
1204 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 11, NOVEMBER 1991

Automated Analysis of Concurrent Systems
With the Constrained Expression Toolset

George S. Avrunin, Ugo A. Buy, James C. Corbett, Laura K. Dillon, Member, ZEEE,
and Jack C. Wileden, Member, IEEE

Abstract- The constrained expression approach to analysis
of concurrent software systems has several attractive features,
including the facts that it can be used with a variety of de-
sign and programming languages and that it does not require
a complete enumeration of the set of reachable states of the
concurrent system. This paper reports on the construction of
a toolset automating the main constrained expression analysis
techniques and the results of experiments with that toolset. The
toolset is capable of carrying out completely automated analyses
of a variety of concurrent systems, starting from source code
in an Ada-like design language and producing system traces
displaying the properties represented by the analyst’s queries.
It has been successfully used with designs that involve hundreds
of concurrent processes.

Index Terms- Concurrent systems, automated analysis, anal-
ysis tools, experimental evaluation, toolset performance, con-
strained expressions, formal methods, event-based model.

I. INTRODUCTION
ITH increasing frequency, large software systems are W organized as collections of cooperating asynchronous

processes. Their size alone makes these systems hard to under-
stand, but the difficulty is vastly increased by the introduction
of nondeterminacy. Nondeterminacy in such systems can arise
when the computations carried out by some components
of the system depend on the unpredictable order of events
occurring in other components. and can also result from
the deliberate use of nondeterministic program constructs.
Software developers use nondeterminacy to cope with lack
of knowledge about the environment, as in navigation and
process control systems. to make efficient use of resources, as
in operating systems, and for other reasons. Nondeterminacy
is ubiquitous in both logically concurrent and truly parallel
systems, but confidence in the reliability of such a system
requires that its developers understand a potentially enormous
number of subtle and often unexpected interactions among its
components.

Developers of concurrent systems therefore need rigorous
analysis methods. The analysis of concurrent software systems

Manuscript received December 10, 1990; revised June 10, 1991. Recom-
mended by T. Murata. This work was partially supported by the ONR through
Grant N00014-89-5-1064, and by the NSF through Grants CCR-8806970,
CCR-8702905, and CCR-8704478 (with cooperation from DARPA (ARPA
Order 6 104)).

G. S. Avrunin, J. C. Corbett. and J . C. Wileden are with the University of
Massachusetts, Amherst, MA 01003.

U. A. Buy is with the University of Illinois, Chicago, IL.
L. K. Dillon is with the University of California, Santa Barbara, CA 93106.
IEEE Log Number 9103527.

should begin at the design stage, so that errors can be detected
early in the development process when the cost of correcting
them is smallest, and continue through evaluation of the
completed code. Of course, different analysis methods may
be appropriate at different stages of development.

A number of analysis methods for concurrent systems have
been proposed, based on a variety of models of concurrent
computation and intended for answering different questions at
different stages of development. The methods include those
based on constructing the set of possible states of the con-
current system (e.g., [1]-[3]), on proving theorems in some
logical structure associated with the system (e.g., [4], [5]) , and
on examining the execution of a completed system or some
simulation of it (e.g., [6], [7]).

It is unlikely that any one approach will meet all the
needs of developers of concurrent systems, so developers
who might use these methods will need to know such things
as the types and sizes of systems to which each of the
methods can be usefully applied, and the sorts of questions
about those systems the methods can most effectively answer.
Unfortunately, we simply do not have this information for
most of the proposed methods. For example, measures of
the computational complexity of an analysis technique tell us
something about limits on the size of the systems to which it
can profitably be applied, but the complexity of many methods
is not well understood. Furthermore, even a method that is
known to be, say, exponential in the number of processes in the
concurrent system may be able to provide useful information
if the systems of interest are small enough that the method
can be feasibly applied.

Further complicating the task of assessing the practical
value of these methods is the fact that it is unlikely that
any of them can be of much use to developers of concurrent
software systems without automated support. Even high-level
designs for real concurrent systems are large enough to make
manual application of rigorous analysis methods impractical,
and the difficulty of the analysis usually increases as the
designs are elaborated into completed code. This means that
assessments of the value of analysis methods to developers
of concurrent systems depend in part on the availability of
implementations of those methods, and therefore on the details
of those implementations.

The value of research in software engineering, however,
depends on its utility as well as its elegance or intellectual
fruitfulness. We therefore believe that evaluation of the poten-
tial significance of a method €or analyzing concurrent software

0098-S589/91$01.00 0 1991 IEEE

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:49:25 UTC from IEEE Xplore. Restrictions apply.

AVRUNIN et al.: AUTOMATED ANALYSIS OF CONCURRENT SYSTEMS 1205

systems must include the application of an implementation
of that method to a variety of types and sizes of concurrent
systems, in addition to more formal and theoretical assess-
ments. Conducting such an empirical assessment requires an
implementation of the method and introduces a number of
variables related more to details of the implementation and its
hardware and software platforms than to the analysis method
itself. But it is not possible to understand the value of the
method to software developers without this sort of experience
with its application.

For several years, we have been developing analysis meth-
ods based on the constrained expression formalism [8]-[111.
The constrained expression approach to analysis has a number
of attractive features. It is based on a formal model of
concurrent computation that is well-suited to answering some
of the natural and fundamental questions about occurrences
of events that arise in the analysis of concurrent systems. It
can be used with a variety of standard design or program-
ming languages based on different views of the semantics
of concurrent computation and applied at different stages of
the development process [lo], thereby allowing developers to
work in congenial and appropriate notations while retaining the
ability to apply rigorous analysis methods. Furthermore, the
analysis techniques limit some of the effects of combinatorial
explosion, since they do not require enumeration of the set of
reachable states of the system.

As we have just argued, however, an assessment of the value
of the constrained expression approach for software developers
requires an empirical evaluation of the methods. We have
recently completed the construction of a toolset automating
some of these methods and have applied it to a number of
examples of concurrent systems. The purpose of this paper is to
describe the toolset and the analysis methods it implements, the
results of our experiments with it, and our current assessment
of the strengths and weaknesses of our approach.

The paper is organized as follows. The next section gives
some background on the constrained expression formalism,
including a somewhat more general formulation than in our
previous papers. Section 111 describes the tools and analysis
methods they implement. Section IV discusses the results of
our experiments with the application of the toolset. In Section
V we assess the strengths and weaknesses of the toolset and
our approach, on both theoretical and empirical grounds. In
the last section we discuss our conclusions and some of our
future research plans.

11. THE CONSTRAINED EXPRESSION FORMALISM

In the constrained expression approach to analysis of con-
current systems, the system descriptions produced during
software development (e.g., designs given in some design
notation) are translated into formal representations called
constrained expression representations, to which a variety of
analysis methods are then applied. This section contains a
brief description of the central features of the constrained
expression formalism. A detailed and rigorous presentation
of the formalism is given in [lo, appendix], and a less
formal treatment presenting the motivation for many of the

features of the formalism appears in [9]. The description
of the constrained expression formalism presented in this
section generalizes aspects of these previous presentations.
This more general treatment of the formalism does not affect
the semantics of the constrained expressions which appear in
the earlier presentations, but it may be easier to understand and
it facilitates methods for composing constrained expressions
and for modularizing their analysis.

Constrained expressions provide a very general model of
system behaviors and have been used with a variety of
descriptive notations, including a design language providing
asynchronous message passing primitives, a subset of CSP
(which provides synchronous message passing primitives),
and Petri net languages [lo]. The front-end of the con-
strained expression toolset described in this paper implements
a particular constrained expression formulation of an Ada-
like design language, called CEDL (Constrained Expression
- Design Language), which we use for the examples below.
A reader with some familiarity with Ada should have no
difficulty understanding these CEDL examples; the limitations
of CEDL are discussed in Section 111-A.

The constrained expression formalism assumes an event-
based model of computation. An execution of a concurrent
system is modeled by a (totally or partially) ordered set
of event occurrences, representing the activities the system
engages in and the order in which the activities occur. The
complexity and duration of events depends on the level of
detail at which the system is regarded. Example events might
include the synchronous exchange of messages involving two
processes, a process asynchronously sending (or receiving)
a message to (or from) another process, a process entering
its critical section, a process incrementing the value of some
variable, etc.

Event-based models of concurrent computation can be clas-
sified according to whether they assume the event occurrences
in an execution of a concurrent system are partially or totally
ordered in time. Constrained expressions have a natural inter-
pretation in terms of a model of computation based on total
ordering of event occurrences. We represent a totally ordered
execution (sequence of event occurrences) by a string over an
alphabet of event symbols, with each appearance of an event
symbol representing a distinct occurrence of the associated
event. A string representing a totally ordered execution of a
system is called a system truce. In this context the constrained
expression representation of a concurrent system provides a
closed-form representation for the set of system traces. That
is, the constrained expression determines a language, and this
language describes the possible sequences of event symbols
that can occur as system traces. This is the interpretation of
constrained expressions described in our earlier work [9], [lo].

This interpretation of constrained expressions suffices for
most purposes (and, in particular, for the purpose of un-
derstanding the constrained expression analysis techniques
described in this paper). To explain how a constrained expres-
sion describes partial orders among system events, we show
in the next subsection how the constrained expression can be
used to group the system traces into interleaving sets [12].
Informally, an interleaving set represents a partial order on

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:49:25 UTC from IEEE Xplore. Restrictions apply.

1206 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 11, NOVEMBER 1991

task EO is
entry UO;
entry DO;

-- pick up fork 0
-- put down fork 0

end FO;

task body FO is
begin

loop
accept UO; -- pick up
accept DO; -- put down

end loop;
end FO;

task PO;

task body PO is
begin

while ... loop
... , -- Think
F1 .U1 ;
FO.UO;
... , -- Eat
F1.M;
FO.DO;

end loop:
end PO;

Fig. 1. Fork and philosopher tasks from dining philosophers in CEDL.

event occurrences by the full set of total orders that extend
the partial order. A constrained expression can be viewed as
determining a set of interleaving sets, where each interleaving
set consists of those system traces that are consistent with
some partially ordered execution of the system as determined
by process logs and communication events. (A process log
corresponding to a trace is obtained by projecting the trace
on the event symbols representing the events that the process
participates in.) The representation of an execution as an
interleaving set makes it possible to express the partial order
which underlies the execution: event a occurs before event
6 if and only if the a-symbol precedes the 6-symbol in every
trace in the interleaving set. We present an example below that
illustrates this interpretation. The analysis techniques described
below are fully compatible with an interpretation of executions
as partial orders on events.

