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Introduction 

Let G be a finite group and k a fixed algebraically closed field of characteristic 
p>0 .  If p is odd, let H(; be the subring of H*(G,k) consisting of elements of 
even degree; following [20-22] we take H~=H*(G,k) if p=2, though one 
could just as well use the subring of elements of even degree for all p. H a is a 
finitely generated commutative k-algebra [13], and we let Va denote its as- 
sociated affine variety Max Hc. If M is any finitely generated kG-module, then 
the cohomology variety Vc(M ) of M may be defined as the support in V~ of the 
H~-module H*(G, M) if G is a p-group, and in general as the largest support of 
H*(G,L| where L is any kG-module [4, 9]. A module L with each 
irreducible kG-module as a direct summand will serve. 

D. Quillen [20-22] proved a number of beautiful results relating V~ to the va- 
rieties l/t: associated with the various elementary abelian p-subgroups E of G, 
culminating in his stratification theorem [20, 22]. This theorem gives a piecewise 
description of V~ almost explicitly in terms of the subgroups E and their 
normalizers in G. A well-known corollary is that dim Va = max dim VE, where E 

ranges over the elementary abelian p-subgroups of G (or, as it is usually stated, 
the Krull dimension of H~ is the maximum of the ranks of these elementary 
abelian subgroups). 

For some time after Quillen's work no further progress was made. Then 
Chouinard [10] proved the first related result for cohomology with nontrivial 
coefficients. We give below a survey of the results that have been obtained 
since then before describing our own results. 

Quillen's original proof of the stratification theorem for compact Lie 
groups [21, 22] used equivariant cohomology; he also gave an algebraic 
treatment for finite groups [20], but still needed equivariant cohomology for 
one key lemma. An algebraic proof  of this lemma was then given by Quillen 
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and Venkov [23], using an elegant theorem of Serre [24]. Using these later 
methods, Chouinard proved that a kG-module is projective if and only if its 
restriction to every elementary abelian p-subgroup is projective. Although not 
explicitly a generalization of Quillen's results, Chouinard's theorem can be 
viewed as providing a stratification theorem for V~;(M) in the case where V~;(M) 
is the single point 0. 

Alperin realized that Chouinard's result could be interpreted in terms of his 
own notion of the "complexity" of a module, defined in terms of the rate of 
growth of a minimal projective resolution. From this point of view, 
Chouinard's theorem said that the property of having complexity 0 was de- 
termined on the elementary abelian p-subgroups. Together with Evens, Alperin 
[2] proved that the same was true for complexity n, with n any nonnegative 
integer. They also showed that the case of the trivial module (which has 
highest possible complexity) implied Quillen's corollary on the Krull dimen- 
sion. 

Meanwhile Jon Carlson realized that the Chouinard and Alperin-Evens 
results fit nicely with some of his own ideas, which were partly inspired by a 
lemma of Dade [11]. This lemma said that nonprojective kE-modules, for E 
elementary, could be detected on certain well-behaved subalgebras of kE. 
These subalgebras are isomorphic to the group algebra of a cyclic group of 
order p, though not necessarily associated with any subgroup of E. Carlson 
was able to reprove and slightly strengthen the Alperin-Evens complexity 
results [8], and introduced the notion of the "rank variety," which we denote 
here by V~(M). This variety is completely determined by elementary con- 
siderations, without any cohomology (cf. w 1). Nevertheless, Carlson [7, 9] was 
able to show at least that V{(M)~_VE(M ), with equality of dimensions. (The 
latter fact was actually proved somewhat earlier by Alperin's student Ove 
Kroll [18].) Carlson conjectured that V[(M)= V~(M). 

In another development, Avrunin [4] redid the Alperin-Evens results from 
the standpoint of commutative algebra, focusing attention on the rings in- 
volved rather than their dimensions, and raised the question of generalizing 
Quillen's stratification theorem to modules. A similar investigation, formulated 
in terms of varieties, was undertaken at about the same time by Alperin and 
Evens [3] in response to a question of Serre and a suggestion of Scott. They 
proved that there is a surjection [_[ VE(M)~ V~(M), where E ranges over the 
elementary subgroups of G. (This also follows from Avrunin's formulation.) 
Each VE(M)--~ Va(M) is a finite morpbism, and the dimension of Vc,(M ) may be 
interpreted as the complexity of M, so this result also may be considered as a 
refinement of the original Alperin-Evens complexity theorem. 

