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1. INTRODUCTION 

The large number and complexity of the possible interactions among the 
asynchronous components of a distributed software system make it difficult to 
reason informally about its behavior. Developers of distributed systems therefore 
require powerful formal techniques for analyzing their systems. Formal analysis 
is important throughout the software development process, especially in the early 
preimplementation phases when errors are most easily corrected. 

Developers of distributed systems also need congenial development notations, 
including design and implementation languages. Different notations are suitable 
at different stages of software development, and features of the system under 
development may also make one language more appropriate than another. Soft- 
ware developers therefore may need to use a variety of development notations, 
even on a single project. 

Unfortunately, developers are often forced to choose between using formal 
analysis methods and appropriate development notations. Virtually all proposed 
analysis techniques are based on some particular notation and rely on special 
features of that notation. Software developers who wish to use these techniques 
then must work with a single development notation, which may not be suitable 
for their immediate tasks. In addition, many of these techniques force developers 
to work with sophisticated and abstract mathematical structures, rather than 
standard design and implementation languages. 

One goal of our work has been the broad applicability of analysis methods. We 
are producing tools that support formal analysis methods without imposing 
unnatural development notations on developers. Our approach to broad appli- 
cability is based on a formalism, called constrained expressions, that can be used 
with a wide variety of standard notations. This allows a developer to choose a 
notation appropriate for a system and its current state of development. A 
description of the system in the chosen notation is then mechanically translated 
into a constrained expression representation of the behavior of the system, which 
provides a basis for formal analysis. 

Whereas a development notation is chosen to facilitate description and maxi- 
mize expressive power, constrained expressions are designed to encode the 
information required for analysis of important system properties. The con- 
strained expression representation of a distributed system provides a formal basis 
for arguments concerning the order and number of occurrences of particular 
events in behaviors of the system. Arguments of this nature have been widely 
used to analyze distributed systems for such properties as mutual exclusion, 
deadlock, and starvation (see, e.g., [3, 7, 15, 18, 20, 211). The constrained 
expression formalism thus offers a general intermediate form that both supports 
formal analysis and allows development in the appropriate notations. 

In a previous paper [5], we showed how constrained expressions are used to 
add analysis capabilities to a (single) particular distributed system design lan- 
guage. Further development of these techniques are described in a forthcoming 
report [2]. Algebraic manipulations or “simplifications” of constrained expres- 
sions are described in a companion paper [ 121. Here we illustrate the broad 
applicability of the constrained expression approach by showing how constrained 
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expression representations can be derived from descriptions of systems in three 
different notations: SDYMOL, a distributed system design language based on 
buffered asynchronous interprocess communication; CSP, a distributed system 
design and programming language based on synchronous rendezvous-style inter- 
process communication; and Petri nets, a graphical formalism for describing 
concurrent systems based on a dataflow style of interprocess coordination. These 
examples offer persuasive evidence for the broad applicability of the constrained 
expression approach. 

In Section 2, we describe the constrained expression formalism. Constrained 
expression formulations of SDYMOL, CSP, and Petri nets are presented in 
Sections 3, 4, and 5, respectively. For purposes of illustration, we give a con- 
strained expression representation for a semaphore system described in each 
notation. The accuracy and precision of constrained expression formulations of 
these notations are considered in Section 6. Finally, in Section 7, we discuss our 
experience with the constrained expression approach and the directions of our 
current research. 

2. THE CONSTRAINED EXPRESSION FORMALISM 

In this section we briefly describe the constrained expression formalism. A more 
formal description is given in the Appendix. 

In the constrained expression framework, any particular behavior of a distrib- 
uted system is viewed as defining a sequence of event occurrences. An event 
symbol is associated with each (potential) event occurrence. A single behavior 
thus determines a string over an event alphabet, and the set of all possible system 
behaviors determines a language over this alphabet. 

Exactly what things are considered to be events depends upon the particular 
system and the level of detail at which it is considered. We assume only that 
events are indivisible and nonoverlapping. Overlapping activities are easily 
represented by treating their initiations and terminations as separate events. 

A constrained expression consists of a collection of expressions over an alpha- 
bet of symbols called the augmented alphabet. The augmented alphabet contains 
symbols representing each potential event occurrence. It also contains symbols 
required to capture important facets of a particular notation, as will be seen in 
the examples in the next three sections. Such symbols do not necessarily 
correspond to visible events. The expressions are interpreted as representing a 
language. The constrained expression representation of a distributed system is 
defined so that this language is exactly the language determined by the set of 
possible system behaviors. 

Essentially, a constrained expression consists of two parts, a system expression 
and a constraint set. The system expression is a regular expression over the 
augmented alphabet. It is formed using the standard regular expression operators, 
alternation (V), concatenation (juxtaposition), and Kleene star (*), plus the 
interleave or shuffle operator (B).’ The interleave of two event strings represents 
their concurrent occurrence. The regular expression ab @0 cd, for example, denotes 

’ The relative precedence of the regular expression operations from highest to lowest is *, juxtaposition, 
Q, and V. 
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the set {abed, acbd, acdb, cabd, cadb, cdab 1. It represents the concurrent occurrence 
of the event sequences ab and cd. 

A system expression is viewed as a generator of “candidate” event sequences. 
That is, each prefix of a string in the language of the system expression is 
considered a candidate for a possible behavior. We consider prefixes, rather than 
complete strings in the language of the system expression, in order to represent 
behaviors in which system components terminate prematurely. The set of can- 
didates contains event strings representing all the possible behaviors, but it may 
also include extraneous event strings. We consider the set of prefixes in conjunc- 
tion with the constraint set to determine which candidates represent possible 
system behaviors. 

The constraint set consists of a collection of constraints. Each constraint is an 
expression over the augmented alphabet and is formed by using the regular 
operators (including interleave) plus the dagger operator (t). This unary operator 
represents the interleave of zero or more copies of its argument.2 The dagger 
describes some number of concurrent occurrences of an event sequence. 

Each constraint represents a pattern of acceptable event sequences with respect 
to a subset of the augmented alphabet called a constraint alphabet. Every 
candidate event sequence is “filtered” through the constrained expression’s 
constraint set to determine whether it represents a possible behavior. This 
filtering process involves the following steps. First, the candidate prefix is 
projected on the alphabet of some constraint. This involves “erasing” all symbols 
that are not in the constraint alphabet. If the resulting string belongs to the 
language of the constraint, the prefix is said to satisfy that constraint. Otherwise, 
the prefix contains an unacceptable pattern of event symbols, and it is eliminated 
from the set of candidates. Those prefixes that satisfy all the constraints in the 
constraint set are called constrained prefixes. 

As a final step, the constrained prefixes are projected on a terminal alphabet. 
This alphabet is the subset of the augmented alphabet consisting of event symbols 
that correspond to significant system events. This yields the interpreted language 
of the constrained expression. The interpreted language represents exactly the 
set of possible behaviors of the distributed system. It is important to note that 
analysis techniques operate on the constrained expression, rather than on indi- 
vidual strings in the interpreted language. It is therefore never necessary to 
actually generate this language. 

The approach of describing a set of candidate event sequences and then 
eliminating those that fail to satisfy one or more constraints may seem more 
complicated than directly generating the set of possible behaviors. We have found 
it, however, to be both simpler and more natural. It is convenient to use the 
system expression, which describes the candidate event sequences, and the 
constraints, which are used to eliminate some of those sequences, for different 
purposes. We typically use the system expression to describe behavioral proper- 
ties of a system. For example, a system expression might express the fact that 
some component of the distributed system first tries to receive three messages, 
then selects between two possible recipients and sends a message to one of them. 

’ The interleave operator preserves regularity [13], whereas the dagger operator does not. 
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Constraints are used primarily to express fixed semantic properties for a class of 
distributed systems. For instance, constraints enforce the synchronous nature of 
interprocess communication in a constrained expression for a CSP system and 
the Petri net firing rules in a Petri net constrained expression.3 

Constrained expressions are usually generated from some other description of 
a system. As demonstrated below, it is possible to derive a constrained-expression 
representation of a system from descriptions in a wide variety of notations, 
including many design and programming languages. For each such notation, 
constrained expressions are derived using a set of translation rules and a set of 
constraint templates. The translation rules direct the transformation of a design 
or program into a system expression. The constraint templates provide generic 
versions of the constraints. They are instantiated for a given design or program 
to produce a particular constraint set. 

