
Constrained Expressions: Toward Broad
Applicability of Analysis Methods for
Distributed Software Systems

LAURA K. DILLON

University of California, Santa Barbara

and
GEORGE S. AVRUNIN and JACK C. WILEDON

University of Massachusetts, Amherst

It is extremely difficult to characterize the possible behaviors of a distributed software system through
informal reasoning. Developers of distributed systems require tools that support formal reasoning
about properties of the behaviors of their systems. These tools should be applicable to designs and
other preimplementation descriptions of a system, as well as to completed programs. Furthermore,
they should not limit a developer’s choice of development languages.

In this paper we present a basis for broadly applicable analysis methods for distributed software
systems. The constrained expression formalism can be used with a wide variety of distributed system
development notations to give a uniform closed-form representation of a system’s behavior. A
collection of formal analysis techniques can then be applied with this representation to establish
properties of the system. Examples of these formal analysis techniques appear elsewhere. Here we
illustrate the broad applicability of the constrained expression formalism by showing how constrained
expression representations are obtained from descriptions of systems in three different notations:
SDYMOL, CSP, and Petri nets. Features of these three notations span most of the significant
alternatives for describing distributed software systems. Our examples thus offer persuasive evidence
for the broad applicability of the constrained expression approach.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming;
D.2.2 [Software Engineering]: Tools and Techniques; D.2.4 [Software Engineering]: Program
Verification; D.3.2 [Programming Languages]: Language classifications-design languages; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying and Reasoning About Programs

General Terms: Design, Languages, Theory, Verification

Additional Key Words and Phrases: Constrained expressions, CSP, distributed software systems,
event-based analysis of software designs, Petri nets, Petri net languages, SDYMOL, software design
tools

This work was supported in part by the National Science Foundation under grant DCR-83-18776, by
a Faculty Research Grant from the University of Massachusetts, and by the IBM Graduate Fellowship
Program.
Authors’ addresses: L. K. Dillon, Computer Science Department, University of California, Santa
Barbara, CA 93106; G. S. Avrunin, Department of Mathematics and Statistics, University of
Massachusetts, Amherst, MA 01003; J. C. Wiledon, Department of Computer and Information
Science, University of Massachusetts, Amherst, MA 01003.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1988 ACM 0164-0925/88/0700-0374 $01.50

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988, Pages 374-402.

Constrained Expressions - 375

1. INTRODUCTION

The large number and complexity of the possible interactions among the
asynchronous components of a distributed software system make it difficult to
reason informally about its behavior. Developers of distributed systems therefore
require powerful formal techniques for analyzing their systems. Formal analysis
is important throughout the software development process, especially in the early
preimplementation phases when errors are most easily corrected.

Developers of distributed systems also need congenial development notations,
including design and implementation languages. Different notations are suitable
at different stages of software development, and features of the system under
development may also make one language more appropriate than another. Soft-
ware developers therefore may need to use a variety of development notations,
even on a single project.

Unfortunately, developers are often forced to choose between using formal
analysis methods and appropriate development notations. Virtually all proposed
analysis techniques are based on some particular notation and rely on special
features of that notation. Software developers who wish to use these techniques
then must work with a single development notation, which may not be suitable
for their immediate tasks. In addition, many of these techniques force developers
to work with sophisticated and abstract mathematical structures, rather than
standard design and implementation languages.

One goal of our work has been the broad applicability of analysis methods. We
are producing tools that support formal analysis methods without imposing
unnatural development notations on developers. Our approach to broad appli-
cability is based on a formalism, called constrained expressions, that can be used
with a wide variety of standard notations. This allows a developer to choose a
notation appropriate for a system and its current state of development. A
description of the system in the chosen notation is then mechanically translated
into a constrained expression representation of the behavior of the system, which
provides a basis for formal analysis.

Whereas a development notation is chosen to facilitate description and maxi-
mize expressive power, constrained expressions are designed to encode the
information required for analysis of important system properties. The con-
strained expression representation of a distributed system provides a formal basis
for arguments concerning the order and number of occurrences of particular
events in behaviors of the system. Arguments of this nature have been widely
used to analyze distributed systems for such properties as mutual exclusion,
deadlock, and starvation (see, e.g., [3, 7, 15, 18, 20, 211). The constrained
expression formalism thus offers a general intermediate form that both supports
formal analysis and allows development in the appropriate notations.

In a previous paper [5], we showed how constrained expressions are used to
add analysis capabilities to a (single) particular distributed system design lan-
guage. Further development of these techniques are described in a forthcoming
report [2]. Algebraic manipulations or “simplifications” of constrained expres-
sions are described in a companion paper [121. Here we illustrate the broad
applicability of the constrained expression approach by showing how constrained

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

376 l L. K. Dillon et al.

expression representations can be derived from descriptions of systems in three
different notations: SDYMOL, a distributed system design language based on
buffered asynchronous interprocess communication; CSP, a distributed system
design and programming language based on synchronous rendezvous-style inter-
process communication; and Petri nets, a graphical formalism for describing
concurrent systems based on a dataflow style of interprocess coordination. These
examples offer persuasive evidence for the broad applicability of the constrained
expression approach.

In Section 2, we describe the constrained expression formalism. Constrained
expression formulations of SDYMOL, CSP, and Petri nets are presented in
Sections 3, 4, and 5, respectively. For purposes of illustration, we give a con-
strained expression representation for a semaphore system described in each
notation. The accuracy and precision of constrained expression formulations of
these notations are considered in Section 6. Finally, in Section 7, we discuss our
experience with the constrained expression approach and the directions of our
current research.

2. THE CONSTRAINED EXPRESSION FORMALISM

In this section we briefly describe the constrained expression formalism. A more
formal description is given in the Appendix.

In the constrained expression framework, any particular behavior of a distrib-
uted system is viewed as defining a sequence of event occurrences. An event
symbol is associated with each (potential) event occurrence. A single behavior
thus determines a string over an event alphabet, and the set of all possible system
behaviors determines a language over this alphabet.

Exactly what things are considered to be events depends upon the particular
system and the level of detail at which it is considered. We assume only that
events are indivisible and nonoverlapping. Overlapping activities are easily
represented by treating their initiations and terminations as separate events.

A constrained expression consists of a collection of expressions over an alpha-
bet of symbols called the augmented alphabet. The augmented alphabet contains
symbols representing each potential event occurrence. It also contains symbols
required to capture important facets of a particular notation, as will be seen in
the examples in the next three sections. Such symbols do not necessarily
correspond to visible events. The expressions are interpreted as representing a
language. The constrained expression representation of a distributed system is
defined so that this language is exactly the language determined by the set of
possible system behaviors.

Essentially, a constrained expression consists of two parts, a system expression
and a constraint set. The system expression is a regular expression over the
augmented alphabet. It is formed using the standard regular expression operators,
alternation (V), concatenation (juxtaposition), and Kleene star (*), plus the
interleave or shuffle operator (B).’ The interleave of two event strings represents
their concurrent occurrence. The regular expression ab @0 cd, for example, denotes

’ The relative precedence of the regular expression operations from highest to lowest is *, juxtaposition,
Q, and V.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

Constrained Expressions l 377

the set {abed, acbd, acdb, cabd, cadb, cdab 1. It represents the concurrent occurrence
of the event sequences ab and cd.

A system expression is viewed as a generator of “candidate” event sequences.
That is, each prefix of a string in the language of the system expression is
considered a candidate for a possible behavior. We consider prefixes, rather than
complete strings in the language of the system expression, in order to represent
behaviors in which system components terminate prematurely. The set of can-
didates contains event strings representing all the possible behaviors, but it may
also include extraneous event strings. We consider the set of prefixes in conjunc-
tion with the constraint set to determine which candidates represent possible
system behaviors.

The constraint set consists of a collection of constraints. Each constraint is an
expression over the augmented alphabet and is formed by using the regular
operators (including interleave) plus the dagger operator (t). This unary operator
represents the interleave of zero or more copies of its argument.2 The dagger
describes some number of concurrent occurrences of an event sequence.

Each constraint represents a pattern of acceptable event sequences with respect
to a subset of the augmented alphabet called a constraint alphabet. Every
candidate event sequence is “filtered” through the constrained expression’s
constraint set to determine whether it represents a possible behavior. This
filtering process involves the following steps. First, the candidate prefix is
projected on the alphabet of some constraint. This involves “erasing” all symbols
that are not in the constraint alphabet. If the resulting string belongs to the
language of the constraint, the prefix is said to satisfy that constraint. Otherwise,
the prefix contains an unacceptable pattern of event symbols, and it is eliminated
from the set of candidates. Those prefixes that satisfy all the constraints in the
constraint set are called constrained prefixes.