Avrunin and Scott now concentrated on generalizing Quillen's stratification 
theorem to modules. The surjection above is not quite sufficient; what is really 
needed is the statement that any point in V~(M) in the image of V E is in fact in 
the image of VE(M ). This difficulty persisted, and was discussed at length by 
Scott, Alperin, and Carlson at the 1980 Oberwolfach conference on integral 
representation theory. Not long afterward, Alperin [1] was able to show that 
the required fact could be obtained as a consequence of Carlson's conjecture, if 
the latter were true. His reduction made use of a new "tensor product theo- 
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rein" Carlson presented at the conference, giving V~!(M| ) 
for the rank variety in the elementary case. 

We give here a proof of the stratification theorem (3.2), obtained by 
proving Carlson's conjecture (1.1). The approach was motivated by Alperin's 
reduction, though in our version the tensor product theorem emerges at the 
end, this time formulated for arbitrary G (3.5). We would like to express our 
gratitude to Jon Alperin and Jon Carlson for their roles in this research, and 
we thank Peter Donovan for some earlier conversations. 

We are also able generalize some of Quillen's other results to the module 
case; in particular we obtain a "glueing theorem" (3.4) for the varieties VE(M), 
describing V~(M) as an inductive limit "up to inseparable isogeny." It is worth 
pointing out that results such as this largely describe V~(M) independently of 
any cohomology, because of the validity of Carlson's conjecture. Nevertheless, 
the reader should be cautioned that they do not give a complete answer, in the 
sense of exactly specifying the coordinate ring, just as Quillen's original results 
for the case M = k do not completely describe the coordinate ring of V~ (not to 
mention the possibly non-reduced ring HG). The powers of p that arise (cf. 2.3, 
2.4, 3.3, 3.5) should be taken seriously. However, if one regards V(~ as known, 
then the stratification theory together with the rank varieties already gives 
Vc;(M) without further reference to cohomology. 

Finally we mention that other items of interest in this paper include a refor- 
mulation of Carlson's conjecture in terms of restricted Lie algebras (1.1), and a 
discussion of stratification in terms of vertices and sources (2.1). In the process 
of developing our module stratification theory we have found it convenient to 
give an exposition of some of Quillen's results. In particular, we at least state 
all the theorems we use and hope our account may serve as a readable 
introduction for the reader unfamiliar with Quillen's work. 

Our main results in this paper were announced in [5]. 

w 1. Carlson's Conjecture 

Let E be an elementary abelian p-group, and choose a k-subspace L of kE with 
J = L Q J  2, where J is the kernel of the augmentation kE--~k. For example, 

take L = ]~I k (e i -  1), where {el, ..., e,,} is an lFp-basis of E. Clearly, L generates 
i - 1  

kE as a k-algebra and f P = 0  for each / eL .  It follows that if {/1 . . . . .  F,} is a 
s 1  s 2  . . .  s n  basis of L, then the monomials /1 t2 f,, with O~si<p for each i span kE 

and, by dimension considerations, form a k-basis. 
Thus tile group (l+/1,...,l+fl,,) iS a conjugate to E under an algebra 

automorphism of kE, and Carlson consequently called this group and its 
subgroups shifted subgroups of E [9] (cf. also [6] and [7]). For many pur- 
poses, including the restriction and induction of representations these shifted 
subgroups can be treated as if they were in fact subgroups. 