Considerable effort and insight is required to develop the translation rules and 
constraint templates for a given notation. Once they have been developed, 
however, it is an entirely mechanical procedure to carry out the derivation process 
for a particular system’s description. 

2.1 Related Work 

Regular expression-like descriptions of the sets of sequences of events represent- 
ing system behaviors are also found in the work of Campbell and Habermann [7] 
(path expressions), Riddle [27] (message transfer expressions and event expres- 
sions), Welter [32], (counter expressions), and Shaw [28] (flow expressions). 
Message transfer expressions, event expressions, flow expressions, counter 
expressions, and the COSY notation [22], which is based on path expressions, 
all rely on a filtering procedure. A set containing all legal system behaviors is 
represented by one or more expressions. Sequences that do not represent behav- 
iors are eliminated from this set to produce the set of possible system behaviors. 

The major difference between the constrained expression formalism and most 
of its predecessors (message transfer expressions, event expressions, counter 
expressions, and flow expressions) is the use of constraints to specify the 
conditions under which strings are eliminated from the set of possible behaviors. 
The filtering procedures used with the earlier notations are equivalent to using 
a fixed, predefined set of constraints expressing synchronization requirements 
between communicating processes. 

The COSY notation closely resembles constrained expressions but is intended 
for quite different purposes. COSY is intended for specifying concurrent software 
systems. Events in COSY correspond to operations or procedures, rather than 
arbitrary system events. Path expressions, the COSY analogue of constraints, 
restrict the order in which operations are invoked. A COSY description thus 
provides a declarative specification of system behaviors, presumably for use in 
verification of a design or implementation. A constrained expression, on the 

3 There is nothing in the constrained expression framework that forces this separation of concerns, 
and we do not always adhere strictly to it ourselves. The two parts of the constrained expression 
framework provide a flexible approach to representing the possible behaviors of distributed systems. 
Decisions on how to use the two parts in capturing the semantics of a particular class of distributed 
systems are left to the discretion of the framework’s users. 
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other hand, does not define the intended behaviors of a system. It is a represen- 
tation of the system’s possible behaviors that is derived from some other system 
description, and it is used for exploring properties of the system. 

Trace models of distributed systems treat behaviors as sets of sequences of 
communication events [ 19, 231. Properties of the systems are verified using 
axiomatic proof techniques. A generalization of this approach models behaviors 
as infinite sequences of observations [24] and uses temporal logic for proving 
properties of behaviors. This approach has the advantage that liveness properties 
are more easily specified. In contrast, the constrained expression approach uses 
a more general concept of event and provides algebraic methods for analyzing 
properties, such as absence of deadlock, limited use of shared resources, and most 
liveness properties, which can be interpreted as questions about the order and 
number of certain event occurrences. 

In event-based models that rely on explicit partial orderings [8,14], a system’s 
behavior is represented by a set of events and partial order relations. The relations 
express time orderings or enabling relationships. Events that are not comparable 
are considered concurrent. The system expression and constraints in a con- 
strained expression representation of a system can be viewed as imposing certain 
partial order relations on the set of events. This model is therefore compatible 
with the constrained expression formalism. 

3. CONSTRAINED EXPRESSIONS FOR SDYMOL 

3.1 An SDYMOL System 

SDYMOL is a high-level design language focusing on interprocess communica- 
tion and synchronization.4 A concurrent system in SDYMOL is a collection of 
sequential processes executing concurrently and communicating by means of 
message transmission. The SDYMOL design for a process specifies how the 
process interacts with other processes through message transmission. It only 
abstractly describes the internal activities of the process itself. 

Message transmission in SDYMOL is both a communication and a synchro- 
nization mechanism. Each process contains a memory location called its buffer 
and a number of named ports. The buffer holds a message that is sent or received 
through a port. To send or receive messages through a port, the port must be 
connected to a link by a channel. An inbound port can be connected to several 
links, whereas an outbound port can only be connected to a single link. A link is 
an unbounded, unordered repository for messages that have been sent through 
the outbound ports connected to the link and not yet received through any 
inbound ports connected to it. Messages are represented by a finite number of 
message types. 

A process sends a message through an outbound port p by executing a send p 
statement. This causes the current contents of the buffer of the process to be 
copied into the link 1 connected top. The contents of the buffer are not modified. 
If p is not connected to a link, send p is equivalent to a null statement. 

4 SDYMOL is a simplified version of the Dynamic Modeling Language (DYMOL), which was designed 
to be used with the Dynamic Process Modeling Scheme (DPMS) [33]. 
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A process requests receipt of a message through an inbound port p by executing 
a receive p statement. The request is fulfilled by nondeterministically selecting 
a link 1 that contains one or more messages and is connected to p, nondetermin- 
istically selecting a message m from the messages in I, removing m from 1, and 
placing m into the process’es buffer. If there are no messages in any of the links 
connected to p, the requesting process waits. The wait continues at least until a 
message becomes available. The appearance of a message in a link connected to 
p does not necessarily end a wait. Competing requests might be lodged in the 
interim, and requests are not serviced in any particular order. 

The syntax of SDYMOL is based on that of Algol 60. SDYMOL provides a 
standard set of control flow constructs. Decisions based upon internal process 
computation are modeled as nondeterministic choices (e.g., if internal test . . . 
or while internal test do . . .). I n t ernal process computations are represented 
by primitive statements consisting of user-defined identifiers. Such statements 
are semantically null. They serve as placeholders for activities that are to be 
elaborated in subsequent system descriptions. 

A SDYMOL design for Dijkstra’s solution to the mutual exclusion problem is 
shown in Figure 1. The system consists of three processes represented by the 
circles labeled s, ul, and u2. Boxes represent links. Arrows connecting links and 
ports represent communication channels. 

The uSer processes, u1 and uz, periodically require access to some shared 
resource. The semaphore process s acts as a binary semaphore. The semaphore 
assures that the resource is used in a mutually exclusive fashion. 

The availability of the resource is represented by an ok message residing in the 
s.p link of the semaphore process.5 The send s.p statement in the semaphore 
process enables Dijkstra’s P operation. 

The receive ui.p statements in the user processes represent the P operations. 
If both u1 and u2 try to execute this statement simultaneously (they simultane- 
ously attempt a P operation), one of the processes receives the single ok message 
residing in the link. The other process waits until a message becomes available. 
That is, one process is granted access to the resource and the other one waits. 
When a user process is finished with the resource, it deposits an ok message in 
its ui.u link. The receive s.u statement in the semaphore process models 
Dijkstra’s V operation. 

The internal test predicate in the body of a user process represents some 
internal process computation. The results of this computation determine if the 
cycle requiring access to the resource is repeated. This cycle is represented by 
the three statements in the body of the while statement. The use-resourcei 
statement is an example of an identifier statement. It models an internal activity 
(use of the resource) performed by ui. 

3.2 The SDYMOL Constrained Expression 

We show how to derive a constrained expression representation for the SDYMOL 
system shown in Figure 1, after first describing the augmented and terminal 
alphabets. 

5 We identify an outbound port with the associated link here and in the rest of the paper. This is 
possible because the structure of an SDYMOL system is static. 
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u;: 
while internal test do 

receive u;.p; 
use-resource+; 
send ui.v; 

end. 

S: 

set buffer := ok; 
do forever 

begin 
send s.p; 
receive s.u; 

end. 

Fig. 1. SDYMOL solution to the mutual exclusion problem. 

The event symbols used in the constrained expression representation for the 
system are shown in Figure 2. Conceptually, we associate these symbols with 
certain system events, as indicated in this figure. Some of these symbols, however, 
are needed in constraints for describing permissible event sequences and do not 
correspond to actual system events. 