As a final step, the constrained prefixes are projected on a terminal alphabet.
This alphabet is the subset of the augmented alphabet consisting of event symbols
that correspond to significant system events. This yields the interpreted language
of the constrained expression. The interpreted language represents exactly the
set of possible behaviors of the distributed system. It is important to note that
analysis techniques operate on the constrained expression, rather than on indi-
vidual strings in the interpreted language. It is therefore never necessary to
actually generate this language.

The approach of describing a set of candidate event sequences and then
eliminating those that fail to satisfy one or more constraints may seem more
complicated than directly generating the set of possible behaviors. We have found
it, however, to be both simpler and more natural. It is convenient to use the
system expression, which describes the candidate event sequences, and the
constraints, which are used to eliminate some of those sequences, for different
purposes. We typically use the system expression to describe behavioral proper-
ties of a system. For example, a system expression might express the fact that
some component of the distributed system first tries to receive three messages,
then selects between two possible recipients and sends a message to one of them.

’ The interleave operator preserves regularity [13], whereas the dagger operator does not.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

378 . L. K. Dillon et al.

Constraints are used primarily to express fixed semantic properties for a class of
distributed systems. For instance, constraints enforce the synchronous nature of
interprocess communication in a constrained expression for a CSP system and
the Petri net firing rules in a Petri net constrained expression.3

Constrained expressions are usually generated from some other description of
a system. As demonstrated below, it is possible to derive a constrained-expression
representation of a system from descriptions in a wide variety of notations,
including many design and programming languages. For each such notation,
constrained expressions are derived using a set of translation rules and a set of
constraint templates. The translation rules direct the transformation of a design
or program into a system expression. The constraint templates provide generic
versions of the constraints. They are instantiated for a given design or program
to produce a particular constraint set.

Considerable effort and insight is required to develop the translation rules and
constraint templates for a given notation. Once they have been developed,
however, it is an entirely mechanical procedure to carry out the derivation process
for a particular system’s description.

2.1 Related Work

Regular expression-like descriptions of the sets of sequences of events represent-
ing system behaviors are also found in the work of Campbell and Habermann [7]
(path expressions), Riddle [27] (message transfer expressions and event expres-
sions), Welter [32], (counter expressions), and Shaw [28] (flow expressions).
Message transfer expressions, event expressions, flow expressions, counter
expressions, and the COSY notation [22], which is based on path expressions,
all rely on a filtering procedure. A set containing all legal system behaviors is
represented by one or more expressions. Sequences that do not represent behav-
iors are eliminated from this set to produce the set of possible system behaviors.

The major difference between the constrained expression formalism and most
of its predecessors (message transfer expressions, event expressions, counter
expressions, and flow expressions) is the use of constraints to specify the
conditions under which strings are eliminated from the set of possible behaviors.
The filtering procedures used with the earlier notations are equivalent to using
a fixed, predefined set of constraints expressing synchronization requirements
between communicating processes.

The COSY notation closely resembles constrained expressions but is intended
for quite different purposes. COSY is intended for specifying concurrent software
systems. Events in COSY correspond to operations or procedures, rather than
arbitrary system events. Path expressions, the COSY analogue of constraints,
restrict the order in which operations are invoked. A COSY description thus
provides a declarative specification of system behaviors, presumably for use in
verification of a design or implementation. A constrained expression, on the

3 There is nothing in the constrained expression framework that forces this separation of concerns,
and we do not always adhere strictly to it ourselves. The two parts of the constrained expression
framework provide a flexible approach to representing the possible behaviors of distributed systems.
Decisions on how to use the two parts in capturing the semantics of a particular class of distributed
systems are left to the discretion of the framework’s users.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

Constrained Expressions l 379

other hand, does not define the intended behaviors of a system. It is a represen-
tation of the system’s possible behaviors that is derived from some other system
description, and it is used for exploring properties of the system.

Trace models of distributed systems treat behaviors as sets of sequences of
communication events [19, 231. Properties of the systems are verified using
axiomatic proof techniques. A generalization of this approach models behaviors
as infinite sequences of observations [24] and uses temporal logic for proving
properties of behaviors. This approach has the advantage that liveness properties
are more easily specified. In contrast, the constrained expression approach uses
a more general concept of event and provides algebraic methods for analyzing
properties, such as absence of deadlock, limited use of shared resources, and most
liveness properties, which can be interpreted as questions about the order and
number of certain event occurrences.

In event-based models that rely on explicit partial orderings [8,14], a system’s
behavior is represented by a set of events and partial order relations. The relations
express time orderings or enabling relationships. Events that are not comparable
are considered concurrent. The system expression and constraints in a con-
strained expression representation of a system can be viewed as imposing certain
partial order relations on the set of events. This model is therefore compatible
with the constrained expression formalism.

3. CONSTRAINED EXPRESSIONS FOR SDYMOL

3.1 An SDYMOL System

SDYMOL is a high-level design language focusing on interprocess communica-
tion and synchronization.4 A concurrent system in SDYMOL is a collection of
sequential processes executing concurrently and communicating by means of
message transmission. The SDYMOL design for a process specifies how the
process interacts with other processes through message transmission. It only
abstractly describes the internal activities of the process itself.

Message transmission in SDYMOL is both a communication and a synchro-
nization mechanism. Each process contains a memory location called its buffer
and a number of named ports. The buffer holds a message that is sent or received
through a port. To send or receive messages through a port, the port must be
connected to a link by a channel. An inbound port can be connected to several
links, whereas an outbound port can only be connected to a single link. A link is
an unbounded, unordered repository for messages that have been sent through
the outbound ports connected to the link and not yet received through any
inbound ports connected to it. Messages are represented by a finite number of
message types.

A process sends a message through an outbound port p by executing a send p
statement. This causes the current contents of the buffer of the process to be
copied into the link 1 connected top. The contents of the buffer are not modified.
If p is not connected to a link, send p is equivalent to a null statement.

4 SDYMOL is a simplified version of the Dynamic Modeling Language (DYMOL), which was designed
to be used with the Dynamic Process Modeling Scheme (DPMS) [33].

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

380 - L. K. Dillon et al.

A process requests receipt of a message through an inbound port p by executing
a receive p statement. The request is fulfilled by nondeterministically selecting
a link 1 that contains one or more messages and is connected to p, nondetermin-
istically selecting a message m from the messages in I, removing m from 1, and
placing m into the process’es buffer. If there are no messages in any of the links
connected to p, the requesting process waits. The wait continues at least until a
message becomes available. The appearance of a message in a link connected to
p does not necessarily end a wait. Competing requests might be lodged in the
interim, and requests are not serviced in any particular order.

The syntax of SDYMOL is based on that of Algol 60. SDYMOL provides a
standard set of control flow constructs. Decisions based upon internal process
computation are modeled as nondeterministic choices (e.g., if internal test . . .
or while internal test do . . .). I n t ernal process computations are represented
by primitive statements consisting of user-defined identifiers. Such statements
are semantically null. They serve as placeholders for activities that are to be
elaborated in subsequent system descriptions.

A SDYMOL design for Dijkstra’s solution to the mutual exclusion problem is
shown in Figure 1. The system consists of three processes represented by the
circles labeled s, ul, and u2. Boxes represent links. Arrows connecting links and
ports represent communication channels.

The uSer processes, u1 and uz, periodically require access to some shared
resource. The semaphore process s acts as a binary semaphore. The semaphore
assures that the resource is used in a mutually exclusive fashion.

The availability of the resource is represented by an ok message residing in the
s.p link of the semaphore process.5 The send s.p statement in the semaphore
process enables Dijkstra’s P operation.

The receive ui.p statements in the user processes represent the P operations.
If both u1 and u2 try to execute this statement simultaneously (they simultane-
ously attempt a P operation), one of the processes receives the single ok message
residing in the link. The other process waits until a message becomes available.
That is, one process is granted access to the resource and the other one waits.
When a user process is finished with the resource, it deposits an ok message in
its ui.u link. The receive s.u statement in the semaphore process models
Dijkstra’s V operation.

The internal test predicate in the body of a user process represents some
internal process computation. The results of this computation determine if the
cycle requiring access to the resource is repeated. This cycle is represented by
the three statements in the body of the while statement. The use-resourcei
statement is an example of an identifier statement. It models an internal activity
(use of the resource) performed by ui.

3.2 The SDYMOL Constrained Expression

We show how to derive a constrained expression representation for the SDYMOL
system shown in Figure 1, after first describing the augmented and terminal
alphabets.

5 We identify an outbound port with the associated link here and in the rest of the paper. This is
possible because the structure of an SDYMOL system is static.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

Constrained Expressions l 381

u;:
while internal test do

receive u;.p;
use-resource+;
send ui.v;

end.

S:

set buffer := ok;
do forever

begin
send s.p;
receive s.u;

end.

Fig. 1. SDYMOL solution to the mutual exclusion problem.