With this terminology, Carlson defined, for any finitely generated kE- 
module M +0,  the rank variety V[(M) as 0 together with all nonzero f e L for 
which Ml<t+t> is not free. (For M=0 ,  the correct definition is V[(M)=~.) His 
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definition is motivated by a lemma of Dade [1 1] to the effect that, if M is not 
free, then M[<~+~> is not free for some nonzero / e L .  Carlson showed that 
V[(M) is a variety with dimension equal to that of VL.(M), exhibited an 
injection V[(M)-~ VE(M), proved that his map is an isomorphism if and only if 
VE(M ) satisfies the tensor product theorem disussed in the introduction, and 
conjectured that VI~(M ) ~- VE(M). 

We prefer to reformulate this conjecture and some of the ideas above in 
terms of restricted Lie algebras. This reformulation seems to clarify some of 
the issues, and was of at least psychological value in finding a proof. However, 
the reader who prefers shifted subgroups should have no difficulty rewriting 
the proofs to suit his tastes. Still another alternative for the reader more 
comfortable with group cohomology would be to give proofs in terms of 
infinitesimal group schemes [12]. 

From the first paragraph of this section it is clear that kE is the restricted 
enveloping algebra u(L) of L, regarded as a commutative restricted Lie algebra 
with trivial p-th power. One defines HI, VL, and VL(M ) as in the group case, 
and, since restricted L-modules are just modules for u(L), one sees easily that 
HL=HL., VL=VE, and VL(M)=VE(M ). (The Hopf  algebra structures on kE 
=u(L) are different in its two roles, but this does not affect the relevant 
cohomology products [19, VIII Prop. 4.5].) The set VI~(M)c_L is now defined 
as the union of all 1-dimensional k-subspaces S of L (automatically restricted 
Lie subalgebras) for which M] s is not projective. Clearly this agrees with the 
previous definition. 

A technical point now arises, in that we need a natural "Bockstein" 
homomorphism fl:HI(L, K)-*H2(L,K).  This is obtained by defining, for any 
1-cocycle f e Z ~ (u(L), k), a 2-cocycle fl(f) e Z 2 (u(L), k) by the rule 

( f  (x)) + f ((y))P - f (x) p - f  (y)P 
fl(f)(x,  y)= x, y c u(L). 

P 

Passing to cohomology gives the desired natural homomorphism. For L a 
l-dimensional trivial restricted Lie algebra (i.e., commutative with zero p-th 
power), one sees easily that fi is a cohomology isomorphism, and the effect of/3 
for a general trivial algebra L can be analyzed by decomposing L as a product 
of 1-dimensional algebras. In particular, fl is injective, and for p odd the 
subalgebra /fL of H L generated by f lHl(L,k) is a symmetric algebra and 
complements the radical of HI.  Since Ht(L,  k)_~L*, this gives a natural identi- 
fication L ~ M a x / 4 r - M a x  HL= V L. Similar remarks apply for p=2,  since H L is 
a polynomial algebra in HI(L, k); here we write / tL=HL.  

For a subalgebra T of L, let tL, T: V.r~ V L be the map induced by restriction 
HL--,H T. The naturality of our construction shows that in the identification 
L ~-VL, we have T ~-tL, ~ V T for any subalgebra T of L. Next one proves exactly 
as in [4] that tL, T V~r(M)~_ Vl~(m ). (The main ingredient in this is the identity 
MITIL~--M| L, where 1~. is the trivial 1-dimensional T-module. The tensor 
product is taken in the sense of Lie algebras, or, more generally, for any Hopf  
algebra structure on u(L) in which u(T) is a Hopf subalgebra.) If S is a 1- 
dimensional subalgebra of L and MIs is not projective, then Vs(M )= Vs, giving 
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S~Iz..sVsC_ VL(M ). Thus, if V[(M)c_L is identified with a subset of Vz., we have 
V[(M)~_ V,,(M). 

(1.1) Theorem (Carlson's conjecture). Let L be a finite dimensional tririal 
restricted Lie algebra, hlent!fying L with VIi as above, we have V[(M)= VL(M ) 
Jot any .finite dimensional restricted L-module M. 

Proqfi It remains only to prove V~,(M)~_ V[(M). Since H*(L, M) is graded, the 
variety VL(M ) is a union of lines. Let S be a 1-dimensional subalgebra of L 
with S~-t~,.sVs ~ VL(M ). We have to show MIs is not projective. 

