct 
system, and the second shows one with fewer units of the 
second resource, leading to an error. The third and fourth 
lines give the results for similar systems with 1000 customer 
tasks. Because the variables used to count resource units in 
the two controllers are represented by integer programming 
variables, it is not necessary to use the constraint eliminator 
in these analyses. The solutions found by IMINOS for the 
two incorrect examples do indeed correspond to system traces 
displaying the pathological behavior. Note that the systems of 
inequalities are the same size and the execution times are the 
same for all versions of the system. 

v. ASSESSING THE CONSTRAINED EXPRESSION TOOLSET 

At the beginning of this paper, we argued that an assessment 
of the value of a method for analyzing concurrent software 
must necessarily include an empirical evaluation of the ap- 
plication of that method to a variety of types and sizes of 
concurrent systems. The constrained expression toolset we 
have described was constructed with the intention of con- 
ducting such an empirical evaluation, and we have presented 
some of the results of our initial efforts in that direction. In 
this section we consider various aspects of that evaluation and 
discuss our current assessment of the constrained expression 
approach. We then briefly compare it to some related methods. 

A.  Performance and Scalability 

As the results described in the previous section illustrate, 
the constrained expression toolset is capable of analyzing 
large systems. The toolset carries out a complete analysis of 
the basic dining philosophers problem with 100 philosopher 
tasks and 100 fork tasks, starting from the CEDL code and 
producing a behavior displaying deadlock in less than 21 min. 
When the behavior of the individual tasks is more complex, 
the toolset cannot handle quite so many tasks, but it is clear 
that it can be used with at least some systems which involve 
hundreds of concurrent processes. This is in marked contrast 
to the results reported for most other methods which have 
been implemented, notably those based on constructing and 
searching a reachability tree. This ability to analyze large 
systems is the most obvious strength of the approach. 

Problems in the performance of the integer programming 
component of the toolset do arise with large systems, however, 
and raise some serious issues concerning use of the toolset. 
Particularly significant is the fact that the results obtained by 

IMINOS are sensitive to the objective function chosen, and 
indeed are incorrect for large versions of the basic dining 
philosophers problem with one objective function we have ex- 
amined. This appears to be due to numerical stability problems 
which arise here from an interaction between the particular 
objective function and the bandedness of the coefficient matrix. 
This bandedness reflects the communication structure of the 
concurrent system-each task communicates only with two 
“nearby” tasks-and is known to cause difficulties for the 
particular simplex algorithm used in MINOS, but we do 
not understand the problem well enough at this time to be 
able to predict accurately the cases in which it will arise. 
In other cases, notably those with complex dataflow, the 
presence of many solutions to the LP relaxation of our integer 
programming problem when there is no integer solution leads 
to extremely long run times for IMINOS. There appears to 
be significant potential for improving the performance of the 
integer programming component of our toolset by modifying 
the branching algorithm used by IMINOS, and possibly also by 
implementing other approaches to integer linear programming 
which might take better advantage of the special characteristics 
of our systems of inequalities. We are currently investigating 
these possibilities. 

The performance of the toolset is not easily predicted 
from known results on the computational complexity of the 
algorithms it implements, especially since problems like the 
detection of deadlock are NP-hard [22]. The translation process 
implemented by the deriver is essentially linear in the number 
of tasks and the size of each task. In general, the “intersection” 
of DFA’s performed by the constraint eliminator increases 
the sizes of the state spaces exponentially, but our eliminator 
needs to do this only a small number of times. The complexity 
of inequality generation is certainly linear in the size of the 
constrained expression, which could in principle be expo- 
nential in the size of the original concurrent system. Integer 
linear programming is known to be NP-complete, and the 
worst-case performance of any branch-and-bound algorithm is 
exponential in the size of the coefficient matrix. The average- 
case performance for the algorithm we have implemented is 
not known, however, and the performance of IMINOS does 
appear to be the limiting factor in our ability to handle several 
of the examples. Finally, the search carried out by the behavior 
generator is clearly exponential in the number of tasks in the 
system in general, but frequently is severely constrained by 
the solution found by IMINOS. For instance, the behavior 
generator does no backtracking in the dining philosophers 
problem with 100 philosophers. 