The event symbols used in the constrained expression representation for the
system are shown in Figure 2. Conceptually, we associate these symbols with
certain system events, as indicated in this figure. Some of these symbols, however,
are needed in constraints for describing permissible event sequences and do not
correspond to actual system events.

Event symbols represent the modification and use of buffer contents, the
transmission and receipt of messages, and the use of the resource. Additionally,
a stop symbol is associated with the completion of a process, while a starve
symbol represents an attempt to receive that results in starvation (the process
waiting forever). The ne, or noneuent, symbol does not represent an actual system
event, since it does not occur in any string representing a legitimate system
behavior. It is used in constraints assuring that certain patterns of event symbols
do not occur in constrained prefixes. We discuss the role of this symbol in more
detail below.

The terminal alphabet is determined by the questions that analysis is intended
to address. Suppose, for example, we want to determine if the user processes in
Figure 1 can starve and if the resource use is mutually exclusive. The former
question can be determined by asking if there are any behavior sequences
containing a sturue(u,.p) or sturue(uz.p) symbol, and the latter by asking if there
are any legal behavior sequences containing a uri symbol followed by a urj symbol,
where 1 5 i, j 5 2, with no intervening rec(u;.u, s.u, ok) symbol. In this case,
therefore, the terminal alphabet might be defined to be {starue(u;.p), uri, ret (u; .u,
KU, Ok)}i=Q. Of course, the terminal alphabet could be any other subset of the
augmented alphabet containing these six symbols.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

382 l L. K. Dillon et al.

Symbol Associated event

W(q, 4 A message of type m is deposited in the buffer of process q.
me(q, 4 The buffer of process q is used when its value is of type m.
send& m) A message of type m is sent to link 1.

rec(l, p, m) A message of type m is transmitted from link 1 through port p.

uri The resource is used by process ui for i = 1, 2.

stop(q) Process q terminates normally.

starue(p) The process starves at a receive p statement.

m(q) This nonevent symbol is used for process q.

Fig. 2. SDYMOL event symbols. For a given SDYMOL system, q ranges
over all processes, 1 ranges over all links (outbound ports), p ranges over all
inbound ports, and m ranges over all message types and over the reserved
symbol I, which represents an undefined message.

3.3 The SDYMOL System Expression

The SDYMOL system expression consists of an initial expression 1 followed by
the interleave of process expressions, pq, one for each process q:

The initial expression describes the initial status of all links and buffers. Each
process expression represents the sequential activity of a process.

The initial expression is a concatenation of symbols. It contains a def(q, I)
symbol for each process q indicating that the contents of all buffers are initially
undefined and a send (1, m) symbol for each message of type m that initially
resides in a link 1.

Each process expression is obtained from the SDYMOL code for a process
through the statement-by-statement application of the translation rules shown
in Figure 3. The application of the rules T,-T4 involves replacing the statement
on the left by the sequence of symbols on the right.6 The remaining rules are
applied recursively. For instance, if the statement

while internal test do set buffer := m

appears in a process q, it is transformed into def (q, m)* by the application
of T3 and T6.

The sequence of events that occurs when a process q executes a send 1
statement depends on the contents of its buffer. If the buffer contains a message,
that message is placed in 1. Hence, we have the disjunction over all defined
message types on the right in rule Tl. Otherwise, the buffer is undefined and the
send is a null operation. This possibility is represented by the final disjunct.

With the exception of Tz and T5, the rest of the translation rules can be
similarly interpreted. The sturue(p)ne(q) alternative produced by a receive p

61n T, identifier symbol denotes the event symbol associated with the activity modeled by the
statement consisting of the single identifier identifier. Thus, the symbol ur; is associated with the
statement a.se resource< in the example.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

Constrained Expressions l 383

Statement Translation Rule

send 1 ..- ..- V use(q, m)send(l, m)
>

V u.se(q, I) T,
mt.L

receive p (‘. V rec(1, p, m)def(q, m) V sturue(p)ne(q) ::=
rnfl 1 T*

set buffer := m ..- ..- defta ml T3

identifier ..- ..- identifier symbol T4

do forever(s) ::= ((s)}*ne(q) T5

whileinternal test do(s) ::= i(s))* TS

while buffer = m do(s) ::= be(s, mN(s)D*(Jmw4s, 4) T7

if internal test ::= ((ss)l v I(s)) T*
then(ss)

if internal test then(s) ::= ((s)] v x TS

if buffer = m ::= us445 m)i(ss)l V
then(ss) (

n~mmuse(q, nN(s)l TN

if buffer = m then(s)

(4; (s)

q:(s)

::= wets m),(s)) V (Jmuse(q, 4)

::= l(41~(s)l
::= ((s)Jstop(q)

Tl,

TIP

T,.?

Fig. 3. SDYMOL translation rules. Here q denotes the process defined by the SDYMOL program,
curly brackets (()) signify the recursive application of these rules, 1 ranges over all links connected to
p, and m and n range over all defined message trpes and over 1.

statement within a process q represents a request for a message through port p
that is never fulfilled. In this case, q does not participate in future system events.
Hence, if a starve(p) symbol appears in a constrained prefix, then no symbols
associated with q may appear in the prefix anywhere to the right of the sturue(p)
symbol. We guarantee this by placing the nonevent symbol ne(q) immediately
after the starve(p) symbol in Tz and generating a constraint (described below) to
filter out prefixes containing any ne(q) symbols.

The ne(q) symbol is used in a similar fashion in T5. The Kleene star on the
right in T5 represents the repeated execution of the embedded statement (s). By
itself, however, the Kleene star only specifies that the statement is executed
some finite number of times. The ne(q) symbol is used to guarantee that no
subsequent statements in the code of the process are ever reached.

The system expression derived from the SDYMOL design in Figure 1 is shown
in Figure 4. Many prefixes of this system expression do not represent legal
behavior sequences. Consider, for example, the prefix

L rec(s.p, u,.p, ok)def(ul, olz)sturue(uz.p)ne(uz)urz

This string represents an event sequence in which an ok message is received from
the link s.p before any messages have been deposited in the link. Several
constraints in the SDYMOL constrained expression filter out this prefix.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

384 l L. K. Dillon et al.

System expression:

Initial expression:

Process expressions:

a, = dej(s, ok)((u.se(s, ok)send(s.p, ok) V use(s, I))

(rec(u,.u, s.v, ok)def(s, ok) V rec(u,.u, s.u, ok)def(s, ok)
V starue(s.u)ne(s)))*ne(s)stop(s)

T,, = ((rec(s.p, u,.p, ok)def(ui, ok) V starue(u,.p)ne(uJ)
ur,(u.se(u,, ok)send(ui.u, ok) V use(u;, I)))*stop(u,)

Fig. 4. System expression for the SDYMOL design in Figure 1.

3.4 The SDYMOL Constraints

Constraints are required in an SDYMOL constrained expression because
the translation rules of Figure 3 do not completely capture the semantics of
SDYMOL. Each constraint describes the patterns of event symbols from the
associated constraint alphabet that can appear in strings representing legal
system behaviors. We use five different types of constraints for this purpose. The
constraint templates that produce the constraints are shown in Figure 5. With
the exception of the constraint KS(q) for a process q, the constraint alphabet for
a constraint consists of the symbols appearing in the constraint. The constraint
alphabet for Kg(q) is the set (ne(q)).

The first type of constraint, K~, pertains to the use and modification of buffer
contents. See Figure 2, in which the symbol def(q, m) is identified with placing
a message of type m into the buffer of process q and the symbol use(q, m) is
identified with a use of the buffer when it contains a value of message type m.
The undefined message, I, represents a buffer whose contents are currently
undefined. The constraint K1(q) requires that a use of the buffer of q when it
contains a message of type m be preceded by placement of a message of type m
into the buffer and that there be no intervening modifications to the buffer. The
constraint does not require that any use of the buffer actually occur between
successive modifications. Thus Kl(q) assures that the buffer of q is used and
modified in a consistent fashion.

The second type of SDYMOL constraint, K~, relates to system termination. All
behaviors described by the constrained expression must be complete behaviors.
Each process must either terminate or become permanently blocked waiting to
receive a message through some port.7 This is assured for each process q by the
constraint K~(q).

The third type of constraint, K~, guarantees that nonevent symbols do not
appear in strings representing behaviors. As explained above, this eliminates
certain illegal patterns of event occurrences.

The fourth type of SDYMOL constraint, K 4, relates to the transmission of
messages. To understand this constraint, note that (ab)t represents the set of all
strings containing equal numbers of u’s and b’s such that any prefix contains at

7 A process that executes a do forever statement must eventually starve.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

Constrained Expressions - 385

K,(q) = (,v1 Ma, m’hetq, m’)*)

* K*(9) = (y star”e(P7) ” stop(q)

m()‘p rec(L p”, ml))+

Fig. 5. SDYMOL constraint templates. These templates are instantiated for each
process q, link 1, (inbound) port p, and message type m # I of the given system. In the
disjunctions, m’ ranges over all message types (including I), p’ ranges over all (inbound)
ports of q, and p” ranges over all (inbound) ports connected to 1.

least as many a’s as b’s. The “dagger subexpression” in ~~(1, m) thus guarantees
that each reception of a message of type m from a link 1 is preceded by
a corresponding placement of a message of type m into 1. The interleaved
se&(& m)* allows more messages of type m to be placed in 1 than are ever
received.