A. Constrained Expression Representations

The constrained expression representation of a concurrent
system consists of an alphabet A of event symbols and a
finite collection of expressions e,, each having an associated
expression alphabet A, C: A, 1 5 7 5 n. The traditional
regular expression operators (concatenation, disjunction, and
Kleene star), the interleave operator (which is regular), and
the transitive closure of the unary interleave operator (which
is not regular and is also called the dagger operator) are used
for forming the component expressions. Intuitively, A defines
the alphabet used for describing system traces (as strings),
and each component expression e, specifies the patterns of
symbols from A, that appear in system traces. More precisely,
we say a string satisfies an expression if projecting the string
on the expression alphabet produces a string in the language of
the expression, and violates the expression otherwise. We then
consider any string that satisfies all the component expressions
in the constrained expression representation of a system to
represent a system trace. In other words, those strings s over
the alphabet A for which the projection of s on A, lies in the
language of e,, for i = 1 . . . n, represent system traces.

In the case of a design written in CEDL, our Ada-like design
language, each component sequential process T , called a task
in the Ada terminology, gives rise to a task expression e r and
corresponding task alphabet AT. The task expression describes
the activities in which the task engages. However, because a

task expression is derived from the code for a single task, it
does not reflect the activities of other tasks, and so it does
not express restrictions imposed on a task’s activities by the
environment in which it executes. Moreover, certain aspects of
the semantics of a design or programming notation are more
easily expressed in separate expressions. For these reasons,
the constrained expression representation for a system usually
contains some additional expressions e, and corresponding
expression alphabets A,. We call these expressions constraints,
since they further restrict the patterns of symbols appearing in
system traces. Constraints are typically derived from the full
system description and may relate symbols from different task
alphabets.

We consider a CEDL version of the dining philosophers
problem with three philosophers to illustrate these ideas. Fig. 1
shows the CEDL code for one fork task and one philosopher
task from this system. The fork task loops repeatedly, accept-
ing calls to its U0 and DO entries. The philosopher task loops
an indeterminate number of times (as indicated by the elided
test in the w h i l e statement), calling the U entries of the fork
tasks on its “left” and “right” and then calling the D entries
of those tasks. There are two more fork tasks and two more
philosopher tasks in the system, with similar designs. Fig. 2
gives the task expressions produced by the toolset for these two
tasks, and Fig. 3 shows some of the constraints produced by the
toolset for this system. We give the expressions in the LISP-
like prefix notation used as input to several of the tools, which
uses “NIL” to denote the empty string, “SEQUENCE” for the
concatenation operator, “OR” for disjunction, and “STAR” for
the Kleene star. (The task expressions and constraints required
for CEDL are all regular, so the dagger operator does not
appear.) For the example, we assume that the set of symbols
appearing in an expression determines its alphabet. The table in
Fig. 4 summarizes the interpretation of event symbols. We note
that the permanent blocking of a task indicated by the hang
symbols does not presuppose any particular cause for this
blocking, which could be due to circular deadlock, termination
of other tasks, or other reasons. The synchronization constraint
in Fig. 3 enforces proper synchronization of rendezvous for
one of the entries of a fork task. Similar synchronization
constraints are required for all entries. The blocking constraint
in Fig. 3 ensures that a fork task does not wait forever for
a rendezvous with one of the philosophers if the philosopher

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:49:25 UTC from IEEE Xplore. Restrictions apply.

AVRUNIN et al.: AUTOMATED ANALYSIS OF CONCURRENT SYSTEMS 1207

(deftask fO
("SEQUEECE" "beg-loop (fOO)"

("STAR"
("SEQUEUCE"

("OR"
("SEQUEUCE" "beg-rend(p1 ;fO. u0) " "end-rend(p1 ;f 0 .uO)")
("SEQUENCE" "beg-rend(p0; f 0. u0) " "end-rend(p0 ;f 0. u0)"))

("SEQUEBCE" "beg-rend(p1 ;fO. do) " "end-rend(p1 ;fO. do)")
("SEQUEBCE" "beg-rend(p0; fO. do) " "end-rend(p0; fO .do)" 1))

("OR"

("OR"
("SEQUENCE" "hang-a(f0. u0) " "stop(f 0) ")
("SEQUEICE"

("OR"
("SEQUEUCE" "beg-rend(p1; fO.uO) " "end-rend(p1 ;f 0 .uO) ")
("SEQUENCE" "beg-rend(p0; fO.uO) " "end-rend(p0;fO .uO)"))

"hang-a(f0. do) " "stop(f0) "))))

(deftask PO
("SEQUEECE" "beg-loop(pO0) "

("STAR"
("SEQUENCE" "call (p0 ;f 1 .ul)" "resume (p0 ; f 1. ul) " "call (p0;fO .uO)"

"resume (PO; fO.uO) " "call(p0;f 1. dl) " "resume (p0;f 1. dl) "
"call(p0;fO. do)" "resume (PO; f 0. do)"))

("OR"
("SEQUENCE" "end-loop(p00)" "tem(p0) "
("SEQUENCE" "hang-c (p0;fl .ul) " "stop(p0)"
("SEQUENCE" "call(p0;f 1 .uI)" "resume (p0;fl .ul)" "hang-c (p0;fO .uO)"

("SEQUEECE" "call(p0 ;f I .ul)" "resume (PO ;fl . u l) " "call(p0 ;fO.uO)"

("SEQUEICE" "call (p0 ;f 1 .u l) ' I "resume (p0 ; f 1 . ul)" "call (PO; fO .uO)"

"stop (PO) "

"resume (PO; fO. u0) " "hang-c (p0;f 1. dl) " "st op(p0) "

"resume(pO;fO.uO) " "call(p0;f 1 .dl) " "resume (p0;fl .dl)"
"hang-c (p0;fO. do) " "stop(p0)"

Fig. 2. Two task expressions derived from the dining philosophers problem

task is also waiting for the same rendezvous. The queueing
constraint in that figure ensures that the order in which two
philosopher tasks call the same entry of a fork task determines
the order in which the fork task accepts the calls. Other types
of constraints that do not occur in this example enforce the
correct dependence of control flow on the values of variables
and handle the failure of nested rendezvous. A n example of
the former type is presented in Section I11 (see Fig. 7).

Lnder a partial order interpretation for the semantics of
constrained expressions, two system traces produced from the
constrained expression representation of a CEDL design can
be regarded as describing the same partially ordered execution
if they have identical projections on each of the task alphabets
(i.e., identical task logs). In the set of interleaving sets model,
this means that the traces belong to the same interleaving set.
Consider, for example, an execution of the dining philosophers
system in which PO and P1 each think and eat once and P2
never does anything. In any such execution, PO attempts to
pick up fork F1 and then fork FO, while P1 first attempts to
pick up F2 and then F1. The system admits two such partially
ordered executions in which PO and P1 each eat once and
P2 does nothing, corresponding to the two possible orders in
which PO and P1 can pick up their common fork F1. This
is reflected in the fact that traces describing such executions
may produce one of two possible projections on the alphabet

of F1. If P1 picks up F1 first, then PO must wait for P1 to put
F1 down before picking it up, and so the interleaving set that
corresponds to this execution contains a single system trace.
However, if PO picks up F1 first, then the CEDL code does
not serialize the philosophers' use of their other forks, and
there are traces in the interleaving set that describe different
orderings in the use of these forks.

The descriptions of the constrained expression formalism
in our previous papers provide a more operational, but also
less general, characterization of the set of system traces
defined by the constrained expression representation of a
distributed system. That characterization of a system trace is
consistent with the characterization above, provided that the
alphabets of the task expressions are disjoint. The more general
characterization of constrained expressions described in this
paper treats task expressions and constraints more uniformly,
making it easier to compose constrained expressions in a
manner that is appropriate for modularizing the representation
and analysis of systems.

B. Constrained Expression Analysis
Our main constrained expression analysis techniques require

that questions about the behavior of a concurrent system be
formulated in terms of whether a particular event symbol, or
pattern of event symbols, occurs in a system trace. In the

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:49:25 UTC from IEEE Xplore. Restrictions apply.

1208

end-rend(T,E)
hang-a (E 1
hang-c (T, E)
resume(T,E)
stop(T)
term(T)

IEEE TRANSACTIONS ON SOITWARE ENGINEERING, VOL. 17, NO. 11, NOVEMBER 1991

- -r -
End rendezvous with task T on entry E
Task is permanently blocked waiting to accept a call on entry E
Task T is permanently blocked calling entry E
Resume T, after rendezvous on entry E
Task T stops execution (abnormal termination)
Task T terminates (normally)

(defconstraint SYBCHROBIZATIOU-1
("SEQUEECE"

("STAR"
("SEQUEUCE" "call (p0 ; f 1 . ul) " "beg-rend(p0; f 1. ul) " "end-rend (p0 ; f 1 .ul)"

"resume (PO; f 1.~1)")
("OR"

"EIL"
("SEQUEBCE" "call(p0;f 1 .ul)" "beg-rend(p0;f 1 .ul)"))))

(def constraint BLOCKIPGl

"hangA(fO.uO) "
("STAR"

("OR"

("OR" "hang-c (pl ;fO.uO) " "hang-c(pO;fO.uO)"))))

(defconstraint QUEUEIUG-1
("STAR"

("OR"
("SEQUEUCE" "call (pl ;f 0. u0) "

("STAR" "call(p0;fO. u0)" "beg-rend(p1 ;f 0 .uO) " "call(p1; f 0. u0)"

"beg-rend(p1 ;fO.uO) ")

("SEQUEECE" "call(p1 ;f 0 .uO)"
("STAR" "call(p0;fO .uO) " "beg-rend(p1 ;fO .uO) ' I "call(p1; fO. u0) "

"call (p0 ;fO. u0)" "beg-rend(p1 ;f 0.110) " "beg-rend(pO;fO . ~0)")
("STAR" "call(p1; fO .uO) " "beg-rend(p0 ;fO .uO) " "call (PO; fO. u0) "

"beg-rend(p0;fO .uO) "1
("SEQUEECE" "call(p0 ;fO .uO) "

("STAR" "call(p1; fO .uO) " "beg-rend(pO;f 0 .uO) ' I "call(p0 ; fO.uO) "

"call(p1 ;fO .uO)" "beg-rend(pO;fO.uO)" "beg-rend(p1 ;fO .uO)") 1))

"beg-rend(p0;f 0. u0) ")

"beg-rend (p0 ; f 0. u0) ")

("SEQUEUCE" "call(p0 ;f 0 .uO)"

"beg-rend(p1 ;fO.uO)")

"beg-rend(pl;fO.uO)")

Fig. 3 . Some constraints generated by the toolset from the dining philosophers system.

I Symbol I Aaaociated Event I

,- ~ ~~-_

I end-looD(L) I End execution of loon L

Fig. 4. Interpretation of event symbols

dining philosophers, for example, the question of whether a
philosopher who has finished thinking can be blocked indefi-
nitely from eating can be phrased in terms of the occurrence
of hang-c symbols representing the permanent blocking of
the philosopher task on a call to one of the appropriate entries
of the fork tasks. The relevant questions to ask about a system,
of course, depend on the particular system being analyzed and
the correctness criteria for that system.