If M]s is projective, then a spectral sequence argument gives 
H*(L/S, MS)-:~*H*(L,M), where the isomorphism is inflation followed by the 
map on cohomology induced by the inclusion MS~_M. If we regard H*(L, M) as 
an H*(L/S,k)-module via the inflation map H*(L/S,k)--~H*(L,k),  then our 
map H*(L/S, M S ) A H * ( L , M )  is an isomorphism of H*(L/S,k)-modules. It 
follows from Evens' theorem [13] that H*(L,M)  is finitely generated as an 
H*(L/S, kl-module, hence finitely generated as an H~/s-module. (This could 
also be proved here by induction on the dimension of M, using the finite 
generation of the k-algebra H*(L/S, k) and the long exact sequence of coho- 
mology). 

On the other hand, the map Sc_L-+L/S factors through 0, so the ideal H + L/S 
consisting of all elements of positive degree in HL/s maps to 0 under Ht--~ H s. 
That is, H[s  (or, more precisely, its inflation) is contained in the ideal :~ of S 
=tL.sVs in H L, and so the HL-module H*(L M)/.#H*(L, M) is a finite dimen- 
sional k-space. It follows from Nakayama's lemma that the support of this 
module is just the intersection of S and the support VL(M ) of H*(L, M). Thus 
VL(M ) contains only finitely many points of S, a contradiction which completes 
the proof. 

The original form of Carlson's conjecture is, of course, an immediate 
consequence. In particular, the variety V[(M)= VL.(M ) does not depend on the 
choice of L. This yields the following curious result, due originally to Carlson 
[9, Lemma 6.4]. 

(1.2) Corollary. Let E be an elementary abelian p-group and let d denote the 
augmentation ideal as above. Suppose j and n are elements q[ kE with ,j ~ j \ j 2  
and n ~ j 2  Let M be a finite dimensional kE-module, and consider the restriction 
of M to the multiplicative subgroups (1 +j )  and (1 + j + n ) ,  generated by 1 +j 
and 1 + j + n ,  respectively, in the group ( f  units cf  kE. Then MI<I ~.i> is free !f 
and only if m]< t ~ i ~,> is .fi'ee. 

The next corollary is crucial for the main result in w 3. Recall once more 
that a restricted Lie subalgebra of L is just a k-subspace. 

(1.3) Corollary. Let L be a finite dimensional trivial restricted Lie algebra. T a 
subalgebra of L, and M a finite dimensional restricted L-module. Then 
t[.~.VL(M)= V~r(M ). Similarly, i r E  is an elementary abelian p-group, T ~ k E  is a 
shifted subgroup of E, and M is a kE-modlde, then tL,.,rl VE(M)= Vr(M ) (where 
tl.:.,r: V r -~ V w is the obvious transfer map). 



282 G.S. Avrunin and L.L. Scott 

Proof We have T ~-tL.r Vr. If S is 1-dimensional subspace of T contained in 
VL(M), then mls=(MIr)l  s is not projective and Sc_VT(M ). The first assertion 
follows, and the translation in terms of shifted subgroups is an immediate 
consequence. 

w 2. A Review of Quillen's Results 

Let G be a finite group and V(; the cohomology variety for G as before. Again 
we let to,.,: V , - .  V~ denote the transfer map associated with a subgroup H, 
induced by restriction H(;-+HI~. If g~G,  conjugation induces a map 
H~H~.,--,H u and, correspondingly, a map VH--, V~n ~ ,, which we shall call 
conjugation by g. The following theorem reformulates some of Quillen's stratifi- 
cation theory in a manner reminiscent of Green's "vertices and sources" 1-14, 
15]; one might call E below a "vertex" and s a "source" for x. In the 
remainder of the section, we show how most of the rest of the theory follows. 

(2.1) Theorem. Fix x ~  1~. Then there exists an elementary abelian p-subgroup 
E and an element s ~ V E such that 

X=t(;.E(S). 

Moreover, all such pairs (E, s) which also satisfy the minimality condition 

s+te, v(u) fi)r any F < E  and u ~ V  v 

are co&ugate under G. 