Event symbols represent the modification and use of buffer contents, the 
transmission and receipt of messages, and the use of the resource. Additionally, 
a stop symbol is associated with the completion of a process, while a starve 
symbol represents an attempt to receive that results in starvation (the process 
waiting forever). The ne, or noneuent, symbol does not represent an actual system 
event, since it does not occur in any string representing a legitimate system 
behavior. It is used in constraints assuring that certain patterns of event symbols 
do not occur in constrained prefixes. We discuss the role of this symbol in more 
detail below. 

The terminal alphabet is determined by the questions that analysis is intended 
to address. Suppose, for example, we want to determine if the user processes in 
Figure 1 can starve and if the resource use is mutually exclusive. The former 
question can be determined by asking if there are any behavior sequences 
containing a sturue(u,.p) or sturue(uz.p) symbol, and the latter by asking if there 
are any legal behavior sequences containing a uri symbol followed by a urj symbol, 
where 1 5 i, j 5 2, with no intervening rec(u;.u, s.u, ok) symbol. In this case, 
therefore, the terminal alphabet might be defined to be {starue( u;.p), uri, ret (u; .u, 
KU, Ok)}i=Q. Of course, the terminal alphabet could be any other subset of the 
augmented alphabet containing these six symbols. 
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Symbol Associated event 

W(q, 4 A message of type m is deposited in the buffer of process q. 
me(q, 4 The buffer of process q is used when its value is of type m. 
send& m) A message of type m is sent to link 1. 

rec(l, p, m) A message of type m is transmitted from link 1 through port p. 

uri The resource is used by process ui for i = 1, 2. 

stop(q) Process q terminates normally. 

starue(p) The process starves at a receive p statement. 

m(q) This nonevent symbol is used for process q. 

Fig. 2. SDYMOL event symbols. For a given SDYMOL system, q ranges 
over all processes, 1 ranges over all links (outbound ports), p ranges over all 
inbound ports, and m ranges over all message types and over the reserved 
symbol I, which represents an undefined message. 

3.3 The SDYMOL System Expression 

The SDYMOL system expression consists of an initial expression 1 followed by 
the interleave of process expressions, pq, one for each process q: 

The initial expression describes the initial status of all links and buffers. Each 
process expression represents the sequential activity of a process. 

The initial expression is a concatenation of symbols. It contains a def(q, I) 
symbol for each process q indicating that the contents of all buffers are initially 
undefined and a send (1, m) symbol for each message of type m that initially 
resides in a link 1. 

Each process expression is obtained from the SDYMOL code for a process 
through the statement-by-statement application of the translation rules shown 
in Figure 3. The application of the rules T,-T4 involves replacing the statement 
on the left by the sequence of symbols on the right.6 The remaining rules are 
applied recursively. For instance, if the statement 

while internal test do set buffer := m 

appears in a process q, it is transformed into def (q, m)* by the application 
of T3 and T6. 

The sequence of events that occurs when a process q executes a send 1 
statement depends on the contents of its buffer. If the buffer contains a message, 
that message is placed in 1. Hence, we have the disjunction over all defined 
message types on the right in rule Tl. Otherwise, the buffer is undefined and the 
send is a null operation. This possibility is represented by the final disjunct. 

With the exception of Tz and T5, the rest of the translation rules can be 
similarly interpreted. The sturue(p)ne(q) alternative produced by a receive p 

61n T, identifier symbol denotes the event symbol associated with the activity modeled by the 
statement consisting of the single identifier identifier. Thus, the symbol ur; is associated with the 
statement a.se resource< in the example. 
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Statement Translation Rule 

send 1 ..- ..- V use(q, m)send(l, m) 
> 

V u.se(q, I) T, 
mt.L 

receive p ( ‘. V rec(1, p, m)def(q, m) V sturue(p)ne(q) ::= 
rnfl 1 T* 

set buffer := m ..- ..- defta ml T3 

identifier ..- ..- identifier symbol T4 

do forever(s) ::= ((s)}*ne(q) T5 

whileinternal test do(s) ::= i(s))* TS 

while buffer = m do(s) ::= be(s, mN(s)D*(Jmw4s, 4) T7 

if internal test ::= ((ss)l v I(s)) T* 
then(ss) 

if internal test then(s) ::= ((s)] v x TS 

if buffer = m ::= us445 m)i(ss)l V 
then(ss) ( 

n~mmuse(q, nN(s)l TN 

if buffer = m then(s) 

(4; (s) 

q:(s) 

::= wets m),(s)) V (Jmuse(q, 4) 

::= l(41~(s)l 
::= ((s)Jstop(q) 

Tl, 

TIP 

T,.? 

Fig. 3. SDYMOL translation rules. Here q denotes the process defined by the SDYMOL program, 
curly brackets (( )) signify the recursive application of these rules, 1 ranges over all links connected to 
p, and m and n range over all defined message trpes and over 1. 

statement within a process q represents a request for a message through port p 
that is never fulfilled. In this case, q does not participate in future system events. 
Hence, if a starve(p) symbol appears in a constrained prefix, then no symbols 
associated with q may appear in the prefix anywhere to the right of the sturue(p) 
symbol. We guarantee this by placing the nonevent symbol ne(q) immediately 
after the starve(p) symbol in Tz and generating a constraint (described below) to 
filter out prefixes containing any ne( q) symbols. 

The ne(q) symbol is used in a similar fashion in T5. The Kleene star on the 
right in T5 represents the repeated execution of the embedded statement (s). By 
itself, however, the Kleene star only specifies that the statement is executed 
some finite number of times. The ne(q) symbol is used to guarantee that no 
subsequent statements in the code of the process are ever reached. 

The system expression derived from the SDYMOL design in Figure 1 is shown 
in Figure 4. Many prefixes of this system expression do not represent legal 
behavior sequences. Consider, for example, the prefix 

L rec(s.p, u,.p, ok)def(ul, olz)sturue(uz.p)ne(uz)urz 

This string represents an event sequence in which an ok message is received from 
the link s.p before any messages have been deposited in the link. Several 
constraints in the SDYMOL constrained expression filter out this prefix. 
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System expression: 

Initial expression: 

Process expressions: 

a, = dej(s, ok)((u.se(s, ok)send(s.p, ok) V use(s, I)) 

(rec(u,.u, s.v, ok)def(s, ok) V rec(u,.u, s.u, ok)def(s, ok) 
V starue(s.u)ne(s)))*ne(s)stop(s) 

T,, = ((rec(s.p, u,.p, ok)def(ui, ok) V starue(u,.p)ne(uJ) 
ur,(u.se(u,, ok)send(ui.u, ok) V use(u;, I)))*stop(u,) 

Fig. 4. System expression for the SDYMOL design in Figure 1. 

3.4 The SDYMOL Constraints 

Constraints are required in an SDYMOL constrained expression because 
the translation rules of Figure 3 do not completely capture the semantics of 
SDYMOL. Each constraint describes the patterns of event symbols from the 
associated constraint alphabet that can appear in strings representing legal 
system behaviors. We use five different types of constraints for this purpose. The 
constraint templates that produce the constraints are shown in Figure 5. With 
the exception of the constraint KS(q) for a process q, the constraint alphabet for 
a constraint consists of the symbols appearing in the constraint. The constraint 
alphabet for Kg(q) is the set (ne(q)). 

The first type of constraint, K~, pertains to the use and modification of buffer 
contents. See Figure 2, in which the symbol def(q, m) is identified with placing 
a message of type m into the buffer of process q and the symbol use(q, m) is 
identified with a use of the buffer when it contains a value of message type m. 
The undefined message, I, represents a buffer whose contents are currently 
undefined. The constraint K1(q) requires that a use of the buffer of q when it 
contains a message of type m be preceded by placement of a message of type m 
into the buffer and that there be no intervening modifications to the buffer. The 
constraint does not require that any use of the buffer actually occur between 
successive modifications. Thus Kl(q) assures that the buffer of q is used and 
modified in a consistent fashion. 

The second type of SDYMOL constraint, K~, relates to system termination. All 
behaviors described by the constrained expression must be complete behaviors. 
Each process must either terminate or become permanently blocked waiting to 
receive a message through some port.7 This is assured for each process q by the 
constraint K~( q). 