From the task expressions and constraints, we generate a
system of inequalities involving the numbers of occurrences of
the various symbols in a system trace. Additional inequalities
can then be added to express the assumption that a specified
symbol or pattern of symbols also occurs in a trace. If the

resulting system of inequalities thus generated is inconsistent,
the original assumption is incorrect and the specified symbol
or pattern of symbols does not occur in a legal system trace.
If the inequalities are consistent, we use them in attempting to
construct a system trace containing the specified pattern. The
next section describes this very general approach to analysis in
more detail and explains how it is automated in the constrained
expression toolset.

111. THE TOOLS

There are five major components of the constrained expres-
sion toolset (see Fig. 5). In normal use, an analyst would first
use the deriver to produce a constrained expression represen-

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:49:25 UTC from IEEE Xplore. Restrictions apply.

AVRUNIN et al.: AUTOMATED ANALYSIS OF CONCURRENT SYSTEMS 1209

CEDL design "no trace" U
inequalities Generator

constrained
expression solution L d

Fig. 5. Diagram of constrained expression toolset.

tation from a concurrent system design written in the CEDL
design language. This constrained expression would then be
used as input to the constraint eliminator, which intersects
some of the task expressions and constraints, producing an
equivalent constrained expression with fewer constraints. The
reasons for this procedure are explained below. The inequality
generator takes the constrained expression produced by the
eliminator as its input, together with a query formulated by the
analyst, and produces a system of linear inequalities capturing
certain features of the constrained expression and the query.
These inequalities involve variables representing the structure
of the task expressions and the numbers of occurrences of
particular events in the traces or behaviors of the concurrent
system being analyzed. The IMINOS integer programming
package would then be used to determine whether this system
has any integer solutions and, if it does, to find one with appro-
priate properties. The inequality generator provides facilities
to assist the analyst in interpreting the system of inequalities
and the solution, if any, found by IMINOS. When a solution is
found, the behavior generator uses heuristic search techniques
to determine whether this solution corresponds to an actual
system trace, and to produce such a trace if i t does. The
behavior generator can also be used with information about
a candidate trace provided by the analyst. The constraint
eliminator, inequality generator, and behavior generator are
written in Common LISP. The deriver is written in Ada and
the integer programming package is written in FORTRAN.

In the remainder of this section we discuss each of the
components of the toolset in more detail. Technical reports
describing the implementation of the tools are available from
the authors.

A. The Deriver

The deriver provides a front-end for the constrained ex-
pression toolset. It translates system designs into constrained
expressions, which are then manipulated and analyzed by
various other tools.

Our current deriver requires that designs be written in
CEDL, our Ada-like design language. CEDL focuses on the

expression of communication and synchronization in a concur-
rent system, and language features not related to concurrency
are kept to a minimum. The most important limitations of
CEDL designs can be summarized as follows:

Boolean is the only predefined type; all other types are
specified using enumeration types
There are no global variables
There are no primitives for data encapsulation. Packages
simply group together type and variable declarations, all
of which are exported
Design units may not be generic
There are no exception-handling features
Design units may not be nested
There are no input (get) or output (put) statements.

The restriction against nesting, besides simplifying the con-
strained expression representations for CEDL designs, reflects
our belief that nesting is a poor design (and programming)
practice [131. Other restrictions limit the complexity of CEDL
designs and their constrained expression representations. Most
of the Ada control-flow constructs have correspondents in
CEDL. CEDL also provides an ellipsis notation (written
" . . . ") for expressing incompleteness in designs. The use
of this construct was illustrated in the dining philosophers
example of Section 11-A. The incompleteness construct can be
used to elide statements, expressions, declarations, and types
that will be elaborated in later system descriptions.

The deriver produces task expressions for each of the tasks
in a CEDL design from the code for the task bodies, using an
attribute grammar approach. Fig. 2 shows two task expressions
produced by the deriver from the CEDL code of Fig. 1. The
deriver produces the constraints for the constrained expression
representation of a CEDL design by instantiating a fixed set of
constraint templates. Fig. 3 gives examples of the constraints
produced by the deriver.

The deriver is, of course, specific to CEDL. In principle,
the other tools could be constructed in a CEDL-independent
fashion and used with constrained expressions produced from
any design notation. In fact, as discussed below, the inequality
generator and behavior generator rely on certain features of
CEDL in order to improve efficiency.

B. The Constraint Eliminator

As discussed in the next subsection, the inequalities we
generate do not express the full semantics of constrained
expressions, with the result that there may be solutions to
the inequalities that do not correspond to system traces. In
particular, the inequalities do not express certain restrictions
on system traces which involve only the order in which certain
events occur, rather than the numbers of such events in the
traces. In practice, the most significant of these restrictions
are those imposed by the constraints which ensure the con-
sistent use of variables in CEDL programs. Without taking
such restrictions into account, we would get solutions to our
inequalities corresponding to "traces" in which, for example,
the else branch of an i f statement is taken even though
the Boolean condition of the i f statement evaluates to t r u e .
We use the constraint eliminator to modify the constrained

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:49:25 UTC from IEEE Xplore. Restrictions apply.

1210 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 11, NOVEMBER 1991

("SEQUEPCE" ("OR" "def (flag; true)"
"def (flag; f alse)")

"use (f lag; false) ")

"use (flag; true) ")

("OR" ("SEQUEICE" "use (f lag; true)" "call(T ; S. A)'' "resume (T; S . A)")

("OR" ("SEQUEICE" "use (f1ag;f alse) " "call(T; S . B) " "resume (T; S. B)")

Fig. 6. Part of the task expression for task T.

(defconstraint DATAFLOU-I
("STAR" ("OR" ("SEQUEPCE" "def (flag; true)" ("STAR" "use(f1ag;true)"))

("SEQUEICE" "def (f1ag;false)" ("STAR" "use(f1ag;false)") 1) 1)

Fig. 7. Dataflow constraint for local variable flag

("OR" ("SEQUEPCE" "def (f lag; true)" "use (flag; true)" "call (T; S. A) "
"resume (T ; S . A) " "use (flag; true) ")

"call (T j S . B) " "resume (T ; S . B) ")
("SEQUEICE" "def (f 1ag;f alse) " "use (f 1ag;f alse) " "use (f 1ag;f alse)"

Fig. 8. Part of task expression after elimination of dataflow constraint.

expression representations in such a way that the inequalities
generated from them exclude such solutions.

To see how the constraint eliminator is used, consider the
following segment of a task T:

f l a g := ...;
i f f l a g t h e n

S .A;
end i f ;
i f n o t f l a g t h e n

end i f ;
S . B ;

Fig. 6 shows the portion of the task expression for task T
corresponding to this fragment. This segment should always
call exactly one of entries A or B of task S; however, the
task expression produced by the deriver permits system traces
in which both calls are made and traces in which neither
call is made. In the full constrained expression represen-
tation, the dataflow constraint shown in Fig. 7 filters out
these erroneous strings. The constraint allows any number
of def (f l a g ; V a l) symbols, each of which represents the
assignment of the value val to the variable f l a g . It also
allows each de f (flag; Val) symbol to be followed by any
number of use (f l a g ; Val) symbols with that particular
value, each representing a use of the variable, before the next
def (f l a g ; Val) symbol. Any string satisfying both the task
expression and the constraint will involve exactly one of the
entry calls.

The constraint eliminator modifies the constrained expres-
sion so that each of the resulting task expressions already
incorporates any constraints involving only symbols from that
task (Le., any string satisfying the new task expression satisfies
both the old task expression and the constraints). Fig. 8 shows
the result of incorporating the dataflow constraint for the
variable f l a g into the task expression for task T shown in Fig.
6. The inequalities generated from the resulting task expression
then reflect the restrictions imposed by the constraint, and

do not admit solutions corresponding to violations of that
constraint.

The constraint eliminator takes a set of task expressions and
constraints as input. Each constraint whose alphabet involves
only symbols from a single task alphabet (an intra-task con-
straint) is incorporated into the task expression it constrains
and is then removed. The resulting set of task expressions
and constraints is output. The task expressions incorporating
their intratask constraints may be output either as regular
expressions (RE's), deterministic finite automata (DFA's), or
in a hybrid form we call regular-expression deterministic-finite
automata (REDFA's). REDFA's are DFA's whose arcs are
labeled with regular expressions satisfying certain conditions
that preserve determinacy. We have found that it is easier to
generate "efficient" inequality systems from RE's, but that,
after constraint elimination, the RE's for some tasks are very
much larger than their corresponding DFA's. The efficiency of
an inequality system is, roughly speaking, the size of the task
representation (RE, DFA, or REDFA) divided by the size of
the inequality system (variables x inequalities). Unlike RE's,
REDFA's are never significantly larger than the DFA's from
which they are generated. Unlike DFA's, REDFA's allow easy
generation of very efficient inequality systems.

To incorporate a set of intratask constraints into a task
expression, all the regular expressions involved are converted
to DFA's, which are then intersected pairwise. The intersection
differs from standard DFA intersection in the following way:
at each state of a DFA, we assume implicit self-loops on
all symbols not appearing in the alphabet of that DFA. This
allows the DFA representing a constraint to accept symbols
not in its alphabet without changing state. Assuming that
the constraint alphabet is a subset of the task alphabet, the
result of the intersection is a DFA which accepts exactly
those strings accepted by the original task DFA in which the
symbols contained in the intratask constraints appear in the
order required by those constraints. In the case of a dataflow

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:49:25 UTC from IEEE Xplore. Restrictions apply.

AVRUNIN et al.: AUTOMATED ANALYSIS OF CONCURRENT SYSTEMS 1211

constraint for a local variable, this essentially encodes the SEQUENCE (1)

A
a(2) A
A A

I

value of the variable into the DFA state (where before the state
encoded only the syntactic location within the task design),
usually increasing the number of states in the task DFA,
but guaranteeing consistent use of the variable. In CEDL the
intratask constraints are exactly the dataflow constraints, since
there are no global variables and all other constraints involve
more than one task expression.

Using the intersection procedure described above, the con-
straint eliminator could, theoretically, intersect all the tasks and

set of legal traces of the concurrent system. While this would
prevent violation of all the constraints (not just the intratask
ones), the resulting DFA would be similar to a reachability

worst-case exponential in the number of tasks. It is exactly

separately and ignoring some of the dependencies among them.

OR (3)

SEQUENCE (41 SEQUENCE (51

constraints, producing one large DFA whose language is the a (6) b (7) C STAR (9)

graph of the concurrent system, and equally large-in the

this state explosion we seek to avoid by considering the tasks

d (10)

Fig. 9. Parse tree for the regular expression n (n b V c d *) .

C. The Inequality Generator

The analysis implemented by the constrained expression
toolset involves the generation of a system of linear inequal-
ities expressing features of both the constrained expression
representation of the concurrent system being analyzed and a
query posed by the analyst. We now describe the inequality
generator component of the toolset.