The final type of constraint, K~, pertains to process starvation. A process
cannot starve waiting for a communication through a port p that is connected to
a link 1 if there are messages residing in 1. For a link 1, an (inbound) port p

connected to 1, and a message type m # I, the constraint ~~(1, p, m) is used in
stating this requirement, as follows.

The first disjunct of ~~(l, p, m) guarantees that if a process starves at a
receive p statement, then there are no messages of type m that it can receive
from 1. The first “dagger subexpression” of this disjunct assures that there are
no messages of type m in 1 when an attempt to fulfill the request is made. The
second “dagger subexpression” assures that all messages of type m that are
subsequently placed in 1 are used to service other receive requests.

The second disjunct of K~(Z, p, m) is required in case the process does not starve
at a receive p statement. In this case Kg(l, p, m) does not impose any restrictions
on the order or number of symbols representing events in which messages of
type m are placed in 1 or received from 1.

Taken together, the constraints Kg(l, p, m), for all defined message types m,
assure that if a process starves at a receive p statement, then there are no
messages of any type that it can receive from 1. If the process does not starve at
a receive p statement, then none of these constraints restricts the order or
number of messages that are sent to or received from 1. Of course, the constraints
K~(Z, m) still restrict the order and number of messages sent to and received from
1 in this case.

These five types of constraints restrict the order and number of events that
occur in strings representing legitimate SDYMOL system behaviors in accord-
ance with that part of the SDYMOL semantics not expressed by the translation

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

306 9 L. K. Dillon et al.

rules. Application of the translation rules and instantiation of these constraint
templates completes the derivation of an SDYMOL constrained expression.

4. CONSTRAINED EXPRESSIONS FOR CSP

4.1 A CSP System

We illustrate the derivation of CSP constrained expressions using the CSP
solution to the mutual exclusion problem shown in Figure 6. It is based on the
integer semaphore example presented by Hoare [181. The line numbers in this
figure are used for reference below. We discuss only aspects of CSP relevant to
this example. A more complete description of CSP can be found in Hoare’s
original paper [181.

The system 979, contains a semaphore process, S, and two user processes, U,
and U,. The terminator processes Tl and Tz cause the user processes to (eventu-
ally) terminate.

S begins by assigning a 1 to its local variable, VAL. It then executes the
repetitive command in lines S2-5. On each cycle of this command, S waits until
one of the user processes sends it a u-signal (S2-3) or until VAL is greater than
0 and one of the user processes sends it a p-signal (S4-5). Depending on which
of the successful guards is arbitrarily selected for execution, it then either
increments VAL or decrements VAL. A repetitive command terminates when all
of its guards fail and all processes named in input commands of open guards have
terminated. (A guard is open if the boolean expressions in the guard list are
satisfied.) Hence, the repetitive command in S terminates when both U, and U,
have terminated. S starves if the guards in lines (S2-5) fail and one of Ul or U2
never terminates. If S starves and VAL is not positive, then S starves waiting
for a u-signal. If S starves and VAL is positive, then S starves waiting for either
a u-signal or a p-signal.

The user process Vi, for i = 1, 2, initializes CONTi and then cycles, sending a
p-signal, using the resource, and sending a u-signal, until it receives an e-signal
from Ti (in U2); or it starves at the S!p() command or the S!u() command (in
U3). If Vi receives an e-signal, the second guard never again succeeds. Hence, Vi
waits for Ti to terminate, at which point it also terminates. If Ti never terminates,
Vi starves waiting for (another) e-signal.

The process Tiy for i = 1, 2, waits for U; to request its e-signal and then
terminates. If Ui never requests an e-signal from Ti, then Ti starves.

4.2 The CSP Constrained Expression

In this section we show how to derive a constrained expression representation
for 9’9 from the CSP program in Figure 6. This example illustrates two
important aspects of CSP constrained expressions. It shows how constrained
expressions can be used to represent the semantics of CSP (synchronized)
communication primitives. It also shows how the semantics of CSP-guarded
commands and repetitive commands can be expressed. It does not, however, show
how to express the full semantics of expression evaluation and of the CSP
assignment command. We indicate how we handle these after discussing the
example.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

Constrained Expressions l 387

99 = [S :: SEMI1 u, :: USER, 1) Up :: USER, 11 TI :: TERMINATOR, 1) Tz :: TERMINATOR,]

SEM = (Sl)VAL integer; VAL := 1;
(SZ)*[U,?u() --f VAL := VAL + 1 --U, releases resource
(SB)OU,?u() + VAL := VAL + 1 -lJ, releases resource
(S4)OVAL > 0; U,?p() -+ VAL := VAL - 1 -grant resource to U,
(S5)OVAL > 0; U,?p() + VAL := VAL - l]-grant resource to U,

USER, =(Ul)CONT, boolean; CONT, := t;-initialize CONT;
(U2)*[T,?e() --* CONT: := f -get termination signal
(U3)WONT, + S!p(); ur;; S!u()] -else request, use

and release resource

TERMINATOR; = Ui!e()-send termination signal

Fig. 6. CSP solution to the mutual exclusion problem.

Symbol Associated event

def(X, a) Value a is assigned to variable X.

use(X, a) Variable X is used when it has the value a.

recU’, Q, cl c-signal is sent from process P and received by process Q.

ur; The resource is used by process Ui (i = 1, 2).

starve(P) Process P starves.

swv) Process P terminates.

send(P, Q, 4 Process P is ready to send a c-signal to process Q.

send’(P, 8, cl Process P is ready to resume execution after sending a c-signal to process Q.

wait(P, P, Q, c) Process P starves waiting for process Q to request a c-signal from P.
wait(Q, P, Q, c) Process Q starves waiting for process P to send a c-signal to Q.

hang(P) Process P is assumed to (eventually) starve.

term(P) Process P is assumed to have terminated.

ne(P) This is the nonevent symbol for process P.

Fig. 7. CSP event symbols.

The event symbols for this example are shown in Figure 7. Event symbols
represent the use and modification of variables, interprocess communications
(i.e., signals between processes), the use of the resource, and the starvation and
termination of processes.

The other event symbols are used to model aspects of the CSP semantics. Let
a! = (P, Q, c) represent a c-signal from a source process P to a target process Q.
The rec(cy), send(a), and send’(a) symbols are used in constraints that assure
communicating processes are properly synchronized. The ret (a) symbol repre-
sents the communication event. A send(a) symbol signifies that the source
process is ready to communicate, while a send’(a) symbol signifies that the
communication has taken place and the source is ready to continue with its
processing. A wait(P’, a) symbol encodes information about the starvation event
starve(P’), where P’ is either the source or target process of (Y. It signifies that
P’ starves waiting for the communication CY. These symbols are used to guarantee
that a process is not represented as starving on a communication that can take

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

388 l L. K. Dillon et al.

place. The hang(P) symbol indicates that the process P is assumed to starve
(e.g., an iterative command in some other process should not terminate if P is
named by the input command associated with an open guard and P does not
terminate), and the term(P) symbol indicates that P is assumed to terminate. As
in SDYMOL, the nonevent symbol ne(P) is used to eliminate certain patterns
of impossible event occurrences.

I
4.3 The CSP System Expression

The system expression derived from Figure 6 is the interleave of five process
expressions:

It is shown in Figure 8. We give line numbers in this figure for reference in the
discussion below.

The initial def(VAL, 1) symbol in line 1 of 7~s is produced by the assignment
command in S. The “star subexpression” and the term (U,) and term(U,) symbols
(in line 10) are produced by the repetitive command. Each guarded command
generates a disjunct (lines 2-5) representing its execution. The disjuncts in lines
6-9 represent the starvation of S within the repetitive command. Two disjuncts
are required because there are two possible truth values for the guard lists
preceding the input commands. If VAL is not positive when S starves, then
S starves waiting for u-signals from the user processes. This explains the
wait(S, Vi, S, u) symbols for i = 1, 2 in line 6 of rs. The disjunction of the
hang(U,) and hang(U*) symbols in line 7 indicates that either U1 or U, must
also starve in this case. The starve(S) symbol signifies the starvation of S, while
the ne(S) symbol signifies that no further symbols from 7rs can appear. The
order of the wait and hang symbols is, of course, arbitrary. The interpretation
and generation of the disjunct in lines 8 and 9 is similar.

Both U1 and Uz must terminate for the repetitive command to terminate. The
“star subexpression” is thus followed by term(Ui) symbols for i = 1, 2. The
stop(S) symbol represents the termination of S.