Thus the ability of the toolset to handle large problems is 
not obvious from theoretical investigation. We feel that this 
strongly supports our assertion that empirical evaluation is a 
necessary component of the assessment of analysis methods. 

B. Range of Problems that can be Analyzed 

The constrained expression toolset can be used to answer 
several of the most important types of questions developers 
of concurrent systems are likely to ask. The results presented 
in Section IV show how the toolset can be used to answer 
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questions about deadlock and violation of mutual exclusion. 
We have also used the toolset to detect blocking of single 
processes. In [23], we have shown how the toolset can be 
extended to answer questions about the timing properties of 
a concurrent system. 

The current version of the constrained expression toolset, 
however, is not able to address questions about fairness or 
starvation. These questions involve infinite behaviors and the 
constrained expression formalism does not describe infinite 
behaviors. In addition, many questions about the order in 
which events occur can be answered by the toolset only if 
they can be translated into ones involving the number of 
occurrences of events. While this can often be accomplished 
by slightly modifying the system being analyzed, as in the 
readers/writers example reported in the previous section, such 
modifications represent an extra complication and are not 
always practical. 

The toolset does correctly represent the dependence of 
control flow on intratask dataflow. Some reachability-based 
methods intentionally ignore information about the values of 
variables in order to reduce the number of states that must 
be generated and examined. For example, the version of the 
CATS suite of tools described in 1161 is unable to determine 
that deadlock is impossible in the dining philosophers with 
host for this reason. (Other reachability-based methods, such 
as [l], do correctly deal with dataflow.) 

However, the ability of the toolset to analyze systems having 
tasks with very complex dataflow is limited. The problem, 
as for the reachability-based methods, is the explosion in the 
number of states that must be considered. Furthermore, the 
toolset does not use information about the dependence of 
control flow on data when that information involves several 
tasks. We are currently investigating some ways to make better 
use of this sort of information. 

The integer programming component of the toolset some- 
times produces “spurious” solutions to the systems of inequali- 
ties; that is, solutions that do not correspond to behaviors of the 
concurrent system. This is due to the fact that our systems of 
inequalities do not fully reflect the semantics of constrained 
expressions, as discussed in Section 111-C. The inequalities 
we generate do not directly restrict the values of variables 
corresponding to STAR operands in task expressions or arcs in 
cycles in task DFA’s or REDFA’s, and are unable to guarantee 
consistent ordering of events in different tasks, because they 
involve only the total number of times an event occurs or an 
arc in a DFA is traversed. As demonstrated in the experiments 
with the distributed mutual exclusion system, it is sometimes 
possible to deal with spurious solutions arising from STAR’S 
or cycles in an ad hoc manner and it should be possible 
to automate this process in a fairly straightforward fashion. 
At the present time, we are not able to eliminate spurious 
solutions due to problems with the order of occurrence of 
events, although the behavior generator does tell us that the 
particular solution found by IMINOS does not correspond to 
a trace of the concurrent system. Of course, even when the 
behavior generator reports that a solution of the system of 
inequalities does not correspond to a trace, it is possible that 
some other solution does correspond to a trace. Our analysis 

in the case in which the solution found by IMINOS does not 
correspond to a trace is therefore not conclusive. 