The input to the inequality generator consists of a list of
tasks. The tasks may be represented as regular expressions,
or, following constraint elimination, as DFA’s or REDFA’s.
For each task, the inequality generator produces a collection
of equations. It then generates additional inequalities reflecting
part of the semantics of certain of the constraints. The gen-
eration of equations for the tasks depends only on the basic
structure of regular expressions and finite-state automata, but
the generation of inequalities from constraints depends on fea-
tures of CEDL. In principle, since the CEDL constraints are all
regular expressions, the generation of inequalities from tasks
and constraints could be accomplished in a uniform manner.
While this would be more consistent with the interpretation of
the semantics of constrained expressions given in Section 11,
the separate procedure we have adopted in the inequality gen-
erator improves the efficiency of the tool and reduces the size
of the systems of inequalities it produces, as discussed below.

We begin by describing the generation of equations from
the tasks, first from regular expressions and then from DFA’s
and REDFA’s, and then discuss the generation of inequalities
reflecting constraints.

The basic idea behind the generation of inequalities reflect-
ing the constrained expression is as follows. The semantics of
regular expressions implies that each operand of a SEQUENCE
operator must occur the same number of times, that the sum of
the number of occurrences of the operands of an OR operator
must equal the number of “occurrences” of the operator itself,
and that, if the operand of a Kleene star operator occurs at all,
the number of its occurrences is unrestricted. Of course, this
interpretation does not fully capture the information contained
in the regular expression about the order in which the operands

occur. Given a regular expression, we build a parse tree in
which each nonterminal node is an operator, and each terminal
node is an event symbol. Assigning a variable in the integer
programming problem to each node to represent the number
of times we pass through that node in generating a string from
the regular expression, the observations above give a linear
equation at each SEQUENCE or OR node, and a quadratic
inequality at each STAR node. (The quadratic inequality is of
the form r5 . .ro - s, 2 0, where rs is the variable associated
to the STAR node, and .c, is the variable associated to the
operand of the STAR; since all our variables are constrained
to be non-negative, this inequality says that 2, must be zero
if x 9 is.) We also generate an equation setting the value of
the variable associated with the root node of the parse tree
to one, representing the fact that the task begins execution
exactly once.

This approach is illustrated with the example in Fig. 9,
which gives a parse tree for the regular expression a(abVcd*) .
(The letters a, b, e, and d stand for event symbols in a task
expression.) The number in parentheses at each node gives the
index of the variable corresponding to that node. The following
inequalities would be generated from this parse tree:

In general, quadratic integer programming problems are
much harder to solve than linear ones, and we have there-
fore chosen simply to ignore the inequalities that should be
generated at STAR nodes. (In fact, if the variables are all

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:49:25 UTC from IEEE Xplore. Restrictions apply.

1212 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 11, NOVEMBER 1991

bounded above by B, we can achieve the effect of the quadratic
inequalities with linear ones of the form x, 5 B ’ 2,. We do
not use this technique routinely. We have used it in certain
special cases, as described in Section IV.)

In this fashion we generate a system of linear inequal-
ities from the task expressions. Our first prototype of the
inequality generator used exactly this approach. The current
inequality generator makes use of several optimizations which
significantly reduce the number of inequalities and variables
required. For example, all the operands of a SEQUENCE
operator occur the same number of times, so it is not necessary
to generate separate variables for each of them, together with
equations stating that these variables take values equal to
that of the SEQUENCE node. Our experience is that such
optimizations reduce the numbers of both inequalities and
variables generated from a regular expression by a factor of
about six.

To generate inequalities from a DFA or REDFA representa-
tion of a task expression, we can assign a variable to each
arc, rather than each node, and an extra variable to each
accepting state. We then generate a “flow” equation for each
state, requiring that the sum of the variables corresponding
to arcs into that state must equal the sum of the variables
corresponding to arcs leaving the state, except that at the initial
state we require the sum of the variables on incoming arcs to
be equal to the sum of the variables on outgoing arcs minus
one, and we count the extra variables for the accepting states
as if they corresponded to outgoing arcs. For REDFA’s, some
arcs are labeled by regular expressions rather than single-
event symbols. For each such arc, we generate additional
equations corresponding to the regular expression labeling that
arc, using the method described above, but associating the
variable corresponding to the arc with the root node of the
parse tree of the regular expression. Fig. 10 shows a DFA
accepting the language of the regular expression of Fig. 9. The
numbers in parentheses next to the arcs and accepting states
give the indices of the corresponding variables. The equations
generated from this DFA are:

5 1 = I
5 1 - 2 2 - x3 = 0

2 2 - 2 4 = 0

2 3 + 2 5 - 5 5 - z7 = 0.
2 4 - .%6 = 0

Note that the variable 25 is unconstrained, since it appears
only in the last equation and cancels out there. This is due
to the fact that the corresponding arc, being a loop, is both
incoming and outgoing. Essentially, the same phenomenon
occurs with any cycle in the DFA and can lead to spurious
solutions to the system of inequalities. This problem is related
to the difficulty with Kleene stars noted above, and can be
eliminated by introducing quadratic inequalities that ensure
that no variable corresponding to an arc in the cycle can
be nonzero unless the variable corresponding to some arc
connecting a state outside the cycle to one in the cycle has
a nonzero value. (As in the regular expression case, when

START

6

Fig. 10. DFA accepting the language of n (a b V cd ’) .

all variables are bounded above, the effect of such quadratic
inequalities can be achieved with linear ones.)

Having produced equations for each task, the inequality
generator then begins to generate linear inequalities reflecting
some of the constraints. The constraints impose restrictions
on the order and number of occurrences of event symbols in
traces of the system. The integer programming variables we
use only involve the total number of occurrences of symbols
(or, more precisely, of traversals of nodes in the parse trees or
arcs in the finite-state automata), and do not reflect the order
in which those symbols occur. We therefore wish to extract
the information about total numbers of occurrences of event
symbols from the constraints.

Note first that the total number of occurrences of a particular
event symbol is given by the sum of certain variables in the
equations generated from the tasks. If the symbol occurs in
a task represented by a regular expression, the number of
occurrences of the symbol is equal to the sum of the variables
corresponding to the terminal nodes at which that symbol
appears. Thus in the example of Fig. 9, the number of occur-
rences of the event symbol represented by n is x2 + 5 6 . If the
symbol occurs in a task represented by a DFA, the number of
occurrences is given by the sum of the variables corresponding
to those arcs labeled by the symbol, while in the case of a task
represented by an REDFA, the number of occurrences may
involve variables associated with both arcs and nodes in the
parse trees of the regular expressions labeling arcs.

To see how the constraints justify additional inequalities,
consider first the synchronization constraint shown in Fig.
3. In any string satisfying this constraint, the number
of call(p0;fl.ul) symbols must equal the number
of beg-rend (PO : f 1 . ul) symbols, and the number of
end-rend (PO ; f 1. ul) symbols must equal the number
of resume (PO ; f 1. ul) symbols. The inequality generator
therefore produces equations involving the sums of variables
corresponding to the numbers of occurrences of these symbols.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:49:25 UTC from IEEE Xplore. Restrictions apply.

AVRUNIN et al.: AUTOMATED ANALYSIS OF CONCURRENT SYSTEMS 1213

The constraint further requires that the various symbols occur
in a specified order, but this fact cannot be expressed in terms
of the integer programming variables associated with the tasks.
Similarly, from the blocking constraint of Fig. 3 and the fact
that task expressions produced by the deriver have the property
that each task contributes at most one h a n g symbol to a trace,
we conclude that the sum of the number of hang-a (f 0 . u0)
symbols and the number of h a n g - c (pi ; f 0 . u0) symbols
cannot exceed one, for i = 0.1. Other inequalities are
obtained from the constraints that deal with the failure of
nested rendezvous. (The constraints that enforce the queueing
of entry calls and the dependence of control flow on data
involve only the order in which event symbols occur and
not the total number of their occurrences, and are ignored
in this part of the analysis. The constraint eliminator takes
those constraints involving intratask dataflow into account
before inequalities are generated.) As noted above, it would
be possible to generate inequalities from a constraint by first
generating equations from the regular expression, as we do for
task expressions, and then generating equations stating that the
number of occurrences of an event symbol coming from the
task in which it appears must equal the number coming from
each constraint in which it appears. This approach, though
pleasingly uniform and language-independent, would lead to
the introduction of many additional variables and equations
coming from the constraints. We have therefore chosen to
sacrifice some of the language-independence and generate
inequalities involving the variables from the tasks directly
from the CEDL constraint templates.

We thus generate a system of inequalities reflecting a large
part, but not all, of the semantics of the constrained expression
representation. Queries about the behaviors of the concurrent
system are also expressed in terms of the integer program-
ming variables. For example, an analyst could formulate the
statement that a philosopher is permanently prevented from
eating as an equality stating that at least one of certain h a n g - c
symbols occurs (i.e., that the sum of certain variables is one).
Adding this to the system of inequalities obtained from the
constrained expression, we would obtain a system reflecting
both the constrained expression and the query. If this system
has no integral solution, then the CEDL system has no trace in
which a philosopher task waits indefinitely for a rendezvous
with a fork task. If there is an integral solution, this does
not guarantee that a behavior of the CEDL system exists
in which the philosopher task waits indefinitely-we have
ignored information about order in generating our inequalities,
so the solution may be “spurious” in the sense that it does not
correspond to an actual behavior. But we can use the event
counts obtained from the solution as a guide in searching for
a real behavior with the property expressed in the query.

The inequality generator provides a menu-driven interface,
allowing the analyst to formulate queries using event symbols
rather than only integer programming variables, and it allows
the analyst to specify one of several objective functions for
integer linear programming. It also provides facilities that
assist the analyst in interpreting the systems of inequalities
and solutions found by the integer programming tool in terms
of the task expressions and constraints.

D. IMINOS

We solve the inequality systems produced by our inequal-
ity generator using a branch-and-bound algorithm employing
the variable dichotomy scheme first introduced by Dakin
[14]. Our implementation of this algorithm makes use of the
MINOS [151 optimization package to solve LP-relaxations
of the integer programming problems. We refer to the tool
that incorporates our code and MINOS as IMINOS (Integer
MINOS). The IMINOS tool takes an inequality system and
associated objective function in the standard MPS file format
as input. This input file is produced by the inequality generator.

We chose to base the integer programming component of
our toolset on MINOS for several reasons, including the
availability and robustness of the MINOS system and the
relative ease of adding the branch-and-bound mechanism to
it. Disadvantages, for our purposes, are that MINOS imple-
ments only a primal algorithm, requiring simplex iterations to
reattain feasibility when additional inequalities are added in
the branch-and-bound process, and that it is a general-purpose
package which does not take advantage of the special structure
of our systems. Although the performance of IMINOS has
generally been very satisfactory despite these disadvantages,
as indicated by the results discussed in Section IV, some
problems have arisen with large systems of inequalities. We
are therefore investigating approaches to integer programming
which take advantage of the fact that our systems of inequali-
ties can be regarded as network problems with side constraints.