The third type of constraint, K~, guarantees that nonevent symbols do not 
appear in strings representing behaviors. As explained above, this eliminates 
certain illegal patterns of event occurrences. 

The fourth type of SDYMOL constraint, K 4, relates to the transmission of 
messages. To understand this constraint, note that (ab)t represents the set of all 
strings containing equal numbers of u’s and b’s such that any prefix contains at 

7 A process that executes a do forever statement must eventually starve. 
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K,(q) = ( ,v1 Ma, m’hetq, m’)* ) 

* K*(9) = (y star”e(P7) ” stop(q) 

m()‘p rec(L p”, ml))+ 

Fig. 5. SDYMOL constraint templates. These templates are instantiated for each 
process q, link 1, (inbound) port p, and message type m # I of the given system. In the 
disjunctions, m’ ranges over all message types (including I), p’ ranges over all (inbound) 
ports of q, and p” ranges over all (inbound) ports connected to 1. 

least as many a’s as b’s. The “dagger subexpression” in ~~(1, m) thus guarantees 
that each reception of a message of type m from a link 1 is preceded by 
a corresponding placement of a message of type m into 1. The interleaved 
se&(& m)* allows more messages of type m to be placed in 1 than are ever 
received. 

The final type of constraint, K~, pertains to process starvation. A process 
cannot starve waiting for a communication through a port p that is connected to 
a link 1 if there are messages residing in 1. For a link 1, an (inbound) port p 

connected to 1, and a message type m # I, the constraint ~~(1, p, m) is used in 
stating this requirement, as follows. 

The first disjunct of ~~(l, p, m) guarantees that if a process starves at a 
receive p statement, then there are no messages of type m that it can receive 
from 1. The first “dagger subexpression” of this disjunct assures that there are 
no messages of type m in 1 when an attempt to fulfill the request is made. The 
second “dagger subexpression” assures that all messages of type m that are 
subsequently placed in 1 are used to service other receive requests. 

The second disjunct of K~(Z, p, m) is required in case the process does not starve 
at a receive p statement. In this case Kg(l, p, m) does not impose any restrictions 
on the order or number of symbols representing events in which messages of 
type m are placed in 1 or received from 1. 

Taken together, the constraints Kg(l, p, m), for all defined message types m, 
assure that if a process starves at a receive p statement, then there are no 
messages of any type that it can receive from 1. If the process does not starve at 
a receive p statement, then none of these constraints restricts the order or 
number of messages that are sent to or received from 1. Of course, the constraints 
K~(Z, m) still restrict the order and number of messages sent to and received from 
1 in this case. 

These five types of constraints restrict the order and number of events that 
occur in strings representing legitimate SDYMOL system behaviors in accord- 
ance with that part of the SDYMOL semantics not expressed by the translation 
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rules. Application of the translation rules and instantiation of these constraint 
templates completes the derivation of an SDYMOL constrained expression. 

4. CONSTRAINED EXPRESSIONS FOR CSP 

4.1 A CSP System 

We illustrate the derivation of CSP constrained expressions using the CSP 
solution to the mutual exclusion problem shown in Figure 6. It is based on the 
integer semaphore example presented by Hoare [ 181. The line numbers in this 
figure are used for reference below. We discuss only aspects of CSP relevant to 
this example. A more complete description of CSP can be found in Hoare’s 
original paper [ 181. 

The system 979, contains a semaphore process, S, and two user processes, U, 
and U,. The terminator processes Tl and Tz cause the user processes to (eventu- 
ally) terminate. 

S begins by assigning a 1 to its local variable, VAL. It then executes the 
repetitive command in lines S2-5. On each cycle of this command, S waits until 
one of the user processes sends it a u-signal (S2-3) or until VAL is greater than 
0 and one of the user processes sends it a p-signal (S4-5). Depending on which 
of the successful guards is arbitrarily selected for execution, it then either 
increments VAL or decrements VAL. A repetitive command terminates when all 
of its guards fail and all processes named in input commands of open guards have 
terminated. (A guard is open if the boolean expressions in the guard list are 
satisfied.) Hence, the repetitive command in S terminates when both U, and U, 
have terminated. S starves if the guards in lines (S2-5) fail and one of Ul or U2 
never terminates. If S starves and VAL is not positive, then S starves waiting 
for a u-signal. If S starves and VAL is positive, then S starves waiting for either 
a u-signal or a p-signal. 

The user process Vi, for i = 1, 2, initializes CONTi and then cycles, sending a 
p-signal, using the resource, and sending a u-signal, until it receives an e-signal 
from Ti (in U2); or it starves at the S!p( ) command or the S!u( ) command (in 
U3). If Vi receives an e-signal, the second guard never again succeeds. Hence, Vi 
waits for Ti to terminate, at which point it also terminates. If Ti never terminates, 
Vi starves waiting for (another) e-signal. 

The process Tiy for i = 1, 2, waits for U; to request its e-signal and then 
terminates. If Ui never requests an e-signal from Ti, then Ti starves. 

4.2 The CSP Constrained Expression 

In this section we show how to derive a constrained expression representation 
for 9’9 from the CSP program in Figure 6. This example illustrates two 
important aspects of CSP constrained expressions. It shows how constrained 
expressions can be used to represent the semantics of CSP (synchronized) 
communication primitives. It also shows how the semantics of CSP-guarded 
commands and repetitive commands can be expressed. It does not, however, show 
how to express the full semantics of expression evaluation and of the CSP 
assignment command. We indicate how we handle these after discussing the 
example. 
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99 = [S :: SEMI1 u, :: USER, 1) Up :: USER, 11 TI :: TERMINATOR, 1) Tz :: TERMINATOR,] 

SEM = (Sl)VAL integer; VAL := 1; 
(SZ)*[U,?u() --f VAL := VAL + 1 --U, releases resource 
(SB)OU,?u() + VAL := VAL + 1 -lJ, releases resource 
(S4)OVAL > 0; U,?p() -+ VAL := VAL - 1 -grant resource to U, 
(S5)OVAL > 0; U,?p() + VAL := VAL - l]-grant resource to U, 

USER, =(Ul)CONT, boolean; CONT, := t;-initialize CONT; 
(U2)*[T,?e() --* CONT: := f -get termination signal 
(U3)WONT, + S!p( ); ur;; S!u( )] -else request, use 

and release resource 

TERMINATOR; = Ui!e( )-send termination signal 

Fig. 6. CSP solution to the mutual exclusion problem. 

Symbol Associated event 

def(X, a) Value a is assigned to variable X. 

use(X, a) Variable X is used when it has the value a. 

recU’, Q, cl c-signal is sent from process P and received by process Q. 

ur; The resource is used by process Ui (i = 1, 2). 

starve(P) Process P starves. 

swv) Process P terminates. 

send(P, Q, 4 Process P is ready to send a c-signal to process Q. 

send’(P, 8, cl Process P is ready to resume execution after sending a c-signal to process Q. 

wait(P, P, Q, c) Process P starves waiting for process Q to request a c-signal from P. 
wait(Q, P, Q, c) Process Q starves waiting for process P to send a c-signal to Q. 

hang(P) Process P is assumed to (eventually) starve. 

term(P) Process P is assumed to have terminated. 

ne(P) This is the nonevent symbol for process P. 

Fig. 7. CSP event symbols. 

The event symbols for this example are shown in Figure 7. Event symbols 
represent the use and modification of variables, interprocess communications 
(i.e., signals between processes), the use of the resource, and the starvation and 
termination of processes. 

The other event symbols are used to model aspects of the CSP semantics. Let 
a! = (P, Q, c) represent a c-signal from a source process P to a target process Q. 
The rec(cy), send(a), and send’(a) symbols are used in constraints that assure 
communicating processes are properly synchronized. The ret (a) symbol repre- 
sents the communication event. A send(a) symbol signifies that the source 
process is ready to communicate, while a send’(a) symbol signifies that the 
communication has taken place and the source is ready to continue with its 
processing. A wait(P’, a) symbol encodes information about the starvation event 
starve(P’), where P’ is either the source or target process of (Y. It signifies that 
P’ starves waiting for the communication CY. These symbols are used to guarantee 
that a process is not represented as starving on a communication that can take 

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988. 