The problems with spurious solutions due to STAR’S and 
cycles depend to some degree on the “coding style” of the 
example. We have found, for example, that such spurious 
solutions can often be prevented by guarding all entries as 
strictly as possible. In some cases, much stronger guards 
are possible in certain versions of a design than in others, 
although the versions appear essentially equivalent to most 
programmers. Another aspect of coding style that affects 
analysis is illustrated by the two three-customer versions of the 
gas station in which the operator maintains a queue of waiting 
customers. As shown in Fig. 12, the version in which the 
variables representing slots in the queue are set to a fixed value 
when not in use has approximately half as many inequalities 
and integer programming variables and takes substantially less 
time to analyze than the version in which the variables are 
not reset. In fact, the process of detecting such variables and 
resetting them to some value would be relatively easy to 
automate using dataflow analysis techniques, although as yet 
we have not attempted to incorporate such automated resetting 
of variables into our toolset. 

C. Comparison with other Methods 
We now briefly compare the constrained expression toolset 

and the analysis techniques it implements with some related 
approaches. 

Several investigators have implemented analysis techniques 
for concurrent systems based on generating and examining 
some sort of a reachability graph for states of the system (e.g., 
[ l ] ,  [2], 1161). In general, the number of states such methods 
must examine is exponential in the number of tasks in the 
system, and different approaches are taken to reducing this 
complexity. For example, the CATS system [16] uses “task 
interaction graphs” and ignores the values of variables in order 
to reduce the number of states, while the starvation and critical- 
race analyzers described by Karam and Buhr [ l ]  work from a 
temporal logic specification. Similarly, the Petri-net reduction 
techniques of 1171 are intended to reduce the size of a Petri-net 
representation of a concurrent Ada program in order to make 
reachability analysis practical. 

It appears that none of these techniques can currently deal 
with systems as large as some of those analyzed using the 
constrained expression toolset. For example, Karam and Buhr 
indicate that their approach “is effective for designs with 
a complexity in the order of 10-20 tasks” and suggest the 
use of a knowledge-based system for designs with 50-100 
tasks. Similarly, Young et al. suggest that a reasonable gran- 
ularity for analysis of designs is “in the neighborhood of 8 
processes.” 

These reachability-based methods, however, can be used to 
answer questions that cannot be addressed by the constrained 
expression toolset. Both the CATS system and Karam and 
Buhr’s starvation analyzer can be used to verify temporal 
logic assertions involving such questions as fairness, as well 
as detecting deadlock. And with small systems, reachability- 
based analysis can be quite efficient. The times reported by 
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Karam and Buhr for analysis of the two-customer gas station, 
for example, are significantly lower than the corresponding 
times for the constrained expression toolset. (Karam and Buhr 
begin with a logical specification rather than standard source 
code and so do not report times for tools corresponding to our 
deriver.) 

In some cases, the size of the reachability graph that 
must be generated can be sharply reduced. McDowell [24], 
for example, has described a method for collapsing parts 
of the reachability graph when the system includes a large 
number of identical tasks. (This is the case in which we have 
experimented with setting a variable to n rather than one, 
as discussed in Section IV-E.) Valmari [25] has described a 
method which can detect deadlock in systems with a commu- 
nication structure like that of the basic dining philosophers in 
time which is linear in the number of tasks. The range of useful 
application of this method is unclear at the present time-for 
the dining philosophers with host, for example, the method 
remains exponential in the number of tasks-but this approach 
is the only one we know of other than constrained expressions 
which can handle systems with more than 100 tasks. 

Another approach, very closely related to ours, is the Petri- 
net invariant method of Murata et al. [26]. In this method 
certain Petri-nets are derived from Ada tasking programs, 
and the T-invariants of these nets are determined. The T -  
invariants are integer solutions to a homogeneous system 
of linear equations and correspond to counts of transition 
firings whose net effect is to return the derived Petri-net to 
its original marking (representing a deadlock-free execution 
of the original Ada program). Some T-invariants correspond 
to possible firing sequences of the net, but others do not, 
essentially because the process of finding T-invariants ignores 
the restrictions on the order in which transitions can fire that 
are imposed by the semantics of Petri-nets. These “spurious” 
T-invariants are thus similar to the solutions of our systems of 
inequalities that do not correspond to traces of CEDL systems. 
The approach of [26] is to use the T-invariants first to detect 
and remove certain “inconsistency” deadlocks, and then to 
guide the construction of a reachability graph to determine 
whether “circular” deadlocks are possible. 