E. The Behavior Generator

If IMINOS has produced a solution to the system of
inequalities, the next step is to determine whether that solution
corresponds to a trace of the concurrent system being analyzed.
This is the principal function of the behavior generator. Given
the solution and the constrained expression (a set of task
RE’S, DFA’s, or REDFA’s along with constraints) as input,
the behavior generator will attempt to construct a system
trace using the information in the solution as a guide. This
information consists of total event counts for every event
symbol, and also includes counts for each arc in the DFA
representation of the task-provided that the inequalities for
that task were generated from either the DFA or REDFA form
of the task, rather than from a regular expression.

The behavior generator performs a highly constrained reach-
ability search on the global state space of the concurrent
system. The global state space is, in general, exponential in
the number of tasks, but the information in the solution found
by IMINOS severely limits the possible actions of each task,
frequently allowing no choices whatsoever, and in practice we
have found the search to be quite fast. A global state contains
the states of the DFA’s for all the tasks and constraints (the
behavior generator uses the DFA representation for all tasks
and constraints, converting regular expressions to DFA’s as
necessary) as well as the symbol and arc counts being used to
guide the search. These counts represent the remaining number
of times a symbol or arc may occur; they are started at the
values given by the solution and decremented to zero. Once
at zero, a count prohibits its symbol or arc from being taken

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:49:25 UTC from IEEE Xplore. Restrictions apply.

1214

name tasks

dp20 40
dp40 80
d ~ 6 0 120

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,

deriv elim ineq IMINOS behav size total
109 4 26 9 21 381 x 320 169
203 11 77 71 46 761 x 640 408
298 2 1 158 74 78 1141 x 960 629

VOL. 17, NO. 11, NOVEMBER 1991

Fig. 11. Toolset performance on several

in any successor of that global state, pruning the search tree.
The search starts at the global state in which all task and
constraint DFA’s are in their start state, and all counts to be
used are set to the value found by the solution. The global state
space is searched depth-first until a final global state is found
in which all task and constraint DFA’s are in accepting states
and all counts are zero or until all paths to a user-specified
depth bound have been explored. Heuristics, some of which
are specific to CEDL, control the order in which successor
states are generated and can eliminate some states that cannot
lead to a final global state.

If a final global state is found, the list of event symbols
allowing the global state transitions to the final global state is
a trace of the concurrent system. This string of symbols and a
list of each task’s actions are written to a file, and the analyst
may then stop or continue the search for other behaviors. If
no behavior is found within the given depth bound, then the
analyst may extend the depth bound and continue the search
from the states along the “frontier” of the space (states at
the depth bound). If a solution to the system of inequalities
is provided, the state space will be finite (there can be no
more symbols than those given by the solution), and so failure
to find a behavior string within the depth bound given by the
number of events in the solution proves no string satisfying the
solution exists. The behavior generator also has facilities which
allow the analyst to use the tool more interactively by using
only a part (possibly none) of the solution, and by modifying
the solution to require or prohibit certain event symbols from
occurring in the behavior string. Note, however, that the size of
the state space increases rapidly as the amount of information
given to the behavior generator decreases.

IV. EXPERIMENTAL RESULTS

As noted above, we believe that an assessment of the
significance of the analysis methods implemented by this
toolset must include the application of the tools to a variety
of types and sizes of concurrent systems. We have therefore
used the toolset to analyze a number of examples, and we
report the results of several of these experiments here. We
have tried to discuss the examples and our results in enough

variations of dining philosophers problem

detail to show the effect of various factors on the performance
of the constrained expression tools, although we do not claim
to be able to assess the import of these factors independently.
These factors include the number of tasks in the system, the
complexity of dataflow in the tasks, and what seem to be
superficial differences in coding style. Many of the examples
have also been analyzed by other researchers using other
analysis methods. The next section includes some comparisons
between our results and theirs.

All the experiments reported in this paper were run on a
DEC station 3100 with 24 megabytes of memory; times given
are in CPU seconds on that machine and include both user
and system time. The CEDL code for the examples discussed
here is too long to include in this paper, but is available from
the authors.

A. Dining Philosophers

Perhaps the most widely known example in the concurrent
systems literature is Dijkstra’s dining philosophers. The system
is interesting because of the possibility of deadlock. Various
approaches can be used to prevent the deadlock.

Fig. 11 shows the performance of the constrained expression
toolset on several variations of this system. In all cases,
analysis is intended to detect the possibility of deadlock.
The columns give, respectively, the name of the system, the
number of tasks in the system, the time in seconds used by the
deriver, the eliminator, the inequality generator, IMINOS, and
the behavior generator, the size of the system of inequalities
(number of inequalities x number of variables), and the total
time used by the toolset.

The first five rows of the figure give statistics for several
sizes of the basic dining philosophers system. We model each
fork and each philosopher by separate tasks, as illustrated in
Section 11-A. A system dpn with n philosophers thus has
2n, tasks. For all of these systems, the toolset automatically
produces a trace exhibiting deadlock.

One of the standard ways to prevent deadlock in the dining
philosophers system is to introduce a “host” or “butler” who
ensures that all the philosophers do not attempt to eat at the
same time. We have modeled this in the systems dp20-h,

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:49:25 UTC from IEEE Xplore. Restrictions apply.

AVRUNIN er al.: AUTOMATED ANALYSIS OF CONCURRENT SYSTEMS 1215

dp30-h, and dp40-h by introducing an additional host task and
modifying the philosopher tasks. Control flow in the system
with host depends on the value of a variable maintained
by the host task which counts the number of philosophers
in the dining room. The constraint eliminator intersects the
task expression for the host and the constraint involving this
variable, so that the system of inequalities properly reflects
the dependence of control flow on the number of philosophers
in the dining room. This process, however, together with
the additional entry calls in the philosopher tasks, leads to
significantly bigger systems of inequalities. Rows six through
eight of the figure summarize the results of analyzing these
systems with the toolset. In each case, IMINOS reports that
there is no integral solution to the system of inequalities,
implying that no deadlock is possible. It is therefore not
necessary to run the behavior generator in these cases.

For comparison, we also analyzed systems of the same sizes
in which the host erroneously allows all the philosophers to
enter the dining room at once. The performance of the toolset
on these problems is shown in the rows for the systems dp20-
eh, dp30-eh, and dp40-eh. In each case, the toolset produced
a behavior exhibiting the deadlock.

Several other versions of the dining philosophers prob-
lem have been considered by other authors. For comparison
with their published reports of automated analyses, we report
briefly on the analysis of three of these with the constrained
expression toolset.

The first of these systems, dp5-u, is a five-philosopher
“unrolled” version of the dining philosophers with host, like
that analyzed by Young et al. [16] using their CATS system.
In this version, the host task does not use a variable to keep
track of the number of philosophers in the dining room, but
instead uses nested select statements. The CATS system
was used to verify a temporal logic assertion (that, under the
assumption of a fair scheduler, each philosopher can get into
the dining room). We used the constrained expression toolset to
analyze the system for deadlock. The design published in [16]
is not equivalent to the one in which the host uses a variable
to keep track of the number of philosophers in the room
(as was pointed out to us by S. Shatz), and the constrained
expression toolset produces a trace displaying the deadlock in
the “unrolled” system.

The final two rows of the figure give results for dining
philosophers systems similar to ones analyzed by Karam and
Buhr [l] for deadlock and starvation. These systems use a
single fork manager task to model the forks, rather than
individual tasks. Deadlock is possible in the system dp5-efm7
and the toolset produces a system trace that displays deadlock.
The fork manager prevents deadlock in the system dp5-fm by
requiring the philosophers to pick up both forks at the same
time. In this case, IMINOS reports that no deadlock is possible,
and it is not necessary to run the behavior generator.

All the IMINOS runs in Fig. 11 used the sum of the variables
corresponding to the operands of STAR operators in the task
expressions as the objective function. We note that the per-
formance of IMINOS on these examples is quite sensitive to
the particular objective function used. When we used the sum
of all the variables or a constant objective function, IMINOS

reported that the system of inequalities for the 30-philosopher
system dp30 (and all bigger ones) was inconsistent. The
difficulty appears to be due to stability problems related to
the bandedness of the system of inequalities. We discuss these
issues further in Section V.

B. Gas Station

The automated gas station example introduced by Helmbold
and Luckham [6] has been studied by a number of authors
(e.g., [l], [17]). This system models an automated gas station
with an operator, a number of pumps, and a collection of cus-
tomers. We have analyzed several versions of the system which
correspond to some of the refinements used by Helmbold and
Luckham. The performance of the toolset on these examples is
reported in Fig. 12. The columns of the figure have the same
significance as in Fig. 11.

In the first of our systems, gas2-e, there are two customer
tasks, one pump task, and one operator task. In this version,
a race condition can lead to deadlock, and our analysis
detects this. Our second version, gas2, eliminates the race
condition and the toolset correctly reports that the system
cannot deadlock. (Note that, even though deadlock is avoided,
it is still possible for a customer to receive another customer’s
change. Karam and Buhr’s [l] critical race assistant points up
this possibility.)

When the deadlock-free two-customer design is scaled up to
three customers, however, a more complicated race condition
arises, again leading to the possibility of deadlock. (This was
first noticed by K. C. Tai [18], who used a graphical analysis
method to detect the error.) We analyzed two versions of
the three-customer extension of this problem. The first, gas3,
is a straightforward extension. In this case, the constraint
eliminator produces an REDFA for the operator task that has a
very large number of states due to the possible states of a queue
of waiting customers. The large number of states (5239 in the
DFA produced by the eliminator, 433 in the corresponding
REDFA) is responsible for the fact that the eliminator takes
more than 30 min in this case. The number of states can be
reduced by setting the variables corresponding to slots in the
queue to some fixed value when that slot is not occupied by a
customer waiting for service. (Since that practice would allow
standard dataflow techniques to detect certain errors, it might
be good programming style in general.) The toolset finds the
deadlock in both of these versions of the gas station.

Results for the first three-customer extension are shown in
the third line of Fig. 12, and those for the version that reduces
the number of states, gas3-res, are given in the fourth line. We
note that these systems have many fewer tasks than the dining
philosophers examples, but the systems of inequalities and the
tool execution times are relatively large. This chiefly reflects
the more complicated dataflow.

One way to avoid deadlock and ensure that customers
receive their own change is to have separate entries in the
operator and pump tasks to distinguish the customers. In
such systems, the number of states in the REDFA for the
task representing the operator is much smaller than that in
the versions discussed earlier. Results for these examples

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:49:25 UTC from IEEE Xplore. Restrictions apply.

1216 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 11, NOVEMBER 1991

name tasks deriv elim ineq IMINOS behav size
rw-d 6 40 6 6 3 3 82 x 137

rw-D 6 41 7 7 4 90 x 148
rw 6 40 5 2

I name tasks I deriv I elim [ineq I IMINOS I behav I size 1 total
5 I 8 I 120 x 200 1 86 1

total
58
47
59

Fig. 12. Toolset performance on the gas station.