388 l L. K. Dillon et al. 

place. The hang(P) symbol indicates that the process P is assumed to starve 
(e.g., an iterative command in some other process should not terminate if P is 
named by the input command associated with an open guard and P does not 
terminate), and the term(P) symbol indicates that P is assumed to terminate. As 
in SDYMOL, the nonevent symbol ne(P) is used to eliminate certain patterns 
of impossible event occurrences. 

I 
4.3 The CSP System Expression 

The system expression derived from Figure 6 is the interleave of five process 
expressions: 

It is shown in Figure 8. We give line numbers in this figure for reference in the 
discussion below. 

The initial def( VAL, 1) symbol in line 1 of 7~s is produced by the assignment 
command in S. The “star subexpression” and the term (U,) and term( U,) symbols 
(in line 10) are produced by the repetitive command. Each guarded command 
generates a disjunct (lines 2-5) representing its execution. The disjuncts in lines 
6-9 represent the starvation of S within the repetitive command. Two disjuncts 
are required because there are two possible truth values for the guard lists 
preceding the input commands. If VAL is not positive when S starves, then 
S starves waiting for u-signals from the user processes. This explains the 
wait(S, Vi, S, u) symbols for i = 1, 2 in line 6 of rs. The disjunction of the 
hang( U,) and hang(U*) symbols in line 7 indicates that either U1 or U, must 
also starve in this case. The starve(S) symbol signifies the starvation of S, while 
the ne(S) symbol signifies that no further symbols from 7rs can appear. The 
order of the wait and hang symbols is, of course, arbitrary. The interpretation 
and generation of the disjunct in lines 8 and 9 is similar. 

Both U1 and Uz must terminate for the repetitive command to terminate. The 
“star subexpression” is thus followed by term( Ui) symbols for i = 1, 2. The 
stop(S) symbol represents the termination of S. 

The translation of the user process Ui for i = 1, 2 requires the translation of 
two output commands. Each output command produces two disjuncts. One 
disjunct represents the communication taking place. It consists of the appropriate 
send and send’ symbols. The second disjunct represents the starvation of Vi at 
the output command. Since the output command is not part of a guard, starvation 
at the command does not imply starvation of any other process. Thus, this 
disjunct does not require a hung(S) symbol. Similarly, no hang symbols are 
generated by an input command that is not part of a guard. The interpretation 
and generation of the process expression TT, for i = 1, 2 is obvious. 

4.4 The CSP Constraints 

Seven types of constraints are required in the CSP constrained expression. The 
templates for generating the constraints are shown in Figure 9. For this figure 
and the discussion below, we take V to be the set of variables in the CSP system 
and t(X) to be the type of X E V. We let C denote the set of communications 
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System Expression: 

Process Expressions: 

7rs = 

(1) def(VAL, 1) 

(2) 

(3) 

rec(U,, S, u) V use(VAL,j)def(VAL,j + 1) 
( JEZ 

V rec(U2, S, u) v use(VAL, j)def(VAL, j + 
IEZ 

(4) 

(5) 

V 

V 

(6) 

(7) 

V v use(VAL, j) wait(S, U,, S, v)wait(S, U,, S, u) 
jso > 

(hang(UJ V hang(Ui))starue(S)ne(S) 

(8) 

(9) 

(10) 

V V use(VAL, j) wait(S, U,, S, u)wait(S, U,, S, u)wait(S, U,, S, p) 
s-0 > 

wait(S, U,, S,p)(hng(U,) V hzg(U2))starue(S)ne(S) 

> 

* 
term(U,)term(U2)stop(S) 

=u, = 

(1) def(CONTi, t)( 

(2) rec(T,, U,, e)def(CONT,, f) 

(3) V u.se(CONT;, t) 

(4) (send(U,, S, p)send’(U,, S, p) V wait(U,, CJ,, S, p)starue(Ui)ne(U,))uri 

(5) (send(U,, S, u)send’(U,, S, u) V wait(Uj, UC, S, u)starue(Uj)ne(U,)) 

(6) V use(CONT,, f)wait(Ui, Ti, U,, e)hang(T,)starue(U,)ne(Ui) 

(7) )*u.se(CONT;, f)term(Ti)stop(UJ 

TT, = 

(1) (send(T,, U,, e)send’(T,, Ui, e) V wait(T,, T,, U,, e)starue(Ti)ne(lr,)) 

(2) stop(TJ 

Fig. 8. System expression for the CSP program in Figure 6. 
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K~(X) = 
( 

V def(X, u)u.se(X, II)* * 
“Ei,X, 1 

K~(P) = stop(P) V sturue(P) 

K&q = x 

K~(OI) = (send(tu)rec(a)send’(a))* 

K~(OI) = wait(source(a), a) V wait(target(a), a) V X 

.x6(P) = (hung(P)* 8 s&rue(P)) V X 

KJP) = stop(P)te V X 

Fig. 9. The CSP constraint templates. 

that can take place. For a communication (Y = (P, Q, c) E C, source(a) = P is the 
source process, target(a) = Q is the target process, and c is the constructor. With 
the exception of the constraint ~~ (P) for a process P, the constraint alphabet for 
a constraint is the set of symbols that appear in the constraint. The constraint 
alphabet for K~(P) is the set (ne(P)). 

The first three types of CSP constraints, K~, K~, and K~, are analogous to the 
corresponding SDYMOL constraints. 

The fourth type of CSP constraint, K 4, relates to interprocess communication. 
An input command in a process P corresponds to an output command in a process 
Q if the input command names Q as the source, the output command names P 
as the destination, and both commands name the same constructor. In CSP, 
corresponding input and output commands are executed simultaneously. For a 
communication (Y E C, the constraint ~~(a) assures that the source process and 
target process are at corresponding commands when the communication takes 
place. Let (Y = (P, Q, c). The send(a) and send’(a) symbols produced by a Q!c( ) 
command are used as markers in the process expression 7rp. The send(a) symbol 
follows all symbols representing events that precede execution of the output 
command, while the send’(a) symbol precedes all symbols representing events 
that follow execution of the output command. The rec(cu) symbol produced by a 
P?c( ) command is used in a similar fashion in the process expression TQ. It 
follows all symbols representing events that precede execution of the input 
command and precedes all symbols representing events that follow execution of 
the input command. The ret(a) symbol also represents the simultaneous execu- 
tion of the corresponding commands. The constraint K~((Y) requires that each 
ret (Ly) symbol lie between corresponding send (a) and send’ (a) symbols.’ 

The fifth type of CSP constraint, Kg, is analogous to the fifth type of SDYMOL 
constraint. The constraint ~~(a), for LY E C, filters out strings representing event 
sequences in which both target(a) and source(a) starve at corresponding com- 
mands. Hence, these constraints assure that a process does not starve if it can 
communicate. 

a We could equally well have reversed the role of the send and ret symbols, employing send(a), rec(ol), 
andrec’(ol) in the translation rules for Q!c( ) andP?c( ) andmodifying K* to be (rec(a)send(a)rec’(a))*. 
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The sixth type of CSP constraint, K 6, also relates to the starvation of processes. 
If a string from the language of a process expression “Q contains a starue(Q) 
symbol that is produced by the translation of a guard in a repetitive command, 
then it also contains a hang(P) symbol, where P is one of the processes from 
which Q is waiting for a communication. The hang symbols are generated because 
one of these processes must starve in order for Q to starve at the repetitive 
command. (Otherwise, the repetitive command terminates.) In this case, the 
constraint KG(P) assures that the string also contains a starve(P) symbol. 

The final type of CSP constraint, K~, assures that a repetitive command is 
executed until all processes that can make a guard succeed have terminated. The 
representation of the execution of a repetitive command is followed by a sequence 
of term(P) symbols. One term(P) symbol is generated for each process P that 
must terminate for the repetitive command to terminate. The constraint K~(P) 

assures that a term(P) symbol does not appear in a constrained prefix unless it 
is preceded by a stop(P) symbol. 