The translation of the user process Ui for i = 1, 2 requires the translation of
two output commands. Each output command produces two disjuncts. One
disjunct represents the communication taking place. It consists of the appropriate
send and send’ symbols. The second disjunct represents the starvation of Vi at
the output command. Since the output command is not part of a guard, starvation
at the command does not imply starvation of any other process. Thus, this
disjunct does not require a hung(S) symbol. Similarly, no hang symbols are
generated by an input command that is not part of a guard. The interpretation
and generation of the process expression TT, for i = 1, 2 is obvious.

4.4 The CSP Constraints

Seven types of constraints are required in the CSP constrained expression. The
templates for generating the constraints are shown in Figure 9. For this figure
and the discussion below, we take V to be the set of variables in the CSP system
and t(X) to be the type of X E V. We let C denote the set of communications

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

Constrained Expressions * 389

System Expression:

Process Expressions:

7rs =

(1) def(VAL, 1)

(2)

(3)

rec(U,, S, u) V use(VAL,j)def(VAL,j + 1)
(JEZ

V rec(U2, S, u) v use(VAL, j)def(VAL, j +
IEZ

(4)

(5)

V

V

(6)

(7)

V v use(VAL, j) wait(S, U,, S, v)wait(S, U,, S, u)
jso >

(hang(UJ V hang(Ui))starue(S)ne(S)

(8)

(9)

(10)

V V use(VAL, j) wait(S, U,, S, u)wait(S, U,, S, u)wait(S, U,, S, p)
s-0 >

wait(S, U,, S,p)(hng(U,) V hzg(U2))starue(S)ne(S)

>

*
term(U,)term(U2)stop(S)

=u, =

(1) def(CONTi, t)(

(2) rec(T,, U,, e)def(CONT,, f)

(3) V u.se(CONT;, t)

(4) (send(U,, S, p)send’(U,, S, p) V wait(U,, CJ,, S, p)starue(Ui)ne(U,))uri

(5) (send(U,, S, u)send’(U,, S, u) V wait(Uj, UC, S, u)starue(Uj)ne(U,))

(6) V use(CONT,, f)wait(Ui, Ti, U,, e)hang(T,)starue(U,)ne(Ui)

(7))*u.se(CONT;, f)term(Ti)stop(UJ

TT, =

(1) (send(T,, U,, e)send’(T,, Ui, e) V wait(T,, T,, U,, e)starue(Ti)ne(lr,))

(2) stop(TJ

Fig. 8. System expression for the CSP program in Figure 6.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

390 . L. K. Dillon et al.

K~(X) =
(

V def(X, u)u.se(X, II)* *
“Ei,X, 1

K~(P) = stop(P) V sturue(P)

K&q = x

K~(OI) = (send(tu)rec(a)send’(a))*

K~(OI) = wait(source(a), a) V wait(target(a), a) V X

.x6(P) = (hung(P)* 8 s&rue(P)) V X

KJP) = stop(P)te V X

Fig. 9. The CSP constraint templates.

that can take place. For a communication (Y = (P, Q, c) E C, source(a) = P is the
source process, target(a) = Q is the target process, and c is the constructor. With
the exception of the constraint ~~ (P) for a process P, the constraint alphabet for
a constraint is the set of symbols that appear in the constraint. The constraint
alphabet for K~(P) is the set (ne(P)).

The first three types of CSP constraints, K~, K~, and K~, are analogous to the
corresponding SDYMOL constraints.

The fourth type of CSP constraint, K 4, relates to interprocess communication.
An input command in a process P corresponds to an output command in a process
Q if the input command names Q as the source, the output command names P
as the destination, and both commands name the same constructor. In CSP,
corresponding input and output commands are executed simultaneously. For a
communication (Y E C, the constraint ~~(a) assures that the source process and
target process are at corresponding commands when the communication takes
place. Let (Y = (P, Q, c). The send(a) and send’(a) symbols produced by a Q!c()
command are used as markers in the process expression 7rp. The send(a) symbol
follows all symbols representing events that precede execution of the output
command, while the send’(a) symbol precedes all symbols representing events
that follow execution of the output command. The rec(cu) symbol produced by a
P?c() command is used in a similar fashion in the process expression TQ. It
follows all symbols representing events that precede execution of the input
command and precedes all symbols representing events that follow execution of
the input command. The ret(a) symbol also represents the simultaneous execu-
tion of the corresponding commands. The constraint K~((Y) requires that each
ret (Ly) symbol lie between corresponding send (a) and send’ (a) symbols.’

The fifth type of CSP constraint, Kg, is analogous to the fifth type of SDYMOL
constraint. The constraint ~~(a), for LY E C, filters out strings representing event
sequences in which both target(a) and source(a) starve at corresponding com-
mands. Hence, these constraints assure that a process does not starve if it can
communicate.

a We could equally well have reversed the role of the send and ret symbols, employing send(a), rec(ol),
andrec’(ol) in the translation rules for Q!c() andP?c() andmodifying K* to be (rec(a)send(a)rec’(a))*.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

Constrained Expressions - 391

The sixth type of CSP constraint, K 6, also relates to the starvation of processes.
If a string from the language of a process expression “Q contains a starue(Q)
symbol that is produced by the translation of a guard in a repetitive command,
then it also contains a hang(P) symbol, where P is one of the processes from
which Q is waiting for a communication. The hang symbols are generated because
one of these processes must starve in order for Q to starve at the repetitive
command. (Otherwise, the repetitive command terminates.) In this case, the
constraint KG(P) assures that the string also contains a starve(P) symbol.

The final type of CSP constraint, K~, assures that a repetitive command is
executed until all processes that can make a guard succeed have terminated. The
representation of the execution of a repetitive command is followed by a sequence
of term(P) symbols. One term(P) symbol is generated for each process P that
must terminate for the repetitive command to terminate. The constraint K~(P)

assures that a term(P) symbol does not appear in a constrained prefix unless it
is preceded by a stop(P) symbol.

This completes our treatment of the constrained expression representation of
the system of Figure 6. We now discuss some aspects of the derivation of
constrained expression representations of CSP systems that are not illustrated
in that example.

In the CSP system of Figure 6, interprocess communication is limited to the
exchange of timing signals. More generally, a CSP output command may specify
values that are assigned to target variables in the target process. We represent
the transfer of information between CSP processes in the same way that we
represent the transfer of information between SDYMOL processes. (See
Section 3.)

‘l’he evaluation of an expression and the execution of an assignment command
can fail in CSP. The evaluation of an expression fails if any of the operations it
requires are undefined. An assignment command fails if the structures of the
target variables and assignment values do not match, as in [17] in which the
notion of matching structures is made precise. Dillon’s dissertation [lo] shows
how to represent the failure of SDYMOL expression evaluation. Essentially the
same approach can be used to represent the failure of expression evaluation and
of assignment commands in a CSP system, provided that certain restrictions are
placed on the structure of its variables.

The derivation of a CSP system expression is clearly more complex than the
derivation of an SDYMOL system expression. The additional complexity stems
from the complex semantics of the CSP repetitive command. In SDYMOL, the
condition for termination of a repetitive command is determined by local data
(e.g., the contents of the process’es buffer). In CSP one must consider the status
of all processes that could affect a guard in a repetitive command to determine if
the command terminates or results in starvation. Moreover, the precise semantics
of an input command in CSP depends on whether the command appears in a
guard or a command list.

To represent the failure of a CSP repetitive command, we partition the domains
of variables in the guard lists so that the truth values of the guard lists are
constant on each element of the partition. A disjunct is then produced for each
element to specify the processes that must starve if the repetitive command fails.
The termination of a repetitive command is represented in a similar fashion.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

392 l L. K. Dillon et al.

Despite this additional complexity, the derivation of a CSP system expression
is a straightforward compilation task. The generation of the CSP constraints is
no more complex than the generation of the SDYMOL constraints. Additionally,
the CSP constraints are all regular since they do not involve the dagger operator.

5. CONSTRAINED EXPRESSIONS FOR PETRI NETS

5.1 A Petri Net System

The Petri net formalism is a classical model of concurrent systems. A Petri net
is represented graphically as a collection of nodes, called places and transitions,
that are connected by directed arcs [26]. A marking specifies the tokens that
reside in the places of the net. Tokens enable the firing of transitions. When a
transition fires, it produces certain token movements. Transitions are labeled
with symbols from an event alphabet, so that each firing sequence determines a
string of event symbols. The Petri net language is the set of strings determined
by all firing sequences [161. Alternatively, the Petri net language may be defined
as the set of strings determined by those firing sequences that take the net from
its initial marking to a specified final marking [16, 251.