Fig. 13. Toolset performance on readers and writers problem.

also appear in Fig. 12. Our analysis was again intended
to determine whether a customer who has prepaid can be
permanently blocked before pumping gas. The toolset correctly
determines that this cannot occur in the versions with two and
three customers, gas2-s and gas3-s. (The sum of all variables
was used as the objective function in these cases; performance
with this objective function was much better than when the
sum of variables corresponding to STAR operands was used.)

For comparison, we also analyzed a two-customer version
of this example containing an error (similar to that in the two-
customer version discussed previously) that permits deadlock
to occur. Results for this system, gas2-se, are given in the last
line of the figure.

C. Readers and Writers

Another standard example from the concurrent systems
literature is the readers and writers problem. In this problem,
readers and writers attempt to gain access to a shared resource.
We analyzed some CEDL versions of the problem for deadlock
and to determine whether a writer and one or more readers
could gain access to the resource at the same time.

These systems consist of a number of tasks representing
readers and writers, and a controller task that the others call
in order to gain and relinquish access to the resource. The
analysis for deadlock is similar to the analyses described
above. The analysis for simultaneous access by readers and
writers is quite different and requires some discussion.

Simultaneous access by a reader and a writer would be
represented in a system trace by an occurrence of a symbol
representing a writer gaining access between symbols rep-
resenting a reader gaining and relinquishing access, or by
the occurrence of a symbol representing a reader gaining
access between symbols representing a writer gaining and
relinquishing access. Detecting such simultaneous access in
a system trace depends on determining that symbols occur in
that trace in a particular order, and the inequalities we generate
do not reflect the order of symbol occurrences. For this reason,
our toolset cannot directly address this question. We therefore
modified the controller task so that each time a reader or writer
gains access to the resource, it checks to determine whether a

reader and a writer both have access, and sets a flag if this is the
case. Our analysis then asks whether the symbol representing
the setting of this flag occurs in any trace of the system.

Results for a few versions of these readers and writers
systems with four readers and one writer are shown in Fig. 13.
The first line gives times for an incorrect system in which
an error in the controller task allows a deadlock. The second
line gives results for a correct system which is analyzed for
undesirable simultaneous access to the resource. In this case,
the constraint eliminator removes that part of the controller
task expression containing the symbol representing the setting
of the flag, and it is not even necessary to generate a system
of inequalities to determine that the flag is never set. The time
shown for the inequality generator in the figure is just the time
required to determine that the symbol does not occur in the
constrained expression produced by the constraint eliminator.
The third line gives results for a system in which the controller
gives the writer priority by refusing read requests while a
writer is waiting to gain access to the resource. This system,
which is correct, was analyzed to detect deadlock. The toolset
correctly reports that deadlock is impossible.

D. Distributed Mutual Exclusion

We now describe some experiments with a system for
achieving mutually exclusive use of a resource in a distributed
system.

The system analyzed is a CEDL version of a design that
implements part of an algorithm for mutual exclusion due
to Ricart and Agrawala [19]. In it, a node wishing to obtain
exclusive use of the resource sends a request to each of the
other nodes in the system, and then waits for a reply from each
node before proceeding to use the resource. A node receiving a
request decides whether to reply immediately, thereby granting
its permission to use the resource, or to defer its reply until
it has used the resource itself. This decision is determined
in part by a sequence number sent as one portion of the
request message, and in part by a fixed priority ordering on
the nodes that is used in case two sequence numbers are equal.
The sequence numbers are generated by the individual nodes

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:49:25 UTC from IEEE Xplore. Restrictions apply.

AVRUNIN er al.: AUTOMATED ANALYSIS OF CONCURRENT SYSTEMS

name tasks deriv
ral 6 46

ra3-e 7 87
ra3 7 85

1217

elim ineq IMINOS behav size total
11 4 3 129 x 186 70
30 8 71 35 216 x 247 238
30 8 72 60 216 x 247 262

~

Fig. 14. Toolset performance on the distributed mutual exclusion examples.

and are similar to the numbers used in Lamport’s “bakery
algorithm” [20].

The constrained expression approach was applied in [21] to
detect an error in a partial design for a system implementing
the Ricart-Agrawala algorithm, and then to show that the error
was eliminated in a modified version of the design. In that
paper, the design was written in DYMOL, a language with
asynchronous message passing, and the analysis was carried
out by hand. We have used the toolset to examine a similar
design written in CEDL. Fig. 14 summarizes the results of
these experiments.

We began by considering a design for a single-node system,
ral, in which the details of the Ricart-Agrawala algorithm
had not yet been elaborated. The analysis was intended to
determine whether a request received at the node may be per-
manently deferred. The toolset showed that this cannot happen.
This is essentially equivalent to the analysis performed by
hand in [21], although the different communication primitives
in CEDL and DYMOL make the details of the designs quite
different.

We next considered two versions of a system with three
elaborated nodes and an additional task simulating the re-
source. In this case, we wanted to detect possible violation
of mutually exclusive use of the resource. As in the readers
and writers examples discussed above, the resource task sets
a flag if two nodes use the resource simultaneously, and the
query the toolset attempts to answer is whether that flag is
ever set in a behavior of the system. Note that deadlock is
possible in this system, because the full algorithm used by
the nodes to determine when to defer requests has not yet
been implemented at this stage of the design process, and all
the nodes could decide to defer each other’s requests. But a
correct design at this stage should enforce mutually exclusive
use of the resource.

In the first of these systems, ra3-e, we introduced a race
condition which would allow simultaneous access to the
resource by two nodes. IMINOS found a solution to the system
of inequalities, but due to the problem with cycles in the
REDFA discussed in Section 111-C, this solution is spurious.
We then manually added the linear inequalities necessary
to exclude solutions which incorrectly give nonzero values
for arcs in those cycles, as described in that section, and
ran IMINOS again. (We believe that automating this process
should be straightforward and expect to add this feature to the
toolset in the near future.) IMINOS found another solution,
and the behavior generator reported that this solution was also
spurious. Examination of the output of the behavior generator
showed that, in the course of trying to construct a system trace
corresponding to the solution, the behavior generator reached
a global state in which all the tasks are blocked, but no replies
have been deferred. We thus detected a possible deadlock of

the three-node system due to the error, rather than the deferral
of requests. The time shown in the table for the performance
of IMINOS on ra3-e is for the second run, which is somewhat
longer than for the run without the additional inequalities.

In the second version of this three-node system, ra3, the
race condition is eliminated so that the resource is used in a
mutually exclusive fashion. In this case as well, the problem
with cycles leads to a solution which does not correspond
to a behavior, and we manually added inequalities as before.
IMINOS found a solution to the new system of inequalities
(as above, the time shown for IMINOS is for the second,
longer run). Again, the behavior generator correctly reported
that this solution is also spurious. The solution found by
IMINOS reflects a “behavior” in which the events occur out
of order-each of two nodes behaves as if a request from
the other node was received before it decided to request
the resource itself. The problem here is that the system of
inequalities produced by the inequality generator does not fully
reflect the order in which the corresponding events occur. At
this time, we do not know of a general method for solving this
problem, which, as in this case, can lead to spurious solutions.
The behavior generator can tell us that this particular solution
does not correspond to a behavior, but in cases like this one,
the toolset does not give a definitive answer to the question
of whether there is a behavior with the property the analyst
is interested in.

E. Counters and Systems with Many Identical Tasks

With a very slight modification, the toolset can be used to
analyze systems that include an extremely large number of
identical tasks. If there are n identical tasks in the system,
we can simply set the variable corresponding to the root
node of the parse-tree of the task expression (or to the flow
into the initial state of a task DFA or REDFA) to n, rather
than one. This corresponds to starting n identical copies of
the task with that task expression. In conjunction with this
technique, we have also experimented with the use of an
integer programming variable to represent a CEDL variable
used by a task in the system to maintain a count of some sort.
At this time, the latter technique can only be used with certain
types of systems, and the behavior generator will need some
modification for use with these two techniques, but we present
in Fig. 15 some results of applying the other components of the
toolset to a system involving two coupled resource managers
controlling equal amounts of two resources and a large number
of identical customers who require both resources.

The figure shows the number of customer tasks, the amount
of the first resource originally available, the amount of the
second resource originally available, the number of tasks in
the systems, and the times used by the components of the

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:49:25 UTC from IEEE Xplore. Restrictions apply.

1218 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 11, NOVEMBER 1991

CUE 11 12 tasks deriv ineq IMINOS sise
500 490 490 502 25 3 2 36 x 39
500 490 489 502 25 3 2 36 x 39

1000 990 990 1002 25 3 2 36 x 39
1000 990 989 1002 25 3 2 36 x 39

total
30
30
30
30

Fig. 15. Toolset performance with many identical tasks

toolset. The analysis is intended to detect the possibility that
the controller of the second resource grants more requests
for access to the resource than can be accommodated by
the available amount. The first two lines give the results for
systems with 500 customers; the first line shows a correct
system, and the second shows one with fewer units of the
second resource, leading to an error. The third and fourth
lines give the results for similar systems with 1000 customer
tasks. Because the variables used to count resource units in
the two controllers are represented by integer programming
variables, it is not necessary to use the constraint eliminator
in these analyses. The solutions found by IMINOS for the
two incorrect examples do indeed correspond to system traces
displaying the pathological behavior. Note that the systems of
inequalities are the same size and the execution times are the
same for all versions of the system.

v. ASSESSING THE CONSTRAINED EXPRESSION TOOLSET

At the beginning of this paper, we argued that an assessment
of the value of a method for analyzing concurrent software
must necessarily include an empirical evaluation of the ap-
plication of that method to a variety of types and sizes of
concurrent systems. The constrained expression toolset we
have described was constructed with the intention of con-
ducting such an empirical evaluation, and we have presented
some of the results of our initial efforts in that direction. In
this section we consider various aspects of that evaluation and
discuss our current assessment of the constrained expression
approach. We then briefly compare it to some related methods.

A. Performance and Scalability

As the results described in the previous section illustrate,
the constrained expression toolset is capable of analyzing
large systems. The toolset carries out a complete analysis of
the basic dining philosophers problem with 100 philosopher
tasks and 100 fork tasks, starting from the CEDL code and
producing a behavior displaying deadlock in less than 21 min.
When the behavior of the individual tasks is more complex,
the toolset cannot handle quite so many tasks, but it is clear
that it can be used with at least some systems which involve
hundreds of concurrent processes. This is in marked contrast
to the results reported for most other methods which have
been implemented, notably those based on constructing and
searching a reachability tree. This ability to analyze large
systems is the most obvious strength of the approach.