Proof This is contained in [22, Prop. 9.6], or [20, Lemma 3.7] together with 
the ensuing discussion. 

We remark that the method of proof in [20] is very much in the spirit of 
Green's arguments in the reference above. However, the cohomology ring and 
multiplicative norms do not quite fit the formalism of [15], and rather seem to 
reveal a genuinely new aspect of the theory. 

We now derive Quillen's stratification theorem from (2.1). For each 
elementary subgroup E of G, put V~ = Ve\ ~) tE, vVv; the minimality condition 

F<E 
on (E,s) in (2.2) now reads " s e V ~ " .  Put Va, r=tc,,~Vv~ and V(+E=ta, eV~.  The 
map ta. E is a finite morphism [17], hence closed, so Va, E is closed in Va. Also, 
the preceding theorem shows t-l~.E V,+G.E--E+w , so E+G,E is open in V c,, ~:.�9 

(2.2) Theorem (Quillen's stratification theorem [20, 22]). The variety V(; is the 
disjoint union of its subvarieties V~E , where E ranges over a set (~f repre- 
sentatives for the conjugacy classes of elementary abelian p-subgroups of G. 
Moreover, each of the varieties V ~  and Ve + is affine, the group N6(E)/C(~(E) 
acts freely on V~-, and the map ta, v~ induces a bijective finite morphism 

ViV(N~(E)/C~(E))--~ V ~ .  

Quillen uses the word "homeomorphism" in his statement of the result; a 
bijective finite morphism is, of course, a homeomorphism in the Zariski to- 
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pology. But elsewhere he refers to the map as an "inseparable isogeny" and 
discusses it in terms of p-powers. This is explained by the following lemma. 
The result is largely already in the appendix to [22], though it plays a 
somewhat more central role in our treatment. We write R(X)  q for {rqlr c R(X)}. 

(2.3) Lemma. Let f :  X �9 Y be a finite bijectit'e morphism of varieties ocer k. 
Then 

( i) f is a homeomorphism in the Zariski topology, and 
( ii ) X is a.l.]1ne !]'and only if Y is aJJ1ne ; when this occurs and the coordinate ring 

R(Y)  is identified with a subring of R(X),  there is a power q of  p such that R(X)  q 
=_R(Y). 

Proof  The first property has already been remarked; it is an obvious con- 
sequence of the fact that finite morphisms are closed. 

To prove (ii), first suppose Y is anne.  Then X is affine since finite mor- 
phism are anne.  On the other hand, when X is anne,  a theorem of Chevalley 
[17, p. 222] says Y is also. The last assertion follows directly from [22, 
Appendix B, Prop. B. 9]. 

(2.4) Remarks. (a) Any inclusion Aqcc_Bc_A of coordinate rings, for q a power 
of p, gives a finite bijective morphism on the associated varieties. This gives a 
converse to (ii) above, which can be used to show that the condition "there is a 
finite bijective morphism X -, Y" defines an equivalence relation on varieties 
over k. Cf. [16] for a discussion of the latter in the setting of schemes. 

(b) Any f as in (2.3) is a homeomorphism in the 6tale topology, as well the 
Zariski topology [16, Thhorhme 1.1]. 

(c) Quillen's proof of the stratification theorem in [20] gives some infor- 
mation on the p-power q of (ii) in the case of the morphism t~, E of (2.2): the p- 
part of the order of the quotient group N~(E)/E, or even C~(E)/E (improving 
the argument), is big enough. Similarly, the power q in (2.6) below can be 
bounded by a product of such terms, taken over all conjugacy classes of 
elementary subgroups. It would be interesting to have further results in this 
direction. In the module situation of w 3, the estimate IC~(E)/EIp still works for 
the morphism of (3.2), but for the analogue of (2.6) we have no bound. See (3.4) 
and the subsequent remark. 