Figure 10 depicts a labeled Petri net that is based on the solution to the mutual
exclusion problem presented in [26]. The net has seven places, P, through P7,
and six transitions, tl through t6. We use circles to represent places and bars to
represent transitions in this figure. Each transition is labeled with a symbol from
the alphabet {p,, pz, ul, u2, url, urz}. A dot in a place represents a token.

The arcs in a Petri net determine the rules for firing transitions. A transition
t, is fireable if there are at least as many tokens in each place P; as there are
arcs from Pi to t,. The firing of t, removes a token from each P; for every such
arc and adds a token to each of the places Pj for every arc from t, to Pj. For
example, the transition tl in Figure 10 is fireable. The firing of tl removes a token
from P, and from P4 and adds a token to Pz. A firing sequence determines the
string obtained by replacing transitions with their transition labels. The firing
sequence tl t2 t3 of the net in Figure 10, for instance, determines the string pl url ul.

The place P4 in this figure models a semaphore process. The number of tokens
in P4 represents the value of the semaphore. The transitions labeled pi and Ui for
i = 1,2 represent Dijkstra’s P and V operations. We model the use of the resource
with the transitions labeled ur; for i = 1, 2. A P operation (a firing of tl or t4)
decrements the semaphore (removes a token from P4) and enables a use of the
resource (firing of tz or t5). A V operation (a firing of t3 or t6) increments the
semaphore (adds a token to P,,). Clearly, the transitions representing the use of
the resource are mutually exclusive.

5.2 The Petri Net Constrained Expression

To express the rules governing the firing of transitions, we use symbols repre-
senting the addition of tokens to places and the removal of tokens from places.
In general, the augmented alphabet consists of the transition labels, the symbols
puti and takei for each place P; in a Petri net, and the special symbol end. Aputi
symbol signifies the addition of a token to Pi, and a takei symbol signifies the
removal of a token from Pi. The symbol end is explained below. Naturally, the
terminal alphabet is just the set of transition labels.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

Constrained Expressions Constrained Expressions

Fig. 10. Petri net solution to the mutual exclusion problem.

5.3 The Petri Net System Expression

The Petri net system expression E has the form,
*

end

where m ranges over the indices of the transitions and end is a special symbol in
the augmented alphabet. The initial expression L indicates the number of tokens
and their locations in the initial marking of the net. It is a concatenation of puti
symbols, one for each token residing in a place Pi in the initial marking.

The transition expression 7r,,, associated with a transition t, is the concatenation
of (1) a sequence of takei symbols, one for each arc from a place Pi to t,; (2) the
label associated with the transition; and (3) a sequence of put, symbols, one for
each arc from t, to a place Pi. The transition expressions encode the semantics
of the firing of the transitions. The system expression derived from the Petri net
in Figure 10 is shown in Figure 11.

Many prefixes of the Petri net system expression represent firing sequences
that can never occur because transitions are shown as firing when they are not
fireable. Moreover, a proper prefix of the Petri net system expression can end in
the “middle” of a transition. That is, it can end with a proper prefix of a string
from the language of a transition expression. Such a prefix does not encode the

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

394 l L. K. Dillon et al.

System expression:

e = L(T, V r2 V 1r3 V ?r4 V ?r5 V ?r6)*end

Initial expression:

L = pUtlpL&p&

Transition expressions:

?rl = tukeltake,p,put,

1~~ = take2ur,putn

r3 = tuke3ulputlput4

r4 = take, takesp2put6

rs = tuke6ur2put7

?r6 = take7u2put4put5

Fig. 11. System expression derived from the Petri net in Figure 10.

K, = end

KZ(PL) =
(put$uke,)t 8 (puti)* if no final marking is specified
(putitakei)t 8 (put, . . . put,) if the final marking has ni tokens in Pi

--
Y

n, times

Fig. 12. The Petri net constraint templates.

full semantics of the firing of the transition, since all the necessary token
movements have not taken place. The Petri net constraints filter out proper
prefixes of the system expression, along with strings that do not represent
legitimate firing sequences.

5.4 The Petri Net Constraints

We use two types of Petri net constraints. They are shown in Figure 12. For each
place Pi, the integer ni 1 0 denotes the number of tokens residing in Pi in the
final marking for the net. The alphabet for a constraint is the set of symbols
appearing in the constraint.

The first type of Petri net constraint consists of a single constraint, K~. This
constraint filters out proper prefixes of the system expression. For example, the
string putlput4put5 take, takespz is filtered out by this constraint. It represents an
event sequence in which the transition labeled p2 has fired, but a token has not
yet been deposited in PG.

The second type of Petri net constraint, K 2, assures that the rules governing
the firing of transitions are followed and that the required number of tokens
reside in each place at the end of a firing sequence. We use the first template if
no final marking is specified. Otherwise, we use the second. The “dagger sub-
expression” in the constraint K~(P~), for a place Pi, guarantees that a token is
available in Pi whenever one is removed. Hence, constrained prefixes correspond
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

Constrained Expressions l 395

to legal firing sequences. The ni interleaved PUti symbols in the second template
for K2 correspond to the tokens left in Pi at the end of the firing sequence.

6. ISSUES OF CORRECTNESS

Naturally, the “correctness” of the derivation procedure associated with a devel-
opment notation must be considered. Using the terminology of [31], this involves
showing that the constrained expression representations produced by the deri-
vation procedure are both accurate and precise.g A constrained expression rep-
resentation D of a system S is accurate if every event string representing a
behavior of S is contained in the interpreted language of D. It is precise if every
string in the interpreted language represents a legal behavior.

Accuracy of a constrained expression representation is essential. Analysis based
on a constrained expression that is not an accurate representation of a system
could miss potential errors. Precision in a constrained expression representation
is equally important. Analysis based on a constrained expression that is not a
precise representation of a system could report “errors” that cannot occur. It
could also certify that certain (desirable) events occur when they do not. Analysis
of a representation that is both accurate and precise will not report any spurious
errors, nor inspire false confidence.

The verification of the accuracy and precision of a derivation procedure requires
an appropriate formal definition of the associated development notation. This
verification is facilitated if the formal description includes a simple criterion for
determining whether a particular sequence of events can occur in a behavior of
a system described in the development notation. Such a criterion exists for the
Petri net formalism. We demonstrate how this criterion can be used to verify the
derivation procedure described in Section 5 above.

Consider the constrained expression representation derived for a Petri net
according to the translation rules and constraint templates of the previous
section. To simplify the discussion, we assume a Petri net in which each transition
ti is associated with a distinct label si, and we let the terminal alphabet of the
constrained expression consist of the transition symbols si. We now show that
the constrained expression representation is both accurate and precise.

Assume first that no final marking is specified for the Petri net. Then a
sequence ti, . . . ti, of transitions is a possible firing sequence if and only if
ti, * * ’ tin-, is a possible firing sequence and, after it has fired, the number of
tokens in Pj, for each place Pj, is greater than or equal to the number of arcs
from Pj to tin. The empty firing sequence is, of course, always possible.

PROPOSITION 1. Suppose that t;, . . - tin is a possible firing sequence. Let
1 symb IC denote the number of occurrences of the symbol symb in the string CT.
Then we have

(i) The string si, - . - si, is in the interpreted language of the constrained expression,
and
(ii) For each place Pi, the number of tokens in Pj after the firing sequence

’ This terminology is not standard. We use the terms “accurate” and “precise” instead of “consistent”
and “complete” because these latter terms are overloaded in the literature.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

396 l L. K. Dillon et al.

ti, ’ * ’ ti, is equal to

PROOF. We proceed by induction on n. The result obviously holds when
n = 0.

Suppose ti, . . . tin is a possible firing sequence with n > 0. The induc-
tion hypothesis implies that si, . . . siam1 occurs in the interpreted language, so
lri, . . . Hi,-, end is a constrained prefix, and that the number of tokens in Pj after
ti, ’ ’ ’ tin-, is

n-1 n-1

I Putj I L - C, I takei I rik + C I Put, I ?i,k-
k=l k=l

Since ti, . . . tin is a possible firing sequence, the number of tokens in a place Pj
after ti, . * * tin-l is greater than or equal to the number of arcs from Pj to t;,. We
see from the translation rules that 1 takej 1 “i, is equal to the number of these arcs.
Together with the fact that lai, . . . pi,-, end is a constrained prefix, this implies
that lri, * * * ain end is a constrained prefix and si, . . . si, is in the interpreted
language. So (i) is proved.

TO prove (ii), we note that the number of tokens in a place Pj after ti, . . . tin is
equal to the number of tokens in Pj after ti, . . . tin-, plus the number of arcs from
tin to Pj minus the number of arcs from Pj to tine The translation rules imply that
the number of arcs from tin to Pi is 1 putj 1 rz” and the number of arcs from Pj to
tin is 1 takej 1 7i,. The desired result then follows from the induction hypothesis
applied to the sequence ti, . . . timMl. q

PROPOSITION 2. Suppose that si, . . . si, is a string in the interpreted language.
Then ti, * * - ti, is a possible firing sequence.