Problems in the performance of the integer programming
component of the toolset do arise with large systems, however,
and raise some serious issues concerning use of the toolset.
Particularly significant is the fact that the results obtained by

IMINOS are sensitive to the objective function chosen, and
indeed are incorrect for large versions of the basic dining
philosophers problem with one objective function we have ex-
amined. This appears to be due to numerical stability problems
which arise here from an interaction between the particular
objective function and the bandedness of the coefficient matrix.
This bandedness reflects the communication structure of the
concurrent system-each task communicates only with two
“nearby” tasks-and is known to cause difficulties for the
particular simplex algorithm used in MINOS, but we do
not understand the problem well enough at this time to be
able to predict accurately the cases in which it will arise.
In other cases, notably those with complex dataflow, the
presence of many solutions to the LP relaxation of our integer
programming problem when there is no integer solution leads
to extremely long run times for IMINOS. There appears to
be significant potential for improving the performance of the
integer programming component of our toolset by modifying
the branching algorithm used by IMINOS, and possibly also by
implementing other approaches to integer linear programming
which might take better advantage of the special characteristics
of our systems of inequalities. We are currently investigating
these possibilities.

The performance of the toolset is not easily predicted
from known results on the computational complexity of the
algorithms it implements, especially since problems like the
detection of deadlock are NP-hard [22]. The translation process
implemented by the deriver is essentially linear in the number
of tasks and the size of each task. In general, the “intersection”
of DFA’s performed by the constraint eliminator increases
the sizes of the state spaces exponentially, but our eliminator
needs to do this only a small number of times. The complexity
of inequality generation is certainly linear in the size of the
constrained expression, which could in principle be expo-
nential in the size of the original concurrent system. Integer
linear programming is known to be NP-complete, and the
worst-case performance of any branch-and-bound algorithm is
exponential in the size of the coefficient matrix. The average-
case performance for the algorithm we have implemented is
not known, however, and the performance of IMINOS does
appear to be the limiting factor in our ability to handle several
of the examples. Finally, the search carried out by the behavior
generator is clearly exponential in the number of tasks in the
system in general, but frequently is severely constrained by
the solution found by IMINOS. For instance, the behavior
generator does no backtracking in the dining philosophers
problem with 100 philosophers.

Thus the ability of the toolset to handle large problems is
not obvious from theoretical investigation. We feel that this
strongly supports our assertion that empirical evaluation is a
necessary component of the assessment of analysis methods.

B. Range of Problems that can be Analyzed

The constrained expression toolset can be used to answer
several of the most important types of questions developers
of concurrent systems are likely to ask. The results presented
in Section IV show how the toolset can be used to answer

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:49:25 UTC from IEEE Xplore. Restrictions apply.

AVRUNIN et al.: AUTOMATED ANALYSIS OF CONCURRENT SYSTEMS 1219

questions about deadlock and violation of mutual exclusion.
We have also used the toolset to detect blocking of single
processes. In [23], we have shown how the toolset can be
extended to answer questions about the timing properties of
a concurrent system.

The current version of the constrained expression toolset,
however, is not able to address questions about fairness or
starvation. These questions involve infinite behaviors and the
constrained expression formalism does not describe infinite
behaviors. In addition, many questions about the order in
which events occur can be answered by the toolset only if
they can be translated into ones involving the number of
occurrences of events. While this can often be accomplished
by slightly modifying the system being analyzed, as in the
readers/writers example reported in the previous section, such
modifications represent an extra complication and are not
always practical.

The toolset does correctly represent the dependence of
control flow on intratask dataflow. Some reachability-based
methods intentionally ignore information about the values of
variables in order to reduce the number of states that must
be generated and examined. For example, the version of the
CATS suite of tools described in 1161 is unable to determine
that deadlock is impossible in the dining philosophers with
host for this reason. (Other reachability-based methods, such
as [l], do correctly deal with dataflow.)

However, the ability of the toolset to analyze systems having
tasks with very complex dataflow is limited. The problem,
as for the reachability-based methods, is the explosion in the
number of states that must be considered. Furthermore, the
toolset does not use information about the dependence of
control flow on data when that information involves several
tasks. We are currently investigating some ways to make better
use of this sort of information.

The integer programming component of the toolset some-
times produces “spurious” solutions to the systems of inequali-
ties; that is, solutions that do not correspond to behaviors of the
concurrent system. This is due to the fact that our systems of
inequalities do not fully reflect the semantics of constrained
expressions, as discussed in Section 111-C. The inequalities
we generate do not directly restrict the values of variables
corresponding to STAR operands in task expressions or arcs in
cycles in task DFA’s or REDFA’s, and are unable to guarantee
consistent ordering of events in different tasks, because they
involve only the total number of times an event occurs or an
arc in a DFA is traversed. As demonstrated in the experiments
with the distributed mutual exclusion system, it is sometimes
possible to deal with spurious solutions arising from STAR’S
or cycles in an ad hoc manner and it should be possible
to automate this process in a fairly straightforward fashion.
At the present time, we are not able to eliminate spurious
solutions due to problems with the order of occurrence of
events, although the behavior generator does tell us that the
particular solution found by IMINOS does not correspond to
a trace of the concurrent system. Of course, even when the
behavior generator reports that a solution of the system of
inequalities does not correspond to a trace, it is possible that
some other solution does correspond to a trace. Our analysis

in the case in which the solution found by IMINOS does not
correspond to a trace is therefore not conclusive.

The problems with spurious solutions due to STAR’S and
cycles depend to some degree on the “coding style” of the
example. We have found, for example, that such spurious
solutions can often be prevented by guarding all entries as
strictly as possible. In some cases, much stronger guards
are possible in certain versions of a design than in others,
although the versions appear essentially equivalent to most
programmers. Another aspect of coding style that affects
analysis is illustrated by the two three-customer versions of the
gas station in which the operator maintains a queue of waiting
customers. As shown in Fig. 12, the version in which the
variables representing slots in the queue are set to a fixed value
when not in use has approximately half as many inequalities
and integer programming variables and takes substantially less
time to analyze than the version in which the variables are
not reset. In fact, the process of detecting such variables and
resetting them to some value would be relatively easy to
automate using dataflow analysis techniques, although as yet
we have not attempted to incorporate such automated resetting
of variables into our toolset.

C. Comparison with other Methods
We now briefly compare the constrained expression toolset

and the analysis techniques it implements with some related
approaches.

Several investigators have implemented analysis techniques
for concurrent systems based on generating and examining
some sort of a reachability graph for states of the system (e.g.,
[l] , [2], 1161). In general, the number of states such methods
must examine is exponential in the number of tasks in the
system, and different approaches are taken to reducing this
complexity. For example, the CATS system [16] uses “task
interaction graphs” and ignores the values of variables in order
to reduce the number of states, while the starvation and critical-
race analyzers described by Karam and Buhr [l] work from a
temporal logic specification. Similarly, the Petri-net reduction
techniques of 1171 are intended to reduce the size of a Petri-net
representation of a concurrent Ada program in order to make
reachability analysis practical.

It appears that none of these techniques can currently deal
with systems as large as some of those analyzed using the
constrained expression toolset. For example, Karam and Buhr
indicate that their approach “is effective for designs with
a complexity in the order of 10-20 tasks” and suggest the
use of a knowledge-based system for designs with 50-100
tasks. Similarly, Young et al. suggest that a reasonable gran-
ularity for analysis of designs is “in the neighborhood of 8
processes.”

These reachability-based methods, however, can be used to
answer questions that cannot be addressed by the constrained
expression toolset. Both the CATS system and Karam and
Buhr’s starvation analyzer can be used to verify temporal
logic assertions involving such questions as fairness, as well
as detecting deadlock. And with small systems, reachability-
based analysis can be quite efficient. The times reported by

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:49:25 UTC from IEEE Xplore. Restrictions apply.

1220 IEEE TRANSACTIONS ON S O W A R E ENGINEERING, VOL. 17, NO. 11, NOVEMBER 1991

Karam and Buhr for analysis of the two-customer gas station,
for example, are significantly lower than the corresponding
times for the constrained expression toolset. (Karam and Buhr
begin with a logical specification rather than standard source
code and so do not report times for tools corresponding to our
deriver.)

In some cases, the size of the reachability graph that
must be generated can be sharply reduced. McDowell [24],
for example, has described a method for collapsing parts
of the reachability graph when the system includes a large
number of identical tasks. (This is the case in which we have
experimented with setting a variable to n rather than one,
as discussed in Section IV-E.) Valmari [25] has described a
method which can detect deadlock in systems with a commu-
nication structure like that of the basic dining philosophers in
time which is linear in the number of tasks. The range of useful
application of this method is unclear at the present time-for
the dining philosophers with host, for example, the method
remains exponential in the number of tasks-but this approach
is the only one we know of other than constrained expressions
which can handle systems with more than 100 tasks.

Another approach, very closely related to ours, is the Petri-
net invariant method of Murata et al. [26]. In this method
certain Petri-nets are derived from Ada tasking programs,
and the T-invariants of these nets are determined. The T -
invariants are integer solutions to a homogeneous system
of linear equations and correspond to counts of transition
firings whose net effect is to return the derived Petri-net to
its original marking (representing a deadlock-free execution
of the original Ada program). Some T-invariants correspond
to possible firing sequences of the net, but others do not,
essentially because the process of finding T-invariants ignores
the restrictions on the order in which transitions can fire that
are imposed by the semantics of Petri-nets. These “spurious”
T-invariants are thus similar to the solutions of our systems of
inequalities that do not correspond to traces of CEDL systems.
The approach of [26] is to use the T-invariants first to detect
and remove certain “inconsistency” deadlocks, and then to
guide the construction of a reachability graph to determine
whether “circular” deadlocks are possible.

VI. CONCLUSION
The constrained expression approach to analysis of con-

current software systems has several attractive features. It
can be used with a variety of different design notations and
programming languages which are based on different views
of the semantics of concurrent computation, use different
communication primitives, and are suitable for different stages
of the development process. Developers of concurrent systems
can thus use the notations and languages most appropriate for
their tasks, while retaining the capability of rigorous analysis
of their systems. Problems with combinatorial explosion are
reduced, because analysis based on the constrained expression
formalism does not require enumeration of a complete set
of reachable states of the concurrent system. In addition,
important aspects of the approach seemed relatively easy to
automate.

Experiments with manual application of the constrained
expression analysis techniques to small examples were quite
encouraging. However, a determination of whether the tech-
niques could really be of value to software developers could
not be made without carrying out an empirical evaluation
of their application to a wider range of examples, including
examples far too large to analyze by hand. We therefore began
to construct a toolset automating the main constrained ex-
pression analysis techniques. This paper describes that toolset
and the analysis techniques it implements, and reports on our
experiments with it.