This completes our treatment of the constrained expression representation of 
the system of Figure 6. We now discuss some aspects of the derivation of 
constrained expression representations of CSP systems that are not illustrated 
in that example. 

In the CSP system of Figure 6, interprocess communication is limited to the 
exchange of timing signals. More generally, a CSP output command may specify 
values that are assigned to target variables in the target process. We represent 
the transfer of information between CSP processes in the same way that we 
represent the transfer of information between SDYMOL processes. (See 
Section 3.) 

‘l’he evaluation of an expression and the execution of an assignment command 
can fail in CSP. The evaluation of an expression fails if any of the operations it 
requires are undefined. An assignment command fails if the structures of the 
target variables and assignment values do not match, as in [17] in which the 
notion of matching structures is made precise. Dillon’s dissertation [lo] shows 
how to represent the failure of SDYMOL expression evaluation. Essentially the 
same approach can be used to represent the failure of expression evaluation and 
of assignment commands in a CSP system, provided that certain restrictions are 
placed on the structure of its variables. 

The derivation of a CSP system expression is clearly more complex than the 
derivation of an SDYMOL system expression. The additional complexity stems 
from the complex semantics of the CSP repetitive command. In SDYMOL, the 
condition for termination of a repetitive command is determined by local data 
(e.g., the contents of the process’es buffer). In CSP one must consider the status 
of all processes that could affect a guard in a repetitive command to determine if 
the command terminates or results in starvation. Moreover, the precise semantics 
of an input command in CSP depends on whether the command appears in a 
guard or a command list. 

To represent the failure of a CSP repetitive command, we partition the domains 
of variables in the guard lists so that the truth values of the guard lists are 
constant on each element of the partition. A disjunct is then produced for each 
element to specify the processes that must starve if the repetitive command fails. 
The termination of a repetitive command is represented in a similar fashion. 
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Despite this additional complexity, the derivation of a CSP system expression 
is a straightforward compilation task. The generation of the CSP constraints is 
no more complex than the generation of the SDYMOL constraints. Additionally, 
the CSP constraints are all regular since they do not involve the dagger operator. 

5. CONSTRAINED EXPRESSIONS FOR PETRI NETS 

5.1 A Petri Net System 

The Petri net formalism is a classical model of concurrent systems. A Petri net 
is represented graphically as a collection of nodes, called places and transitions, 
that are connected by directed arcs [26]. A marking specifies the tokens that 
reside in the places of the net. Tokens enable the firing of transitions. When a 
transition fires, it produces certain token movements. Transitions are labeled 
with symbols from an event alphabet, so that each firing sequence determines a 
string of event symbols. The Petri net language is the set of strings determined 
by all firing sequences [ 161. Alternatively, the Petri net language may be defined 
as the set of strings determined by those firing sequences that take the net from 
its initial marking to a specified final marking [16, 251. 

Figure 10 depicts a labeled Petri net that is based on the solution to the mutual 
exclusion problem presented in [26]. The net has seven places, P, through P7, 
and six transitions, tl through t6. We use circles to represent places and bars to 
represent transitions in this figure. Each transition is labeled with a symbol from 
the alphabet {p,, pz, ul, u2, url, urz}. A dot in a place represents a token. 

The arcs in a Petri net determine the rules for firing transitions. A transition 
t, is fireable if there are at least as many tokens in each place P; as there are 
arcs from Pi to t,. The firing of t, removes a token from each P; for every such 
arc and adds a token to each of the places Pj for every arc from t, to Pj. For 
example, the transition tl in Figure 10 is fireable. The firing of tl removes a token 
from P, and from P4 and adds a token to Pz. A firing sequence determines the 
string obtained by replacing transitions with their transition labels. The firing 
sequence tl t2 t3 of the net in Figure 10, for instance, determines the string pl url ul. 

The place P4 in this figure models a semaphore process. The number of tokens 
in P4 represents the value of the semaphore. The transitions labeled pi and Ui for 
i = 1,2 represent Dijkstra’s P and V operations. We model the use of the resource 
with the transitions labeled ur; for i = 1, 2. A P operation (a firing of tl or t4) 
decrements the semaphore (removes a token from P4) and enables a use of the 
resource (firing of tz or t5). A V operation (a firing of t3 or t6) increments the 
semaphore (adds a token to P,,). Clearly, the transitions representing the use of 
the resource are mutually exclusive. 

5.2 The Petri Net Constrained Expression 

To express the rules governing the firing of transitions, we use symbols repre- 
senting the addition of tokens to places and the removal of tokens from places. 
In general, the augmented alphabet consists of the transition labels, the symbols 
puti and takei for each place P; in a Petri net, and the special symbol end. Aputi 
symbol signifies the addition of a token to Pi, and a takei symbol signifies the 
removal of a token from Pi. The symbol end is explained below. Naturally, the 
terminal alphabet is just the set of transition labels. 
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Fig. 10. Petri net solution to the mutual exclusion problem. 

5.3 The Petri Net System Expression 

The Petri net system expression E has the form, 
* 

end 

where m ranges over the indices of the transitions and end is a special symbol in 
the augmented alphabet. The initial expression L indicates the number of tokens 
and their locations in the initial marking of the net. It is a concatenation of puti 
symbols, one for each token residing in a place Pi in the initial marking. 

The transition expression 7r,,, associated with a transition t, is the concatenation 
of (1) a sequence of takei symbols, one for each arc from a place Pi to t,; (2) the 
label associated with the transition; and (3) a sequence of put, symbols, one for 
each arc from t, to a place Pi. The transition expressions encode the semantics 
of the firing of the transitions. The system expression derived from the Petri net 
in Figure 10 is shown in Figure 11. 

Many prefixes of the Petri net system expression represent firing sequences 
that can never occur because transitions are shown as firing when they are not 
fireable. Moreover, a proper prefix of the Petri net system expression can end in 
the “middle” of a transition. That is, it can end with a proper prefix of a string 
from the language of a transition expression. Such a prefix does not encode the 
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System expression: 

e = L(T, V r2 V 1r3 V ?r4 V ?r5 V ?r6)*end 

Initial expression: 

L = pUtlpL&p& 

Transition expressions: 

?rl = tukeltake,p,put, 

1~~ = take2ur,putn 

r3 = tuke3ulputlput4 

r4 = take, takesp2put6 

rs = tuke6ur2put7 

?r6 = take7u2put4put5 

Fig. 11. System expression derived from the Petri net in Figure 10. 

K, = end 

KZ(PL) = 
(put$uke,)t 8 (puti)* if no final marking is specified 
(putitakei)t 8 (put, . . . put,) if the final marking has ni tokens in Pi 

-- 
Y 

n, times 

Fig. 12. The Petri net constraint templates. 

full semantics of the firing of the transition, since all the necessary token 
movements have not taken place. The Petri net constraints filter out proper 
prefixes of the system expression, along with strings that do not represent 
legitimate firing sequences. 

5.4 The Petri Net Constraints 

We use two types of Petri net constraints. They are shown in Figure 12. For each 
place Pi, the integer ni 1 0 denotes the number of tokens residing in Pi in the 
final marking for the net. The alphabet for a constraint is the set of symbols 
appearing in the constraint. 

The first type of Petri net constraint consists of a single constraint, K~. This 
constraint filters out proper prefixes of the system expression. For example, the 
string putlput4put5 take, takespz is filtered out by this constraint. It represents an 
event sequence in which the transition labeled p2 has fired, but a token has not 
yet been deposited in PG. 

The second type of Petri net constraint, K 2, assures that the rules governing 
the firing of transitions are followed and that the required number of tokens 
reside in each place at the end of a firing sequence. We use the first template if 
no final marking is specified. Otherwise, we use the second. The “dagger sub- 
expression” in the constraint K~(P~), for a place Pi, guarantees that a token is 
available in Pi whenever one is removed. Hence, constrained prefixes correspond 
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to legal firing sequences. The ni interleaved PUti symbols in the second template 
for K2 correspond to the tokens left in Pi at the end of the firing sequence. 