PROOF. Again we argue by induction on n, with the case n = 0 clear.
Suppose Si, * * * si, in a string in the interpreted language for some n > 0. Then

lTi, * * * Tin end is a constrained prefix. Inspection of the constraints shows that
lTi, ' ' ' Tin-, end must also be a constrained prefix, so si, . . . si,-, is in the
interpreted language. We conclude by induction that ti, . . . ti,-, is a possible
firing sequence.

Since the string lri, . . . Pi, end satisfies all the constraints K~(P~), we must
have for each j,

n-1 n-1
I tab I rie 5 I Putj I L - kz, I tak I ria + C I Put, I T,a.

k=l

The left side of this inequality is the number of arcs from the place Pj to the
transition ti,. By the previous proposition applied to ti, . . . tin-,, the right side is
equal to the number of tokens in Pj after ti, . . . tin-,. Thus, ti, . . . ti, is a possible
firing sequence. 0

These two propositions imply the following theorem.

THEOREM 1. Let S be a Petri net with no final marking specified, and let D be
the constrained expression representation of S obtained using the translation rules
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

Constrained Expressions - 397

of Section 5. Assume that the alphabet of the interpreted language of D consists of
the labels si corresponding to the transitions ti of S, and that these labels are all
distinct. Then ti, . - . tin is a possible firing sequence of S if and only if si, * * - si,, is
in the interpreted language of D.

The theorem says that D gives a precise and accurate representation of the
finite behaviors of the Petri net S. The case in which a final marking for S is
specified follows easily, since a firing sequence is possible for a net with final
marking if and only if it is possible for the same net without specifying the final
marking and it results in the specified final marking. The theorem above
characterizes the possible firing sequences of the net without final marking, and
an examination of the constraints K~ (Pj) shows that they enforce the requirement
of the specified final marking. Clearly, the case in which not all transitions are
labeled and/or the transition labels are not all distinct also follows easily from
the theorem.

In principle, a similar demonstration could be given for any development
language with a suitably formal definition. At the current stage in our work,
however, we are content with less formal determinations of accuracy and preci-
sion. We have informally checked the accuracy and precision of our constrained
expression derivation procedures, including those for SDYMOL and CSP, by
justifying each translation rule and constraint template on the basis of interpre-
tation of the event symbols. Typically, a first version of a derivation procedure
is devised through a combination of informal reasoning and experimentation.
The derivation procedures associated with other development notations can serve
as a model for this first version. The proposed derivation procedure is then
“tested” and revised until a satisfactory procedure is obtained. Of course, given
a formal description of the development language, a more formal approach to
defining derivation procedures would be conceivable.

We note that the problems of precision and accuracy are not restricted to
showing that constrained expression representations properly reflect the formal
semantics of a development notation. Proving that a derivation procedure accu-
rately and precisely reflects a formal description of a development notation is of
little value if the formal description does not accurately and precisely correspond
to the practical implementations of that notation. The task of verifying this
correspondence between the formal description and the implementation, whether
it be an actual compiler or simply a software developer’s understanding of a
design language, is at least as difficult and important.

7. CONCLUSION

We have shown how constrained expressions are used with development nota-
tions providing different communication primitives (synchronous and asynchro-
nous) based on different underlying models of computation (state machines and
Petri nets) and appropriate for different stages of software development. In
addition to the three notations discussed here, constrained expressions have been
used with an Ada-based design language [5] and with a notation that provides
primitives for dynamically altering the communication pathways in a distributed
system [33]. This range of applications demonstrates the broad applicability of
the constrained expression approach.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

398 l L. K. Dillon et al.

Further evidence comes from two other projects that are in progress at the
University of Massachusetts. In one of these, an event-based language resembling
constrained expressions is being used for high-level debugging of distributed
systems [6]. A prototype toolset supporting this debugging method has been
implemented and is being used in a distributed problem-solving testbed system.
Another research group is using a similar event-based language in an intelligent
user interface system that is part of an office automation project [9]. The language
is used to describe office procedures. These descriptions are interpreted by the
interface system, which assists users in carrying out the procedures.

The primary concern of our research is with building tools to help in the
development of distributed software systems. It is in this context that the broad
applicability of the constrained expression approach is significant. Constrained
expressions provide a framework for formal analysis of properties, such as
mutually exclusive use of shared resources and absence of deadlock, that can be
characterized by the patterns of event symbols appearing in strings representing
behaviors of a system. A constrained expression is a finite representation for a
potentially infinite set of behaviors. It can therefore be used to reason about the
sequences of events in all the behaviors of the set collectively, rather than one at
a time. Since the constrained expression explicitly encodes relationships between
the order and number of event occurrences in behaviors of a system, it directly
supports reasoning about behavioral properties that involve interactions among
the parts of a distributed system.

We have developed several techniques for analyzing constrained expressions.
Detailed presentations of these techniques appear elsewhere [2, 4, 10, 121. Their
application in a realistic distributed software development setting is illustrated
in [3].

We have begun development of a prototype toolset incorporating the con-
strained expression approach. The toolset is targeted for use with an Ada-like
design language, called CEDL, that we have developed [ll, 291. The toolset
contains a constrained expression deriver, a simplifier, a behavior generator, and
a collection of analysis tools.

The deriver produces a constrained expression representation for a system
from a CEDL design [30]. A first version of a deriver has been implemented in
Ada [29]. The current deriver is tabledriven. Derivers for later versions of CEDL
and for other software development notations can, therefore, be easily created
by modifying the existing tool.

The derivation procedure associated with a distributed system development
notation is general, so that is can be applied to any syntactically correct descrip-
tion. Specific features of a particular distributed system, however, often make it
possible to produce a simpler constrained expression representation of the system
than the one produced by the general derivation procedure. We have developed
techniques for “simplifying” constrained expressions [10, 121. The simplifier
automates this process by accepting a constrained expression and producing a
simplified version of that expression. Use of a constrained expression simplifier
will reduce the effort required for later analyses. In constructing the simplifier,
we are exploring relationships between constrained expression simplification and
certain static analysis techniques [31].
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

Constrained Expressions l 399

The behavior generator is a tool for producing example behaviors from a
constrained expression representation of a system. We have implemented a
preliminary version of this tool in Prolog [l]. It generates a string from the
interpreted language of a constrained expression. The existing behavior generator
is interactive so that it can be guided in a search for a behavior possessing specific
properties. This capability will be of great value to users of the constrained
expression toolset. A developer of distributed software can explore properties of
a system, detect certain classes of errors, and recognize possible improvements
using the behavior generator. Moreover, the analysis tools produce vast amounts
of information about behaviors that have a particular property. The behavior
generator will help the developer transform this information into concrete
examples of behaviors having the given property.

The analysis tools automate the algebraic analysis techniques of [2], [4], and
[5]. These techniques can be used to determine whether a particular pattern of
events appears in any behavior described by a given constrained expression.
Their application involves the generation of a system of inequalities involving
the number of occurrences of events in subsequences of the behavior. If this
system of inequalities is inconsistent, the hypothesized pattern of events cannot
occur. If it is consistent, the inequalities provide information about the behaviors
in which the pattern might occur. This information can then be used to guide
the production of such behaviors.

The process of generating inequalities is driven by the form of the constrained
expression. Preliminary work on automating this process is very promising [2],
and a prototype inequality generator based on these methods is currently under
development. We are using a standard integer linear programming package to
solve the systems of inequalities produced by the inequality generator. When
combined with this package, the inequality generator will provide powerful
support for analysis of distributed software systems.

Most of the above tools could be used with any notation a developer might
adopt. An appropriate deriver would be required for producing constrained
expression representations from descriptions in the chosen notation. This re-
quirement is primarily a matter of modifying the tables in our current deriver to
reflect the appropriate translation rules and constraint templates. Certain aspects
of other tools will rely upon specific details of the form of CEDL constrained
expressions. For the most part, however, the simplifier, behavior generator, and
analysis tools could be readily adapted to support analysis of descriptions in
other notations. This would permit developers to select notations based on their
naturalness and expressive power, rather than on the availability of analysis
tools.

APPENDIX. FORMAL DEFINITION OF CONSTRAINED EXPRESSIONS

We let 9%?(A) denote the set of regular expressions over the alphabet A, where
regular expressions over an alphabet are formed from the symbols in the alphabet,
the null string (represented by X), and the empty set (represented by 0) by finite
applications of the usual regular expression operators, alternation (represented
by V), concatenation (represented by juxtaposition), transitive closure (repre-
sented by *), and an additional operator, the shuffle or interleave operator

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

400 l L. K. Dillon et al.

(represented by 8). The operator 8 has been shown to preserve regularity [13]
and is useful for representing concurrent activity.