. t - I  V, + the morphism V~-+ V~t: is finite and Proof of  (2.2). Since V~f = ~,e (;,e, 
surjective. Thus Vw/(Nr V[  is finite and bijective by (2.1). Vt + is 
affine, since VL + =(VE),,, where e is the product of the linear functionals defining 
the subspaces Vt:.v=tt:,FV v for the subgroups F of index p in E. Clearly, the 
fixed points in V~ of any x eN~(E)\Cc,(E)  lie in such a V~, v, and thus 
Nr acts freely on VE ~. The remaining assertions of (2.2) now follow 
from (2.1) and part (ii) of (2.3). 

It is easy to keep track of the topology in the Quillen stratification, using 
the fact that V~;.ec~ V~;.e,= ~ V~;.F, where F ranges over the set of elementary 
abelian subgroups conjugate to subgroups of both E and E'. (This follows 
easily from (2.1)). Since there are only finitely many VG. ~, one easily sees that 
Va-~limind V~. E, where the inductive limit is taken (in the general sense) with 
respect to the obvious inclusion morphisms. The next result, which might be 
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called the "glueing theorem," partially lifts this to the varieties VF, giving quite 
good information on how to go about building V~i from the Vt]s. 

(2.5) Theorem (Quillen [22]). The natural morphism 

lim ind V~-~ V. 

is bijective and finite. Here the inductive limit is over the category whose objects 
are the elementary abelian p-subgroups of G, with morpllisms all compositions of 
inclusions and conjugations. 

Proof Each map VL.~ V6 is finite, and there are only finitely many E's. Hence 
the map limind Ve-~ Vc; is finite. The bijectivity follows easily from (2.1), and 
the proof is complete. 

(2.6) Corollary (Quillen [21]), Suppose we have an element ? ~ H  E fi~r each 
elementary abeliall p-subgroup E of G, such that each conjugation or restriction 
map H e-~ H f carries ?E tO ?F" Then there is an element 7 ~ HG and a power q of 
p such that o~ _~q 

~ lv, - "/w 

for each elementary abelian p-subgroup E. 

Proof Each such family {TE} defines an element of the coordinate ring of 
lim ind V e. The result now follows from (2.5) and (2.3). 

We remark that the same result holds for a family {TE} indexed by any 
collection ~- of elementary p-subgroups closed under conjugation and contain- 
ing all subgroups of its members. (For one proof, just note that 
lim ind VE-~ ~ V6, e is a bijective finite morphism). Proving this more general 

E e , ~  E e , ~  

result inductively and using [20], one gets the bound on q mentioned in (2.4c). 

w 3. The Main Theorems 

As before, G is a finite group and V~ is the variety Max H, .  If M is a finitely 
generated kG-module, V~(M) is the cohomology variety defined in the in- 
troduction, or equivalently, in [4, 9]. Again we recall from [4] that, if H is a 
subgroup of G, the transfer map t~,u: V H -~V~ induced by restriction on 
cohomology rings has the property tc,,nVj~(M)~_ V~(M). Our main theorem is a 
converse to this. 

(3.1) Theorem. With the notation above, we have 

t~,~, V~( M) = Vn(M). 

Proof Let v ~ t ~ . ~ ( M ) .  Applying (2.2) to H, we can choose an elementary 
p-subgroup E < H  and s t  VL + with tH, E(S)=V. By [3] or [43 , we can choose an 
elementary p-subgroup E' of G and s'~ Vw(M ) with tc,,~:,(s')=t~,niv ). Finally, 

t ~ " ' "  ~' again using (2.2), we can choose E"<__E' and s"~V~, with F:,E"tS ) = , .  Then 
tG,e,,(S")=tG.E,(S')=t~,H(v)=t~,E(S), SO (2.1) implies that the pairs (E,s) and 
(E', s") are conjugate by an element of G. By (1.3), s" ~ VE,,(M), hence s ~ VF~(M), 
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and it follows that v=t,,~:(s)eV,(M). Thus t~,~IV~I(M)~V1t(M), and, as the 
reverse inclusion has already been noted, the theorem is proved. 

Put V~ (M)= VI; ~ c~ VI~(M) and V~E(M)= V(~Ec~ Vc;(M ). Clearly, (3.1) gives 
V~ + (M)= t~.~,:V~,(M). Essentially all the results stated in w 2 now carry over for 
M. 