6. ISSUES OF CORRECTNESS 

Naturally, the “correctness” of the derivation procedure associated with a devel- 
opment notation must be considered. Using the terminology of [31], this involves 
showing that the constrained expression representations produced by the deri- 
vation procedure are both accurate and precise.g A constrained expression rep- 
resentation D of a system S is accurate if every event string representing a 
behavior of S is contained in the interpreted language of D. It is precise if every 
string in the interpreted language represents a legal behavior. 

Accuracy of a constrained expression representation is essential. Analysis based 
on a constrained expression that is not an accurate representation of a system 
could miss potential errors. Precision in a constrained expression representation 
is equally important. Analysis based on a constrained expression that is not a 
precise representation of a system could report “errors” that cannot occur. It 
could also certify that certain (desirable) events occur when they do not. Analysis 
of a representation that is both accurate and precise will not report any spurious 
errors, nor inspire false confidence. 

The verification of the accuracy and precision of a derivation procedure requires 
an appropriate formal definition of the associated development notation. This 
verification is facilitated if the formal description includes a simple criterion for 
determining whether a particular sequence of events can occur in a behavior of 
a system described in the development notation. Such a criterion exists for the 
Petri net formalism. We demonstrate how this criterion can be used to verify the 
derivation procedure described in Section 5 above. 

Consider the constrained expression representation derived for a Petri net 
according to the translation rules and constraint templates of the previous 
section. To simplify the discussion, we assume a Petri net in which each transition 
ti is associated with a distinct label si, and we let the terminal alphabet of the 
constrained expression consist of the transition symbols si. We now show that 
the constrained expression representation is both accurate and precise. 

Assume first that no final marking is specified for the Petri net. Then a 
sequence ti, . . . ti, of transitions is a possible firing sequence if and only if 
ti, * * ’ tin-, is a possible firing sequence and, after it has fired, the number of 
tokens in Pj, for each place Pj, is greater than or equal to the number of arcs 
from Pj to tin. The empty firing sequence is, of course, always possible. 

PROPOSITION 1. Suppose that t;, . . - tin is a possible firing sequence. Let 
1 symb IC denote the number of occurrences of the symbol symb in the string CT. 
Then we have 

(i) The string si, - . - si, is in the interpreted language of the constrained expression, 
and 
(ii) For each place Pi, the number of tokens in Pj after the firing sequence 

’ This terminology is not standard. We use the terms “accurate” and “precise” instead of “consistent” 
and “complete” because these latter terms are overloaded in the literature. 
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ti, ’ * ’ ti, is equal to 

PROOF. We proceed by induction on n. The result obviously holds when 
n = 0. 

Suppose ti, . . . tin is a possible firing sequence with n > 0. The induc- 
tion hypothesis implies that si, . . . siam1 occurs in the interpreted language, so 
lri, . . . Hi,-, end is a constrained prefix, and that the number of tokens in Pj after 
ti, ’ ’ ’ tin-, is 

n-1 n-1 

I Putj I L - C, I takei I rik + C I Put, I ?i,k- 
k=l k=l 

Since ti, . . . tin is a possible firing sequence, the number of tokens in a place Pj 
after ti, . * * tin-l is greater than or equal to the number of arcs from Pj to t;,. We 
see from the translation rules that 1 takej 1 “i, is equal to the number of these arcs. 
Together with the fact that lai, . . . pi,-, end is a constrained prefix, this implies 
that lri, * * * ain end is a constrained prefix and si, . . . si, is in the interpreted 
language. So (i) is proved. 

TO prove (ii), we note that the number of tokens in a place Pj after ti, . . . tin is 
equal to the number of tokens in Pj after ti, . . . tin-, plus the number of arcs from 
tin to Pj minus the number of arcs from Pj to tine The translation rules imply that 
the number of arcs from tin to Pi is 1 putj 1 rz” and the number of arcs from Pj to 
tin is 1 takej 1 7i,. The desired result then follows from the induction hypothesis 
applied to the sequence ti, . . . timMl. q 

PROPOSITION 2. Suppose that si, . . . si, is a string in the interpreted language. 
Then ti, * * - ti, is a possible firing sequence. 

PROOF. Again we argue by induction on n, with the case n = 0 clear. 
Suppose Si, * * * si, in a string in the interpreted language for some n > 0. Then 

lTi, * * * Tin end is a constrained prefix. Inspection of the constraints shows that 
lTi, ' ' ' Tin-, end must also be a constrained prefix, so si, . . . si,-, is in the 
interpreted language. We conclude by induction that ti, . . . ti,-, is a possible 
firing sequence. 

Since the string lri, . . . Pi, end satisfies all the constraints K~(P~), we must 
have for each j, 

n-1 n-1 
I tab I rie 5 I Putj I L - kz, I tak I ria + C I Put, I T,a. 

k=l 

The left side of this inequality is the number of arcs from the place Pj to the 
transition ti,. By the previous proposition applied to ti, . . . tin-,, the right side is 
equal to the number of tokens in Pj after ti, . . . tin-,. Thus, ti, . . . ti, is a possible 
firing sequence. 0 

These two propositions imply the following theorem. 

THEOREM 1. Let S be a Petri net with no final marking specified, and let D be 
the constrained expression representation of S obtained using the translation rules 
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of Section 5. Assume that the alphabet of the interpreted language of D consists of 
the labels si corresponding to the transitions ti of S, and that these labels are all 
distinct. Then ti, . - . tin is a possible firing sequence of S if and only if si, * * - si,, is 
in the interpreted language of D. 

The theorem says that D gives a precise and accurate representation of the 
finite behaviors of the Petri net S. The case in which a final marking for S is 
specified follows easily, since a firing sequence is possible for a net with final 
marking if and only if it is possible for the same net without specifying the final 
marking and it results in the specified final marking. The theorem above 
characterizes the possible firing sequences of the net without final marking, and 
an examination of the constraints K~ (Pj) shows that they enforce the requirement 
of the specified final marking. Clearly, the case in which not all transitions are 
labeled and/or the transition labels are not all distinct also follows easily from 
the theorem. 

In principle, a similar demonstration could be given for any development 
language with a suitably formal definition. At the current stage in our work, 
however, we are content with less formal determinations of accuracy and preci- 
sion. We have informally checked the accuracy and precision of our constrained 
expression derivation procedures, including those for SDYMOL and CSP, by 
justifying each translation rule and constraint template on the basis of interpre- 
tation of the event symbols. Typically, a first version of a derivation procedure 
is devised through a combination of informal reasoning and experimentation. 
The derivation procedures associated with other development notations can serve 
as a model for this first version. The proposed derivation procedure is then 
“tested” and revised until a satisfactory procedure is obtained. Of course, given 
a formal description of the development language, a more formal approach to 
defining derivation procedures would be conceivable. 

We note that the problems of precision and accuracy are not restricted to 
showing that constrained expression representations properly reflect the formal 
semantics of a development notation. Proving that a derivation procedure accu- 
rately and precisely reflects a formal description of a development notation is of 
little value if the formal description does not accurately and precisely correspond 
to the practical implementations of that notation. The task of verifying this 
correspondence between the formal description and the implementation, whether 
it be an actual compiler or simply a software developer’s understanding of a 
design language, is at least as difficult and important. 

7. CONCLUSION 

We have shown how constrained expressions are used with development nota- 
tions providing different communication primitives (synchronous and asynchro- 
nous) based on different underlying models of computation (state machines and 
Petri nets) and appropriate for different stages of software development. In 
addition to the three notations discussed here, constrained expressions have been 
used with an Ada-based design language [5] and with a notation that provides 
primitives for dynamically altering the communication pathways in a distributed 
system [33]. This range of applications demonstrates the broad applicability of 
the constrained expression approach. 
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Further evidence comes from two other projects that are in progress at the 
University of Massachusetts. In one of these, an event-based language resembling 
constrained expressions is being used for high-level debugging of distributed 
systems [6]. A prototype toolset supporting this debugging method has been 
implemented and is being used in a distributed problem-solving testbed system. 
Another research group is using a similar event-based language in an intelligent 
user interface system that is part of an office automation project [9]. The language 
is used to describe office procedures. These descriptions are interpreted by the 
interface system, which assists users in carrying out the procedures. 