The results of these experiments, as described in Section
IV, indicate that the constrained expression toolset can be
used to analyze systems involving several hundred tasks. The
toolset carries out a completely automated analysis, starting
from the source code in a design language and producing
system traces displaying the properties represented by the
analyst’s queries, in many of these cases. Unlike several other
approaches, it is able to deal with these large systems, while
retaining information about the dependence of control flow
on the values of variables local to the components of the
concurrent system. In its current form, however, the toolset
cannot directly address certain questions about the behavior of
concurrent systems. These include questions involving infinite
executions of the system, such as starvation and fairness, and
certain questions about the order in which events occur in
executions. Our experiments have also pointed up certain other
areas in which modifications to the toolset could significantly
improve its performance.

The results of these experiments indicate the potential value
of the constrained expression approach and certainly justify
its continued development. Ongoing and planned research is
directed at many of the issues identified by our experiments.
This research involves improvements in the toolset to enhance
its performance and make it easier and more convenient to
use, and extensions to the constrained expression formalism
and the analysis techniques automated by the toolset to expand
the range of questions it can answer and concurrent systems
it can analyze.

We are working on improvements or extensions to every
component of the toolset. Many of these modifications are
aimed at more fully automating the analysis of systems with
large numbers of identical tasks described previously. Others
are intended to improve the inequality solving component of
the toolset, first by improving the heuristics used in our current
version of IMINOS, and later by replacing IMINOS with a
special-purpose integer linear programming system that can
exploit the special structure found in the inequality systems
that our tools generate. Still others will make the behavior
generator more efficient and more helpful in cases where
IMINOS finds spurious solutions.

Our work on extending the constrained expression formal-
ism and analysis techniques will allow the toolset to be used
with a wider range of problems and queries. Among the
topics we are investigating are methods for directly handling
more complex queries, such as “can event a occur between
events b and c?,” ways to express infinite behaviors so that
questions of fairness and starvation can be addressed, and

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:49:25 UTC from IEEE Xplore. Restrictions apply.

AVRUNIN et al.: AUTOMATED ANALYSIS OF CONCURRENT SYSTEMS 1221

ways to modularize the constrained expression representations
of systems and their analysis. We have also recently developed
and begun experimenting with an extension of the constrained
expression analysis techniques which can be used to assess the
timing properties of concurrent systems and have extended the
toolset to implement this technique. Details of this approach
to constrained expression analysis of real-time systems and an
example of its application can be found in [23].

Based on the results of the experiments conducted with the
current version of the toolset and the improvements to be
expected in the near future, we believe that the constrained
expression approach can serve as a foundation for practical
tools for developers of concurrent software.

REFERENCES

G. M. Karam and R. J. Buhr, “Starvation and critical race analyzers for
Ada,” IEEE Trans. Software Eng., vol. 16, pp. 829-843, Aug. 1990.
S . M. Shatz and W. K. Cheng, “A Petri net framework for automated
static analysis of Ada tasking behavior,” J . Sysr. Software, vol. 8 , pp.

R. N. Taylor, “A general-purpose algorithm for analyzing concurrent
programs,” Commun. ACM, vol. 26, pp. 362-376, May 1983.
E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite-state concurrent systems using temporal logic specifications,”
ACM Trans. Programming Languages and Syst.. vol. 8, pp. 244-263,
Apr. 1986.
L. K. Dillon, “Verifying general safety properties of Ada tasking
programs,” IEEE Trans. Software Eng., vol. 16, pp. 51-63, Jan. 1990.
D. Helmbold and D. Luckham, “Debugging Ada tasking programs,”
IEEE Software, vol. 2, pp. 47-57, Mar. 1985.
D. S . Rosenblum and D. C. Luckham, “Testing the correctness of tasking
supervisors with TSL specifications,“ in Proc. ACM SIGSOFT ‘89 3rd
Symp. on Software Testing, Analysis and Verification, R. A. Kemmerer,
Ed., pp. 187-196 (also published in Software Eng. Norev, vol. 14, no.
8, 1989).
J. C. Wileden, “Constrained expressions and the analysis of designs
for dynamically-structured distributed systems,” in Proc. Inr. Conf: on
Parallel Process., Aug. 1982, pp. 340-344.
G. S. Avrunin, L. K. Dillon. J . C. Wileden, and W. E. Riddle.
“Constrained expressions: adding analysis capabilities to design methods
for concurrent software systems,” IEEE Trans. Software Eng., vol. SE-
12, pp. 278-292, Feb. 1986.
L. K. Dillon, G. S. Avrunin, and J. C. Wileden, “Constrained expres-
sions: toward broad applicability of analysis methods for distributed
software systems,” ACM Trans. Program. Languages and Syst., vol. 10,
pp. 374-402, July 1988.
G. S. Avrunin, L. K. Dillon, and J. C. Wileden, “Experiments with auto-
mated constrained expression analysis of concurrent software systems,”
in Proc. ACM SICSOFT ’89 3rd Symp. on Software Testing, Analysis
and Verification, R. A. Kemmerer, Ed., pp. 126130 (also published in
Software Eng. Notes, vol. 14, no. 8, 1989).
S . Katz and D. Peled, “An interleaving set temporal logic,” in Proc.
6th Ann. ACM Symp. on Principles of Distributed Comput., 1987, pp.

L. A. Clarke, J. C. Wileden, and A. L. Wolf. “Nesting in Ada programs
is for the birds,” in Proc. ACM-SIGPLAN Symp. on the Ada Program.
Language, 1980, pp. 139-145 (also published in SIGPL.-l.~-.~-ot,l.r.r,
vol. 15, no. 11, 1980).
R. J. Dakin, “A tree search algorithm for mixed integer programming
problems,” Computer J . , vol. 8, pp. 250-255, 1965.
M. A. Saunders, “MINOS system manual,” Dept. Operations Res.,
Stanford Univ., Palo Alto, CA, Tech. Rep. SOL 77-31, 1977.
M. Young, R. N. Taylor, K. Forester, and D. Brodbeck, “Integrated
concurrency analysis in a software development environment,” in Proc.
ACM SIGSOFT ‘89 3rd Symp. on Software Testing, Analysis and Verifi-
cation, R. A. Kemmerer, Ed., pp. 20C-209 (also published in Software
Eng. Notes, vol. 14, no. 8).
S . Tu, S . M. Shatz, and T. Murata, “Theory and application of Petri net
reduction for Ada-tasking deadlock analysis,” preprint, 1990.
K.-C. Tai, “A graphical notation for describing executions of concurrent
Ada programs,” Ada Lett., vol. 6, pp. 94-103, Jan.-Feb. 1986.

343-359, 1988.

178-190.

[19] G. Ricart and A. K. Agrawala, “An optimal algorithm for mutual
exclusion in computer networks,” Commun. ACM, vol. 24, pp. 9-17,
198 1.

[20] L. Lamport, “A new solution of Dijkstra’s concurrent programming
problem,” Commun. ACM, vol. 17, no. 8, pp. 453-455, 1974.

[21] G. S . Avrunin and J. C. Wileden, “Describing and analyzing distributed
software system designs,” ACM Trans. Program. Languages and Syst.,
vol. 7, pp. 380-403, July 1985.

I221 R. N. Taylor, “Complexity of analyzing the synchronization structure of
concurrent programs,” Acta Inform., vol. 19, pp. 57-84, 1983.

123) G. S. Avrunin, J. C. Corbett, L. K. Dillon, and J . C. Wileden, “Automated
constrained expression analysis of real-time software,” Dept. Comput.
and Inform. Sci., Univ. Massachusetts, Amherst, Tech. Rep. 90-117,
Dec. 1990.

[24] C. E. McDowell, “A practical algorithm for static analysis of parallel
programs,” J . Parallel and Distributed Process., vol. 6, pp. 515-536,
June 1989.

[25) A. Valmari. “A stubborn attack on state explosion,” in Computer-Aided
Verificarion ‘90 (Series in Discrete Mathematics and Theoretical Com-
puter Sci., vol. 3), E. M. Clarke and R. P. Kurshan, Eds. Providence,
RI: Amer. Math. Soc., 1991, pp. 2 5 4 1 .

[26] T. Murata, B. Shenker, and S. M. Shatz, “Detection of Ada static
deadlocks using Petri net invariants,” IEEE Trans. Software Eng., vol.
15, pp. 314-326, Mar. 1989.

George S. Avrunin received the B.S., M.A., and
Ph.D. degrees in mathematics from the University
of Michigan.

He is a Professor in the Department of Mathemat-
ics and Statistics at the University of Massachusetts
at Amherst. In addition to formal methods and
tools for the analysis of concurrent and real-time
software systems, hi5 research interests include the
cohomology and representations of finite groups.

Dr. Avrunin is a member of the American Math-
ematical Society, the Association for Computing

Machinery, the Association for Women in Mathematics, and the IEEE
Computer Society.

Ugo A. Buy received the Laurea degree in elec-
trical engineering from the Politecnico di Milano,
Milan, Italy, in 1980, and the M.S. and Ph.D.
degrees in computer science from the University
of Massachusetts at Amherst in 1983 and 1990,
respectively.

From 1983 to 1986 he was a Software Engineer
with the Digital Equipment Corporation, Hudson,
MA. He is currently an Assistant Professor with
the University of Illinois at Chicago. His research
interests focus on defining formal techniques and

developing automated tools for the analysis of concurrent and real-time
systems. His additional interests include specification methods and automatic
code generation for concurrent programs.

James C. Corbett received the B.S. degree in com-
puter science from Rensselaer Polytechnic Institute,
Troy, NY, in 1987, and the M.S. degree in computer
science from the University of Massachusetts at
Amherst, where he is currently completing the Ph.D.
degree requirements. His research interests are in the
analysis and verification of concurrent and real-time
systems.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:49:25 UTC from IEEE Xplore. Restrictions apply.

1222 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 11, NOVEMBER 1991

Laura K. Dillon (S’81-M’84) received the B.A.
and M.S. degrees in mathematics from the Uni-
versity of Michigan, Ann Arbor, and the M.S.
and Ph.D. degrees in computer science from the
University of Massachusetts at Amherst.

She is an Associate Professor in the Department
of Computer Science at the University of Califor-
nia, Santa Barbara. Her research interests include
formal methods for analysis of concurrent software
systems, software specification and verification, and
programming languages. Her research focuses on

providing automated support for reasoning about the behavior of software
systems.

Dr. Dillon is a member of the Association for Computing Machinery, the
IEEE Computer Society, and Computer Professional for Social Responsibility.

Jack C. Wileden (S’77-M’78) received the A.B.
degree in mathematics and the M.S. and Ph.D.
degrees in computer and communication sciences
from the University of Michigan, Ann Arbor.

He is a Professor in the Department of Com-
puter and Information Science at the University
of Massachusetts at Amherst, and is a Director of
the Software Development Laboratory. His research
interests center on integrated software development
environments, especially object management capa-
bilities for environments, and on development tools

and techniques applicable to concurrent software systems.
Dr. Wileden is a member of the Association for Computing Machinery and

the IEEE Computer Society. He is currently serving as an Associate Editor
of the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS and as
an IEEE Distinguished Visitor.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 03,2010 at 15:49:25 UTC from IEEE Xplore. Restrictions apply.