In order to express certain constraints on the order and number of symbols
that appear in legal behavioral traces of a system, we need to introduce an
additional operator, the unary concurrent closure, or dagger, operator (repre-
sented by t). The t represents the shuffle of zero or more copies of its argument
and is at the same level of precedence as *. Thus, for instance, (ab)t represents
the set of strings consisting of equal numbers of the symbols a and b, with the
additional property that, in any prefix, the symbol a occurs at least as many
times as the symbol b. The ‘f operator is used in constraints to ensure, for
example, that at least as many messages have been sent as have been received.

The event expressions over an alphabet A are formed from the symbols of A,
the null string, and the empty set through finite applications of the regular
expression operators (including @) and the t operator. We write Z%(A) for the
set of event expressions over A.

Let S G A. We define a homomorphism ps : A * ---, S*, called projection on S,
by extending the map A + S* given by

PSb) = af
if aES;

x otherwise.

We think of ps as “erasing” the symbols not belonging to S. Let u be a string of
symbols from A. For K E Z%(S), we say that u satisfies K if ps(u) belongs to the
language of K. We can regard K as imposing a constraint on the way in which the
symbols belonging to S can occur in strings; u satisfies K if this constraint is
satisfied.

Essentially, a constrained expression consists of a regular expression E over an
alphabet A of event symbols, together with a collection of subsets of A and event
expressions over those subsets. These event expressions are regarded as con-
straining the patterns of event symbols, and we are interested only in those
prefixes of the language of t that satisfy all of the event expressions. More
formally, we have

Definition 1. A constrained expression is an ordered pair D = (F, E), where

(i) F = (A, E, L?, d), where
(a) A is an alphabet of event symbols,
(b) E is a subset of A,
(Cl 3 = (SjljEJ, where J is a set of indices and Sj C A, for each j E J,
Cd) 6 = (Kj)jeJ, where Kj E Z%Y(Sj), for each j E J, and

(ii) t E Z%%?(A).

We say that A is the augmented alphabet of the constrained expression and E
is the terminal alphabet. The regular expression c is the system expression, the Kj

are constraints, and the Sj are the constraint alphabets. The symbols in the
terminal alphabet represent system events of interest to the designer. The
augmented alphabet consists of these symbols and others required for technical
reasons, such as the ne symbol used in Sections 3 and 4.

Let D = (F, C) be a constrained expression, and let P(E) be the collection of
prefixes of the language of the regular expression C. A prefix u E P(E) is called a

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

Constrained Expressions - 401

constrained prefix if it satisfies all the constraints Kj, that is, if, for each j E J,
ps,(u) belongs to the language of Kj. We write P”(E) 1 d for the set of constrained
prefixes of D. Finally, the interpreted language of D Y-Y(D) is obtained
by projecting the constrained prefixes onto the terminal alphabet. Thus,
Y-T(D) = PE(9(~) 16). It is this interpreted language that corresponds to
the behaviors of the system represented by the constrained expression D.

REFERENCES

1. AVERY, S. M. Development of a behavior generator for constrained expressions. Tech. Rep.
SDLM/84-2, Software Development Laboratory, Dept. of Computer and Information Science,
Univ. of Massachusetts, Amherst, June 1984.

2. AVRUNIN, G. S. Experiments in constrained expression analysis. Tech. Rep. 87-125, Dept. of
Computer and Information Science, Univ. of Massachusetts, Amherst, 1987.

3. AVRUNIN, G. S., AND WILEDEN, J. C. Algebraic techniques for the analysis of concurrent
systems. In Proceedings of the Sixteenth Annual Hawaii International Conference on System
Science (Jan. 1983). Western Periodicals, 1983, pp. 51-57.

4. AVRUNIN, G. S., AND WILEDEN, J. C. Describing and analyzing distributed system designs.
ACM Trans. Program. Lang. Syst. 7, 3 (July 1985), 380-403.

5. AVRUNIN, G. S., DILLON, L. K., WILEDEN, J. C., AND RIDDLE, W. E. Constrained expressions:
Adding analysis capabilities to design methods for concurrent software systems. IEEE Trans.
Softw. Eng. SE-12, 12 (Feb. 1986), 278-292.

6. BATES, P., AND WILEDEN, J. C. High level debugging of distributed systems. J. Syst. Softw. 3,
4 (Dec. 1983), 255-264.

7. CAMPBELL, R. H., AND HABERMANN, A. N. The specification of process synchronization by
path expressions. In Lecture Notes in Computer Science, Springer-Verlag, Heidelberg, 1974,
pp. 89-102.

8. CHEN, B. S., AND YEH, R. T. Formal specification and verification of distributed systems. IEEE
Trans. Softw. Eng. 6 (Nov. 1983), 710-722.

9. CROFT, W., AND LEFKOWITZ, L. Task support in an office system. ACM Trans. Office Znf. Syst.
2, 3 (July 1984), 197-212.

10. DILLON, L. K. Analysis of distributed systems using constrained expressions. Ph.D. dissertation,
Univ. of Massachusetts, Amherst, Sept. 1984. Also available as TR 84-18.

11. DILLON, L. K. Overview of the constrained expression design language. Tech. Rep. TRCS86-
21, Computer Science Dept., Univ. of California, Santa Barbara, Oct. 1986.

12. DILLON, L. K. Simplification and reduction of CEDL constrained expressions. Tech. Rep.
TRCS86-29, Computer Science Dept., Univ. of California, Santa Barbara, Nov. 1986.

13. GINSBURG, S. The Mathematical Theory of Context-Free Languages. McGraw Hill, New York,
1966.

14. GREIF, I. A language for formal problem specification. Commun. ACM 20, 12 (Dec. 1977),
931-935.

15. HABERMANN, A. N. Synchronization of communicating processes. Commun. ACM 25, 3 (Mar.
1972), 171-176.

16. HACK, M. Petri net languages. Memo 124, Computation Structures Group, MIT, Cambridge,
Mass., June 1975.

17. HOARE, C. A. R. Communicating sequential processes. Commun. ACM 21, 8 (Aug. 1978),
666-677.

18. HOARE, C. A. R. Specifications, programs and implementations. Tech. Mono. PRG-29, Oxford
Univ. Computing Laboratory, Oxford, England, June 1982.

19. HOARE, C. A. R. Communicating Sequential Processes. Prentice-Hall International, Englewood
Cliffs, N.J. 1985.

20. HOLZMANN, G. J. A theory of protocol validation. IEEE Trans. Comput. (Aug. 1982), 730-738.
21. LAMPORT, L. A new approach to proving the correctness of multiprocess programs. ACM Trans.

Program. Lang. Syst. (July 1979), 84-97.
22. LAUER, P. E., TORRIGIANI, P. R., AND SHIELDS, M. W. COSY: A system specification language

based on paths and processes. Acta Znf. (1979), 451-503.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

402 * L. K. Dillon et al.

23. MISRA, J., AND CHANDY, K. M. Proofs of networks of processes. IEEE Trans. Softw. Eng.
SE-7,4 (July 1981), 417-426.

24. NGUYEN, V., DEMERS, A., GRIES, D., AND OWICKI, S. A model and temporal proof system for
networks of processes. Distributed Comput. (Jan. 1986), 7-25.

25. PETERSON, J. Computation sequence sets. J. Comput. Syst. Sci. 13, 1 (Aug. 1976), l-24.
26. PETERSON, J. Petri nets. ACM Comput. Surv. 9, 3 (Sept. 1977), 223-252.
27. RIDDLE, W. E. An approach to software system behavior modeling. Comput. Lang. (Elmsford,

N.Y.) 4 (1979), 29-47.
28. SHAW, A. C. Software descriptions with flow expressions. IEEE Trans. Softw. Eng. SE-4, 3

(May 1978), 242-254.
29. SUNDARAM, U. A constrained expression deriver for CEDL: An overview. Tech. Rep. SDLM

86-1, Software Development Laboratory, Dept. of Computer and Information Science, Univ. of
Massachusetts, Amherst, Aug. 1986.

30. SUNDARAM, II., AVRUNIN, G. S., AND WILEDEN, J. C. Design of the deriver for CEDL. To be
published.

31. TAYLOR, R. N. A general-purpose algorithm for analyzing concurrent programs. Commun. ACM
6,5 (May 1983), 362-376.

32. WELTER, M. Counter expressions. Tech. Rep. RSSM/24, Dept. of Computer and Communica-
tion Science, Univ. of Michigan, Ann Arbor, Oct. 1976.

33. WILEDEN, J. C. Techniques for modelling parallel systems with dynamic structure. J. Digital
Syst. (Summner 1980), 177-197.

34. WILEDEN, J. C. Constrained expressions and the analysis of designs for dynamically-structured
distributed systems. In Proceedings of the 1982 International Conference on Parallel Processing
(Bellaire, Mich., Aug. 1982). IEEE Computer Society Press, New York, pp. 340-344.

Received June 1986; revised April and December 1987; accepted December 1987

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