The primary concern of our research is with building tools to help in the 
development of distributed software systems. It is in this context that the broad 
applicability of the constrained expression approach is significant. Constrained 
expressions provide a framework for formal analysis of properties, such as 
mutually exclusive use of shared resources and absence of deadlock, that can be 
characterized by the patterns of event symbols appearing in strings representing 
behaviors of a system. A constrained expression is a finite representation for a 
potentially infinite set of behaviors. It can therefore be used to reason about the 
sequences of events in all the behaviors of the set collectively, rather than one at 
a time. Since the constrained expression explicitly encodes relationships between 
the order and number of event occurrences in behaviors of a system, it directly 
supports reasoning about behavioral properties that involve interactions among 
the parts of a distributed system. 

We have developed several techniques for analyzing constrained expressions. 
Detailed presentations of these techniques appear elsewhere [2, 4, 10, 121. Their 
application in a realistic distributed software development setting is illustrated 
in [3]. 

We have begun development of a prototype toolset incorporating the con- 
strained expression approach. The toolset is targeted for use with an Ada-like 
design language, called CEDL, that we have developed [ll, 291. The toolset 
contains a constrained expression deriver, a simplifier, a behavior generator, and 
a collection of analysis tools. 

The deriver produces a constrained expression representation for a system 
from a CEDL design [30]. A first version of a deriver has been implemented in 
Ada [29]. The current deriver is tabledriven. Derivers for later versions of CEDL 
and for other software development notations can, therefore, be easily created 
by modifying the existing tool. 

The derivation procedure associated with a distributed system development 
notation is general, so that is can be applied to any syntactically correct descrip- 
tion. Specific features of a particular distributed system, however, often make it 
possible to produce a simpler constrained expression representation of the system 
than the one produced by the general derivation procedure. We have developed 
techniques for “simplifying” constrained expressions [ 10, 121. The simplifier 
automates this process by accepting a constrained expression and producing a 
simplified version of that expression. Use of a constrained expression simplifier 
will reduce the effort required for later analyses. In constructing the simplifier, 
we are exploring relationships between constrained expression simplification and 
certain static analysis techniques [31]. 
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The behavior generator is a tool for producing example behaviors from a 
constrained expression representation of a system. We have implemented a 
preliminary version of this tool in Prolog [l]. It generates a string from the 
interpreted language of a constrained expression. The existing behavior generator 
is interactive so that it can be guided in a search for a behavior possessing specific 
properties. This capability will be of great value to users of the constrained 
expression toolset. A developer of distributed software can explore properties of 
a system, detect certain classes of errors, and recognize possible improvements 
using the behavior generator. Moreover, the analysis tools produce vast amounts 
of information about behaviors that have a particular property. The behavior 
generator will help the developer transform this information into concrete 
examples of behaviors having the given property. 

The analysis tools automate the algebraic analysis techniques of [2], [4], and 
[5]. These techniques can be used to determine whether a particular pattern of 
events appears in any behavior described by a given constrained expression. 
Their application involves the generation of a system of inequalities involving 
the number of occurrences of events in subsequences of the behavior. If this 
system of inequalities is inconsistent, the hypothesized pattern of events cannot 
occur. If it is consistent, the inequalities provide information about the behaviors 
in which the pattern might occur. This information can then be used to guide 
the production of such behaviors. 

The process of generating inequalities is driven by the form of the constrained 
expression. Preliminary work on automating this process is very promising [2], 
and a prototype inequality generator based on these methods is currently under 
development. We are using a standard integer linear programming package to 
solve the systems of inequalities produced by the inequality generator. When 
combined with this package, the inequality generator will provide powerful 
support for analysis of distributed software systems. 

Most of the above tools could be used with any notation a developer might 
adopt. An appropriate deriver would be required for producing constrained 
expression representations from descriptions in the chosen notation. This re- 
quirement is primarily a matter of modifying the tables in our current deriver to 
reflect the appropriate translation rules and constraint templates. Certain aspects 
of other tools will rely upon specific details of the form of CEDL constrained 
expressions. For the most part, however, the simplifier, behavior generator, and 
analysis tools could be readily adapted to support analysis of descriptions in 
other notations. This would permit developers to select notations based on their 
naturalness and expressive power, rather than on the availability of analysis 
tools. 

APPENDIX. FORMAL DEFINITION OF CONSTRAINED EXPRESSIONS 

We let 9%?(A) denote the set of regular expressions over the alphabet A, where 
regular expressions over an alphabet are formed from the symbols in the alphabet, 
the null string (represented by X), and the empty set (represented by 0) by finite 
applications of the usual regular expression operators, alternation (represented 
by V), concatenation (represented by juxtaposition), transitive closure (repre- 
sented by *), and an additional operator, the shuffle or interleave operator 
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(represented by 8). The operator 8 has been shown to preserve regularity [13] 
and is useful for representing concurrent activity. 

In order to express certain constraints on the order and number of symbols 
that appear in legal behavioral traces of a system, we need to introduce an 
additional operator, the unary concurrent closure, or dagger, operator (repre- 
sented by t). The t represents the shuffle of zero or more copies of its argument 
and is at the same level of precedence as *. Thus, for instance, (ab)t represents 
the set of strings consisting of equal numbers of the symbols a and b, with the 
additional property that, in any prefix, the symbol a occurs at least as many 
times as the symbol b. The ‘f operator is used in constraints to ensure, for 
example, that at least as many messages have been sent as have been received. 

The event expressions over an alphabet A are formed from the symbols of A, 
the null string, and the empty set through finite applications of the regular 
expression operators (including @) and the t operator. We write Z%(A) for the 
set of event expressions over A. 

Let S G A. We define a homomorphism ps : A * ---, S*, called projection on S, 
by extending the map A + S* given by 

PSb) = af 
if aES; 

x otherwise. 

We think of ps as “erasing” the symbols not belonging to S. Let u be a string of 
symbols from A. For K E Z%(S), we say that u satisfies K if ps(u) belongs to the 
language of K. We can regard K as imposing a constraint on the way in which the 
symbols belonging to S can occur in strings; u satisfies K if this constraint is 
satisfied. 

Essentially, a constrained expression consists of a regular expression E over an 
alphabet A of event symbols, together with a collection of subsets of A and event 
expressions over those subsets. These event expressions are regarded as con- 
straining the patterns of event symbols, and we are interested only in those 
prefixes of the language of t that satisfy all of the event expressions. More 
formally, we have 

Definition 1. A constrained expression is an ordered pair D = (F, E), where 

(i) F = (A, E, L?, d), where 
(a) A is an alphabet of event symbols, 
(b) E is a subset of A, 
(Cl 3 = (SjljEJ, where J is a set of indices and Sj C A, for each j E J, 
Cd) 6 = (Kj)jeJ, where Kj E Z%Y(Sj), for each j E J, and 

(ii) t E Z%%?(A). 

We say that A is the augmented alphabet of the constrained expression and E 
is the terminal alphabet. The regular expression c is the system expression, the Kj 

are constraints, and the Sj are the constraint alphabets. The symbols in the 
terminal alphabet represent system events of interest to the designer. The 
augmented alphabet consists of these symbols and others required for technical 
reasons, such as the ne symbol used in Sections 3 and 4. 

Let D = (F, C) be a constrained expression, and let P(E) be the collection of 
prefixes of the language of the regular expression C. A prefix u E P(E) is called a 
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constrained prefix if it satisfies all the constraints Kj, that is, if, for each j E J, 
ps,(u) belongs to the language of Kj. We write P”(E) 1 d for the set of constrained 
prefixes of D. Finally, the interpreted language of D Y-Y(D) is obtained 
by projecting the constrained prefixes onto the terminal alphabet. Thus, 
Y-T(D) = PE(9(~) 16). It is this interpreted language that corresponds to 
the behaviors of the system represented by the constrained expression D. 
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