VI. CONCLUSION 
The constrained expression approach to analysis of con- 

current software systems has several attractive features. It 
can be used with a variety of different design notations and 
programming languages which are based on different views 
of the semantics of concurrent computation, use different 
communication primitives, and are suitable for different stages 
of the development process. Developers of concurrent systems 
can thus use the notations and languages most appropriate for 
their tasks, while retaining the capability of rigorous analysis 
of their systems. Problems with combinatorial explosion are 
reduced, because analysis based on the constrained expression 
formalism does not require enumeration of a complete set 
of reachable states of the concurrent system. In addition, 
important aspects of the approach seemed relatively easy to 
automate. 

Experiments with manual application of the constrained 
expression analysis techniques to small examples were quite 
encouraging. However, a determination of whether the tech- 
niques could really be of value to software developers could 
not be made without carrying out an empirical evaluation 
of their application to a wider range of examples, including 
examples far too large to analyze by hand. We therefore began 
to construct a toolset automating the main constrained ex- 
pression analysis techniques. This paper describes that toolset 
and the analysis techniques it implements, and reports on our 
experiments with it. 

The results of these experiments, as described in Section 
IV, indicate that the constrained expression toolset can be 
used to analyze systems involving several hundred tasks. The 
toolset carries out a completely automated analysis, starting 
from the source code in a design language and producing 
system traces displaying the properties represented by the 
analyst’s queries, in many of these cases. Unlike several other 
approaches, it is able to deal with these large systems, while 
retaining information about the dependence of control flow 
on the values of variables local to the components of the 
concurrent system. In its current form, however, the toolset 
cannot directly address certain questions about the behavior of 
concurrent systems. These include questions involving infinite 
executions of the system, such as starvation and fairness, and 
certain questions about the order in which events occur in 
executions. Our experiments have also pointed up certain other 
areas in which modifications to the toolset could significantly 
improve its performance. 

The results of these experiments indicate the potential value 
of the constrained expression approach and certainly justify 
its continued development. Ongoing and planned research is 
directed at many of the issues identified by our experiments. 
This research involves improvements in the toolset to enhance 
its performance and make it easier and more convenient to 
use, and extensions to the constrained expression formalism 
and the analysis techniques automated by the toolset to expand 
the range of questions it can answer and concurrent systems 
it can analyze. 

We are working on improvements or extensions to every 
component of the toolset. Many of these modifications are 
aimed at more fully automating the analysis of systems with 
large numbers of identical tasks described previously. Others 
are intended to improve the inequality solving component of 
the toolset, first by improving the heuristics used in our current 
version of IMINOS, and later by replacing IMINOS with a 
special-purpose integer linear programming system that can 
exploit the special structure found in the inequality systems 
that our tools generate. Still others will make the behavior 
generator more efficient and more helpful in cases where 
IMINOS finds spurious solutions. 

Our work on extending the constrained expression formal- 
ism and analysis techniques will allow the toolset to be used 
with a wider range of problems and queries. Among the 
topics we are investigating are methods for directly handling 
more complex queries, such as “can event a occur between 
events b and c?,” ways to express infinite behaviors so that 
questions of fairness and starvation can be addressed, and 
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ways to modularize the constrained expression representations 
of systems and their analysis. We have also recently developed 
and begun experimenting with an extension of the constrained 
expression analysis techniques which can be used to assess the 
timing properties of concurrent systems and have extended the 
toolset to implement this technique. Details of this approach 
to constrained expression analysis of real-time systems and an 
example of its application can be found in [23]. 

Based on the results of the experiments conducted with the 
current version of the toolset and the improvements to be 
expected in the near future, we believe that the constrained 
expression approach can serve as a foundation for practical 
tools for developers of concurrent software. 
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