(3.2) Theorem. 777e variety V~;(M) is the di,sjoint uniol~ (~[" its subvarieties 
Vff.~:(M). where E ranges over a set of represematives Jot the conjugaey classes 
q/ elementary abelkm p-subgroups of G. Moreover, each of ~he varieties VG+E(M) 
and VL+(M) is c([i,e, the group N(~(E)/C~(E) acts Ji'eely on VL?(M ) alld t(~.~ 
imtuces a bijeetive jhTite morphism (of (2.3)) 

Vr; ~ (M)/(N,;(E)/CG(E)) ~ V~+E(M). 

Proof This is clear from (2.1) and the remarks above. 
We mention that l~ +(M)/(N~;(E)/C(s(E)) identifies with the image of V~(M) 

in V~+/(Nc,(E)/C(;(E)), as follows from the fact that the action of N(~(E)/Cc(E ) is 
free. We remark also that V~ (M) is empty unless E is contained in a vertex of 
some indecomposable component of M, by [4] and (3.1). 

The next theorem is proved exactly as (2.5). 

(3.3) Theorem. Let ~7 be a filmily of eleme,tary abelian p-subgroups of G 
which is closed under co~Tjugatio, aud taki,g subgroups. Then the natural mor- 
phism 

lira ind VE(M )-* V(;(M) 
E ~  7 

is a btljective .J~nite morphism onto a closed subvariety of V(;(M). / f  Y is the 
family c( all elementary abelia, p-subgroups of G, the image is all of Vc,(M ). 

(3.4) Corollary. Let ~Y- be as in (3.3). For alTy subgroup H of G, let rH(M ) 
det~ote the radical ideal in H ,  dtJ)'t~ing Vn(M ) as a subvariety ~( V~. (U" H is a 
p-group, ru(M ) is the radical ql" the am~ihilator ~]  ̀ H*(H, M) in H n. A similar 
i,terpretation can be given in general; see [4]). Suppose for each E ~,~, we have 
a~ elemem 7E ~ H~: and that .[br any E' ~,~, amt any conjugation or restriction 
mapHE---~HE,, the eleme,t 7~ is sent to an elemeut of the coset y~,,+r~:,(M). 
Then there exists an element ?~Hc; amt a power q of p such that, .]'or each 
E ~,~, 

71~: -= ?~ (rood r~(M)). 

This follows as in the proof of (2.6). We remark that (3.1) says that, for any 
subgroup F of an elementary abelian p-subgroup E, rr(M) is the radical of 
Hv.resE.~.0);(M)). This can be used, together with the permutation action of 
N(~(E) on H~, as a basis for an inductive proof of (3.4) in the spirit of the 
remark following (2.6). However, this does not lead to a general bound on q 
here, because we do not know what power of rr(M) is contained in 
H r �9 res(~, r (~  (M)). 

As mentioned earlier, the next result is due to Jon Carlson in the case of 
elementary ableian p-groups. 

(3.5) Theorem. Let M and N be fi~itely ge~erated kG-modules. Then 

V~;(M |  ~(M)c~ V~(N). 
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Proof Consider M@kN as  module for G xG. Since the irreducible G xG- 
modules are tensor products of irreducible G-modules, the formulas for coho- 
mology with coefficients in a tensor product yield P~;•174 

V6(M) x Va(N), compatibly with the usual identification V a • (~ ~ I/(; x 1~.. With 
this identification, the map tt~• 1/~--,~/~• x V~ arising from the dia- 
gonal embedding of G is just the diagonal embedding of the varieties. Hence 
tg~c,.a(V~(M)) x V~;(N))is just Va(M)caV~(N). On the other hand 

t~;~ ~, ~(V(;(M) x V~(N))= t~; ~ ~.(;(V~• ~(M | N)) = V(;(M | N) 
by (3.1). 

It is interesting to note that there is an obvious parallel result [~(MON)  
= V~;(M)uI/~(N), as noted by Carlson [9] in the elementary case. 
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